
OSGi Service Platform

Release 3
March 2003

Copyright © 2000-2003, All Rights Reserved.

The Open Services Gateway Initiative

Bishop Ranch 2

2694 Bishop Drive

Suite 275

San Ramon

CA 94583 USA

All Rights Reserved.

ISBN 1 58603 311 5 (IOS Press)

ISBN 4-274-90559-4 (Ohmsha)

Publisher
IOS Press

Nieuwe Hemweg 6B

1013 BG Amsterdam

The Netherlands

fax: +31 20 620 3419

e-mail: order@iospress.nl

Distributor in the UK and Distributor in the USA

Ireland and Canada

IOS Press/Lavis Marketing IOS Press, Inc.

73 Lime Walk 5795-G Burke Centre Parkway

Headington Burke, VA 22015

Oxford OX3 7AD USA

England fax: +1 703 323 3668

fax: +44 1865 75 0079 e-mail: iosbooks@iospress.com

Distributor in Germany, Austria Distributor in Japan

and Switzerland

IOS Press/LSL.de Ohmsha, Ltd.

Gerichtsweg 28 3-1 Kanda Nishiki-cho

D-04103 Leipzig Chiyoda-ku, Tokyo 101-8460

Germany Japan

fax: +49 341 995 4255 fax: +81 3 3233 2426

LEGAL NOTICE
The publisher is not responsible for the use which might be made of the following
information.

PRINTED IN THE NETHERLANDS
ii-588 OSGi Service-Platform Release 3

LEGAL TERMS AND CONDITIONS
REGARDING SPECIFICATION
Implementation of certain elements of the Open Services Gateway Initiative (OSGi)
Specification may be subject to third party intellectual property rights, including
without limitation, patent rights (such a third party may or may not be a member of
OSGi). OSGi is not responsible and shall not be held responsible in any manner for
identifying or failing to identify any or all such third party intellectual property rights.

THE RECIPIENT ACKNOWLEDGES AND AGREES THAT THE SPECIFICATION IS
PROVIDED "AS IS" AND WITH NO WARRANTIES WHATSOEVER, WHETHER
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS OF ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE. THE RECIPIENT'S USE OF THE
SPECIFICATION IS SOLELY AT THE RECIPIENT'S OWN RISK. THE RECIPIENT'S USE
OF THE SPECIFICATION IS SUBJECT TO THE RECIPIENT'S OSGi MEMBER
AGREEMENT, IN THE EVENT THAT THE RECIPIENT IS AN OSGi MEMBER.

IN NO EVENT SHALL OSGi BE LIABLE OR OBLIGATED TO THE RECIPIENT OR ANY
THIRD PARTY IN ANY MANNER FOR ANY SPECIAL, NON-COMPENSATORY,
CONSEQUENTIAL, INDIRECT, INCIDENTAL, STATUTORY OR PUNITIVE
DAMAGES OF ANY KIND, INCLUDING, WITHOUT LIMITATION, LOST PROFITS
AND LOST REVENUE, REGARDLESS OF THE FORM OF ACTION, WHETHER IN
CONTRACT, TORT, NEGLIGENCE, STRICT PRODUCT LIABILITY, OR OTHERWISE,
EVEN IF OSGi HAS BEEN INFORMED OF OR IS AWARE OF THE POSSIBILITY OF
ANY SUCH DAMAGES IN ADVANCE.

THE LIMITATIONS SET FORTH ABOVE SHALL BE DEEMED TO APPLY TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW AND
NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
LIMITED REMEDIES AVAILABLE TO THE RECIPIENT. THE RECIPIENT
ACKNOWLEDGES AND AGREES THAT THE RECIPIENT HAS FULLY CONSIDERED
THE FOREGOING ALLOCATION OF RISK AND FINDS IT REASONABLE, AND THAT
THE FOREGOING LIMITATIONS ARE AN ESSENTIAL BASIS OF THE BARGAIN
BETWEEN THE RECIPIENT AND OSGi.

IF THE RECIPIENT USES THE SPECIFICATION, THE RECIPIENT AGREES TO ALL OF
THE FOREGOING TERMS AND CONDITIONS. IF THE RECIPIENT DOES NOT
AGREE TO THESE TERMS AND CONDITIONS, THE RECIPIENT SHOULD NOT USE
THE SPECIFICATION AND SHOULD CONTACT OSGi IMMEDIATELY.

Trademarks

OSGi™ is a trademark, registered trademark, or service mark of The Open

Services Gateway Initiative in the US and other countries. Java is a trade-
mark, registered trademark, or service mark of Sun Microsystems, Inc. in the

US and other countries. All other trademarks, registered trademarks, or ser-

vice marks used in this document are the property of their respective own-

ers and are hereby recognized.

Feedback

This specification can be downloaded from the OSGi web site:

http:// ww w. os gi .o rg .

Comments about this specification can be mailed to:

spec co mme nts@ma il .o sgi .o rg
OSGi Service-Platform Release 3 iii-588

OSGi Member Companies

4DHomeNet, Inc. Acunia

Alpine Electronics Europe Gmbh AMI-C

Atinav Inc. BellSouth Telecommunications, Inc.

BMW Bombardier Transportation

Cablevision Systems Coactive Networks

Connected Systems, Inc. Deutsche Telekom

Easenergy, Inc. Echelon Corporation

Electricite de France (EDF) Elisa Communications Corporation

Ericsson Espial Group, Inc.

ETRI France Telecom

Gatespace AB Hewlett-Packard

IBM Corporation ITP AS

Jentro AG KDD R&D Laboratories Inc.

Legend Computer System Ltd. Lucent Technologies

Metavector Technologies Mitsubishi Electric Corporation

Motorola, Inc. NTT

Object XP AG On Technology UK, Ltd

Oracle Corporation P&S Datacom Corporation

Panasonic Patriot Scientific Corp. (PTSC)

Philips ProSyst Software AG

Robert Bosch Gmbh Samsung Electronics Co., LTD

Schneider Electric SA Siemens VDO Automotive

Sharp Corporation Sonera Corporation

Sprint Communications Company, L.P.Sony Corporation

Sun Microsystems TAC AB

Telcordia Technologies Telefonica I+D

Telia Research Texas Instruments, Inc.

Toshiba Corporation Verizon

Whirlpool Corporation Wind River Systems
iv-588 OSGi Service-Platform Release 3

OSGi Board and Officers

Rafiul Ahad VP of Product Development, Wireless and

Voice Division, Oracle

VP Americas Dan Bandera Program Director & BLM for Client & OEM

Technology, IBM Corporation

President John R. Barr, Ph.D. Director, Standards Realization, Corporate Offices,

Motorola, Inc.

Maurizio S. Beltrami Technology Manager Interconnectivity,

Philips Consumer Electronics

Hans-Werner Bitzer M.A. Head of Section Smart Home Products,

Deutsche Telekom AG

Steven Buytaert Co-Founder and Co-CEO, ACUNIA

VP Asia Pacific R. Lawrence Chan Vice President Asia Pacific

Echelon Corporation

CPEG chair BJ Hargrave OSGi Fellow and Senior Software Engineer,

IBM Corporation

Technology Officer and editor

Peter Kriens OSGi Fellow and CEO, aQute

Treasurer Jeff Lund Vice President, Business Development & Corporate

Marketing , Echelon Corporation

Executive Director Dave Marples Vice President, Global Inventures, Inc.

Hans-Ulrich Michel Project Manager Information, Communication and

Telematics, BMW

Secretary Stan Moyer Strategic Research Program Manager

Telcordia Technologies, Inc.

Behfar Razavi Sr. Engineering Manager, Java Telematics Technology,

Sun Microsystems, Inc.

VP Marketing Susan Schwarze, PhD. Marketing Director, ProSyst

VP Europe, Middle East and Africa

Staffan Truvé Chairman, Gatespace
OSGi Service-Platform Release 3 v-588

vi-588 OSGi Service-Platform Release 3

Table Of Contents
1 Introduction 3

1.1 Sections ... 3

1.2 What is New In Release 3 .. 3

1.3 Reader Level ... 5

1.4 Conventions and Terms ... 5

1.5 The Specification Process .. 9

1.6 Version Information ... 9

1.7 Compliance Program .. 11

1.8 References ... 11

Reference Section 13

2 Reference Architecture 15

2.1 Introduction ... 15

2.2 Entity Descriptions .. 17

2.3 The Service Gateway Model .. 22

2.4 Other Models ... 24

2.5 Security .. 27

2.6 References ... 27

3 Remote Management Reference Architecture 29

3.1 Introduction ... 29

3.2 Scope ... 31

3.3 Communications .. 33

3.4 Initial Provisioning ... 34

3.5 Security .. 35

3.6 References ... 36

Normative Section 37

4 Framework Specification 39

4.1 Introduction ... 39

4.2 Bundles ... 42

4.3 Manifest Headers ... 43

4.4 The Bundle Name-space .. 45

4.5 Execution Envi ronment .. 52

4.6 Loading Native Code Libraries ... 53

4.7 Finding C lasses and Resources .. 55
OSGi Service-Platform Release 3 vii-588

4.8 The Bundle Object ... 57

4.9 The Bundle Context ... 61

4.10 Services 65

4.11 Stale References ..72

4.12 Fil ters ... 73

4.13 Service Factories ..74

4.14 Importing and Exporting Services .. 76

4.15 Releasing Services .. 76

4.16 Unregistering Services ...76

4.17 Configurable Services .. 77

4.18 Events ... 77

4.19 Framework Startup and Shutdown .. 79

4.20 Security ..80

4.21 The Framework on Java 1.1 ..84

4.22 Changes .. 85

4.23 org.osgi.framework .. 87

4.24 References .. 128

5 Package Admin Service Specification 131

5.1 Introduction ... 131

5.2 Package Admin ... 132

5.3 Security .. 132

5.4 Changes .. 133

5.5 org.osgi.service.packageadmin .. 133

6 Start Level Service Specification 137

6.1 Introduction ... 137

6.2 Start Level Service ... 138

6.3 Compatibil ity Mode ... 142

6.4 Example Applications ... 142

6.5 Security .. 143

6.6 org.osgi.service.startleve l .. 143

7 Permission Admin Service Specification 147

7.1 Introduction ... 147

7.2 Permission Admin service .. 148

7.3 Security .. 150

7.4 Changes .. 150

7.5 org.osgi.service.permissionadmin ... 150

8 URL Handlers Service Specification 155

8.1 Introduction ... 155
vi ii-588 OSGi Service-Platform Release 3

8.2 Factories in java.net ... 158

8.3 Framework Procedures .. 159

8.4 Providing a New Scheme ... 163

8.5 Providing a Content Handler ... 164

8.6 Security Considerations .. 164

8.7 org .osgi.service.url .. 165

8.8 References ... 168

9 Log Service Specification 169

9.1 Introduction ... 169

9.2 The Log Service Interface .. 170

9.3 Log Level and Error Severity ...171

9.4 Log Reader Service .. 172

9.5 Log Entry Inter face ... 173

9.6 Mapping of Events ... 173

9.7 Security .. 175

9.8 Changes ... 175

9.9 org .osgi.service.log .. 176

10 Configuration Admin Service Specification 181

10.1 Introduction ... 181

10.2 Conf iguration Targets .. 184

10.3 The Persistent Identity .. 185

10.4 The Configuration Object .. 187

10.5 Managed Serv ice .. 189

10.6 Managed Serv ice Factory ... 193

10.7 Conf iguration Admin Service ... 198

10.8 Conf iguration Plugin .. 201

10.9 Remote Management .. 203

10.10 Meta Typing ...204

10.11 Security 205

10.12 Conf igurable Service ... 207

10.13 Changes ...208

10.14 org .osgi.service.cm .. 209

10.15 References ... 221

11 Device Access Specification 223

11.1 Introduction ... 223

11.2 Device Services .. 225

11.3 Device Category Speci fications ... 228

11.4 Driver Services ... 230

11.5 Driver Locator Service ... 237
OSGi Service-Platform Release 3 ix-588

11.6 The Driver Se lector Service ... 239

11.7 Device Manager ...240

11.8 Security246

11.9 Changes .. 247

11.10 org.osgi.service.device ...247

11.11 References .. 251

12 User Admin Service Specification 253

12.1 Introduction ... 253

12.2 Authentication ...256

12.3 Author ization ... 258

12.4 Reposi tory Maintenance .. 261

12.5 User Admin Events ... 261

12.6 Security 262

12.7 Relation to JAAS ... 262

12.8 Changes .. 263

12.9 org.osgi.service.useradmin .. 263

12.10 References .. 275

13 IO Connector Service Specification 277

13.1 Introduction ... 277

13.2 The Connector Framework .. 278

13.3 Connector Service ..280

13.4 Providing New Schemes ... 281

13.5 Execution Environment .. 282

13.6 Security 282

13.7 org.osgi.service.io .. 283

13.8 References ..286

14 Http Service Specification 287

14.1 Introduction ... 287

14.2 Reg istering Servlets ...288

14.3 Reg istering Resources ..290

14.4 Mapping HTTP Requests to Servlet and Resource Registrations 292

14.5 The Default Http Context Object .. 293

14.6 Multipurpose Internet Mail Extension (MIME) Types ...294

14.7 Authentication ...295

14.8 Security .. 297

14.9 Configuration Properties ...298

14.10 Changes298

14.11 org.osgi.service.http ..299

14.12 References ..304
x-588 OSGi Service-Platform Release 3

15 Preferences Service Specification 305

15.1 Introduction ... 305

15.2 Preferences Interface ... 307

15.3 Concurrency ... 310

15.4 PreferencesService Interface ..311

15.5 Cleanup ...311

15.6 Changes .. . 312

15.7 org .osgi.service.prefs ... 312

15.8 References ... 323

16 Wire Admin Service Specification 325

16.1 Introduction ... 325

16.2 Producer Service .. 328

16.3 Consumer Service .. 331

16.4 Implementation issues ... 333

16.5 Wire Properties .. 334

16.6 Composite objects ... 335

16.7 Wire Flow Control .. 339

16.8 Flavors 343

16.9 Converters ... 343

16.10 Wire Admin Service Implementation .. 343

16.11 Wire Admin Listener Service Events .. 344

16.12 Connecting External Entities ... 345

16.13 Re lated Standards .. 346

16.14 Security 347

16.15 org .osgi.service.wireadmin .. 347

16.16 References .. . 366

17 XML Parser Service Specification 367

17.1 Introduction ... 367

17.2 JAXP .. 368

17.3 XML Parser service ... 369

17.4 Properties ... 369

17.5 Getting a Parser Factory .. 370

17.6 Adapting a JAXP Parser to OSGi ... 370

17.7 Usage of JAXP ... 372

17.8 Security .. 372

17.9 org .osgi.util.xml ... 373

17.10 References .. . 376

18 Metatype Specification 377

18.1 Introduction ... 377
OSGi Service-Platform Release 3 xi-588

18.2 Attributes Model .. 379

18.3 Object C lass Definition .. 379

18.4 Attribute Definition ...380

18.5 Meta Type Provider ..380

18.6 Metatype Example ... 381

18.7 Limitations ... 383

18.8 Related Standards .. 383

18.9 Security Considerations ... 384

18.10 Changes 384

18.11 org.osgi.service.metatype .. 384

18.12 References .. 389

19 Service Tracker Specification 391

19.1 Introduction ... 391

19.2 ServiceTracker Class ..392

19.3 Using a Service Tracker ... 393

19.4 Customizing the ServiceTracker class ... 393

19.5 Customizing Example ... 394

19.6 Security .. 395

19.7 Changes .. 395

19.8 org.osgi.util.tracker .. 395

20 Measurement and State Specification 403

20.1 Introduction ...403

20.2 Measurement Object ...405

20.3 Error Calculations ... 406

20.4 Comparing Measurements .. 406

20.5 Unit Object ...407

20.6 State Object .. 409

20.7 Related Standards ... 409

20.8 Security Considerations ... 410

20.9 org.osgi.util.measurement ...410

20.10 References .. 419

21 Position Specification 421

21.1 Introduction ... 421

21.2 Positioning ...422

21.3 Units ... 422

21.4 Optimizations .. 422

21.5 Errors ..422

21.6 Using Position With Wire Admin ..423

21.7 Related Standards .. 423
xii-588 OSGi Service-Platform Release 3

21.8 Security .. 423

21.9 org .osgi.util.position .. 423

21.10 References .. . 424

22 Execution Environment Specification 427

22.1 Introduction ... 427

22.2 About Execution Environments ...428

22.3 OSGi Defined Execution Environments ...428

22.4 References ... 478

Recommended Section 479

23 Name-space Specification 481

23.1 Introduction ... 481

23.2 Re lated Standards ..486

23.3 Security .. 487

23.4 References ... 487

24 Jini™ Driver Service Specification 489

24.1 Introduction ...489

24.2 The Jini Driver Service ... 491

24.3 Discovering Services .. 491

24.4 Importing a Jini Service .. 494

24.5 Exporting an OSGi Service to Jini ..496

24.6 Package Management .. 497

24.7 Conf iguration ... 498

24.8 Security .. 499

24.9 org .osgi.service.jini .. 499

24.10 References ... 501

25 UPnP™ Device Service Specification 503

25.1 Introduction ... 503

25.2 UPnP Specifications ... 505

25.3 UPnP Dev ice ...506

25.4 Device Category .. 508

25.5 UPnPService ...508

25.6 Working With a UPnP Device ... 509

25.7 Implementing a UPnP Device ..509

25.8 Event API .. 510

25.9 Localization ...511

25.10 Dates and Times ...511

25.11 Conf iguration ... 512
OSGi Service-Platform Release 3 xii i-588

25.12 Networking considerations .. 512

25.13 Security .. 512

25.14 org.osgi.service.upnp ... 512

25.15 References .. 526

26 Initial Provisioning 529

26.1 Introduction ... 529

26.2 Procedure ... 530

26.3 Special Conf igurations ... 533

26.4 The Provisioning Service .. 534

26.5 Management Agent Envi ronment .. 535

26.6 Mapping To File Scheme .. 535

26.7 Mapping To HTTP(S) Scheme .. 536

26.8 Mapping To RSH Scheme ... 538

26.9 Security .. 542

26.10 org.osgi.service.provisioning ... 543

26.11 References .. 546

27 Method Overview 549

Index 559
xiv-588 OSGi Service-Platform Release 3

Foreword

At the beginning of our fourth year of operation, the Open Services Gateway

Initiative is pleased to present our OSGi Service Platform, Release 3 specifi-

cation. This represents the culmination of another year of cooperative effort

by the members of the OSGi alliance that builds on our previous releases
and the experience of using those releases to build compelling products and

network deployments using the OSGi service delivery model. The army of

volunteers who have contributed their time and expertise with the support

of the OSGi member companies have made this release and the success of

the OSGi alliance possible. We are honored to have such high caliber people

involved.

The Open Services Gateway Initiative released the first service platform

specification in May, 2000, and the second OSGi Service Platform specification,

Release 2 in October, 2001. Release 2 was published as a book in May, 2002,

when we announced the OSGi Compliance Program. With the cooperation

of automotive OEMs and the Automotive Multimedia Interface Collabora-
tion (AMI-C), Release 3 will include support for mobile service platforms

and applications where data access is handled by a variety of secure inter-

faces. The Vehicle Expert Group that was formed to work closely with auto-

motive OEMs and service providers has defined these specifications. Release

3 will also have a new reference section including a Reference Architecture

and a Remote Management Reference Architecture to help readers under-

stand how the OSGi Service Platform can be used. We have also added a rec-
ommended section containing complete specifications of services that are

subject to change as more experience is gained with their use. This section

includes Jini™ Driver and UPnP™ Service specifications produced by the

OSGi Device Expert Group and a Name-space specification. All the other

specifications will be maintained with strict backwards compatibility with

new OSGi Service Platform releases.

Our original intention was to create a specification to allow services to be

remotely deployed onto home network gateways - things like set-top boxes

and DSL Modems. The first release of the specification explicitly addressed

this market. That specification was extremely successful with many compa-

nies creating frameworks compatible with it. Our second release built upon
the experiences gained from the first release and introduced methods for

improving security, remotely managing service platforms, and making it

easier to implement complex applications. OSGi Service Platform, Release 2

became more of a 'horizontal platform', applicable to other markets such as

consumer electronics and automotive systems, security products, and

mobile phones.

The OSGi alliance exists to create open specifications for the network deliv-

ery of managed services to devices in the home, car, and other environ-

ments.

The OSGi principles are applicable in any environment where managed life-
cycles, long uptimes, and highly resilient, remotely managed platforms are

requirements. The automotive industry has added the requirement to keep

the applications using that platform current with the latest consumer elec-
OSGi Service-Platform Release 3 1-588

tronics systems that may have multiple product life-cycles during the typi-
cal ownership period of an automobile.

We've been very careful to not alienate our early adopters, so you'll find

very few incompatibilities between this specification and earlier ones. We

will continue expanding the specification and developers can rest assured

we'll give the same attention to backwards compatibility in the future. This
is even more important as other standards organizations are including the

OSGi service platform specification as part of their standards.

As said before, we're privileged to have world class people working on this

initiative. This document is the product of the OSGi Expert Groups and

those people deserve a special pat on the back for their efforts.

Finally, we really do mean the “Open” in our name, so if the OSGi mission is

important to you then please come and join us, and together we'll be able to

make future releases even better…

So, here it is, the OSGi Service Platform, Release 3. Enjoy…

John Barr, President OSGi
2-588 OSGi Service-Platform Release 3

Introduction Sections
1 Introduction

The Open Services Gateway Initiative (OSGi™) was founded in March 1999.

Its mission is to create open specifications for the network delivery of man-

aged services to local networks and devices. The OSGi organization is the

leading standard for next-generation Internet services to homes, cars, small

offices, and other environments.

The OSGi service platform specification delivers an open, common architec-

ture for service providers, developers, software vendors, gateway operators

and equipment vendors to develop, deploy and manage services in a coordi-

nated fashion. It enables an entirely new category of smart devices due to its

flexible and managed deployment of services. The primary targets for the

OSGi specifications are set top boxes, service gateways, cable modems, con-
sumer electronics, PCs, industrial computers, cars and more. These devices

that implement the OSGi specifications will enable service providers like

telcos, cable operators, utilities, and others to deliver differentiated and

valuable services over their networks.

This is the third release of the OSGi service platform specification developed
by representatives from OSGi member companies. The OSGi Service Plat-

form Release 3 mostly extends the existing APIs into new areas. The few

modifications to existing APIs are backward compatible so that applications

for previous releases should run unmodified on release 3 Frameworks. The

built-in version management mechanisms allow bundles written for the

new release to adapt to the old Framework implementations, if necessary.

1.1 Sections

This specification is divided into three sections. The first section contains
reference documents. These reference documents provide background

information and define the terminology that is used in the remainder of the

specifications.

The second section contains the OSGi normative specifications. Future ver-

sions of normative specifications will be made fully backward compatible
or replaced by a new specification. Normative specifications have a version

number starting with 1.

The third and last section contains recommended specifications. The pur-

pose of these specifications is to provide well-defined specifications but

allow future specifications to learn from real experiences. Every attempt
will be made to keep these specifications backward compatible. However, in

certain cases, changes could be made that are not backward compatible.

1.2 What is New In Release 3

The following list details the new specifications that have been added to

Release 3.
OSGi Service-Platform Release 3 3-588

What is New In Release 3 Introduction
• Execution Environment – In the Execution Environment Specification on page
427, the OSGi defines two Execution Environments. One is the

minimum requirements defined for test suites and applications that

need an absolutely minimal execution environment. The other is

adopted from the J2ME Foundation Profile.

• Reference Architectures – Two chapters have been included to describe an

overall reference architecture and a remote management reference archi-
tecture. These architectures define the terminology for the service defini-

tions and place these services and utilities in context. See Reference

Architecture on page 15 and Remote Management Reference Architecture on

page 29 for more information.

• IO Connector Service – The OSGi specifications have adopted the

javax. mi cro edi t ion . io package but added a facility to extend the sup-
ported schemes in run-time. See IO Connector Service Specification on page

277.

• Wire Admin Service – The Wire Admin service provides bundles the

opportunity to connect Consumer services to Producer services in run-

time, enabling a powerful component model. See Wire Admin Service

Specification on page 325 for more information.
• Start Levels – The Framework API has been extended with a start level

service. This service allows the management agent to control the startup

and shutdown ordering of bundles. This is defined in the Start Level

Service Specification on page 137.

• Measurement – The M eas uremen t class is a utility for the common

problem of handling measurements. It supports a defined unit system

and handles measurement errors. It is defined in the Measurement and

State Specification on page 403.

• Position – The Position class is usually used in conjunction with the Wire

Admin service. It contains the different aspects of a geographic location.

It is detailed in the Position Specification on page 421.

• XML Parser support – Java 2 specifies a common way of registering XML

parsers as extensions. This specification defines a utility to support this
mechanism in an OSGi Service Platform. See XML Parser Service Specifi-

cation on page 367 for more information.

• URL Stream and Content Handlers – Java allows applications to extend

URL Stream and Content Handlers in run-time, but the mechanism used

is problematic for an OSGi Service Platform due to the life-cycles that

bundles go through. See URL Handlers Service Specification on page 155 for
more information.

• Dynamic Import – Bundles can now indicate that packages should be

loaded from other bundles, even though the packages are not explicitly

specified in the Import-Package manifest header. This is necessary to

support the common C lass. fo rName () idiom. It is specified in Dynami-

cally Importing Packages on page 48.
• Initial Provisioning – Chapter 26, Initial Provisioning on page 529, specifies

how the management agent, as defined by the remote management ref-

erence architecture, is initially loaded in a service platform.

• Jini – The Jini™ Driver Service Specification on page 489 details the needed

steps and guidelines to use Jini services from an OSGi bundle and how to

export OSGi services to Jini communities.
• UPnP™ – Universal Plug ’n Play supports ad-hoc networking of compo-

nents from different vendors. The UPnP™ Device Service Specification on
4-588 OSGi Service-Platform Release 3

Introduction Reader Level
page 503 specifies how UPnP devices available in the local network can
be used from an OSGi bundle and how a bundle can publish a UPnP

device.

• Indexing – This document is more extensively indexed than release 2. See

the index at the end of this book on page 559.

• An overview of all methods, classes, and packages defined in the OSGi

specifications is added in Method Overview on page 549.

1.3 Reader Level

This specification is written for the following audiences:

• Application developers

• Framework and system service developers (system developers)

• Architects

This specification assumes that the reader has at least one year of practical
experience in writing Java programs. Experience with embedded systems

and server environments is a plus. Application developers must be aware

that the OSGi environment is significantly more dynamic than traditional

desktop or server environments.

System developers require a very deep understanding of Java. At least three
years of Java coding experience in a system environment is recommended. A

Framework implementation will use areas of Java that are not normally

encountered in traditional applications. Detailed understanding is required

of class loaders, garbage collection, Java 2 security, and Java native library

loading.

Architects should focus on the introduction of each subject. This introduc-

tion contains a general overview of the subject, the requirements that influ-

enced its design, and a short description of its operation as well as the

entities that are used. The introductory sections require knowledge of Java

concepts like classes and interfaces, but should not require coding experi-

ence.

Most of these specifications are equally applicable to application developers

and system developers.

1.4 Conventions and Terms

1.4.1 Typography

A fixed width, non-serif typeface (sa mple) indicates the term is a Java pack-

age, class, interface, or member name. Text written in this typeface is always
related to coding.

Emphasis (sample) is used the first time an important concept is introduced.

When an example contains a line that must be broken over multiple lines,

the « character is used. Spaces must be ignored in this case. For example:

http://www.acme.com/sp/ «

file?abc=12
OSGi Service-Platform Release 3 5-588

Conventions and Terms Introduction
is equivalent to:

http://www.acme.com/sp/file?abc=12

In many cases in these specifications, a syntax must be described. This syn-

tax is based on the following symbols:

* Repetition of the previous element of zero or
more times, e.g. (’,’ list) *

? Previous element is optional
(...) Grouping
’...’ Literal
| Or
[...] Set (one of)
.. list, e.g. 1..5 is the list 1 2 3 4 5
<...> Externally defined token
digit ::= [0..9]
alpha ::= [a..zA..Z]
token ::= alpha (alpha|digit|’_’)*
quoted-string ::= ’"’ ... ’"’

Spaces are ignored unless specifically noted.

1.4.2 Object Oriented Terminology

Concepts like classes, interfaces, objects, and services are distinct but subtly
different. For example, “LogService” could mean an instance of the class

Log Ser vi ce , could refer to the class Lo gSer vice , or could indicate the func-

tionality of the overall Log Service. Experts usually understand the meaning

from the context, but this understanding requires mental effort. To high-

light these subtle differences, the following conventions are used.

When the class is intended, its name is spelled exactly as in the Java source

code and displayed in a fixed width typeface: for example the “HttpS ervic e

class”, “a method in H ttpC on te xt” or “a j avax.s ervlet . Ser vlet object”. A class

name is fully qualified, like javax. servle t .Se rvlet , when the package is not

obvious from the context nor is it in one of the well known java packages

like java . la ng , java. io , ja va.ut i l and ja va.ne t. Otherwise, the package is omit-
ted like in Str in g .

Exception and permission classes are not followed by the word “object”.

Readability is improved when the “object” suffix is avoided. For example, “to

throw a S ecur ityExcepti on” and to “to have F i leP ermis sio n” instead of "to

have a F i le Per mi ss io n object".

Permissions can further be qualified with their actions.

Servic ePe rmissi on[GET|R EGIS TER ,co m.a cme.*] means a

Servic ePe rmissi on with the action GET and R EG ISTER for all service names

starting with c om.a cme . A Se rvic ePer missio n[REGI STER,

Pro duce r | Co nsumer] means the GET Ser viceP ermiss ion for the P ro duce r or
Co nsumer class.

When discussing functionality of a class rather than the implementation

details, the class name is written as normal text. This convention is often

used when discussing services. For example, “the User Admin service”.
6-588 OSGi Service-Platform Release 3

Introduction Conventions and Terms
Some services have the word “Service” embedded in their class name. In
those cases, the word “service” is only used once but is written with an

upper case S. For example, “the Log Service performs”.

Service objects are registered with the OSGi Framework. Registration con-

sists of the service object, a set of properties, and a list of classes and inter-

faces implemented by this service object. The classes and interfaces are used
for type safety and naming. Therefore, it is said that a service object is regis-

tered under a class/interface. For example, “This service object is registered

under P ermiss ion Ad min.”

1.4.3 Diagrams

The diagrams in this document illustrate the specification and are not nor-
mative. Their purpose is to provide a high-level overview on a single page.

The following paragraphs describe the symbols and conventions used in

these diagrams.

Classes or interfaces are depicted as rectangles, as in Figure 1. Interfaces are

indicated with the qualifier <<i nterf ace >> as the first line. The name of the
class/interface is indicated in bold when it is part of the specification. Imple-

mentation classes are sometimes shown to demonstrate a possible imple-

mentation. Implementation class names are shown in plain text. In certain

cases class names are abbreviated. This is indicated by ending the abbrevia-

tion with a period.

Figure 1 Class and interface symbol

If an interface or class is used as a service object, it will have a black triangle

in the bottom right corner.

Figure 2 Service symb ol

Inheritance (the exten ds or imple ments keyword in Java class definitions)

is indicated with an arrow. Figure 3 shows that Us er implements or extends

Role.

Figure 3 Inheritance (implements or extends) symbol

Relations are depicted with a line. The cardinality of the relation is given

explicitly when relevant. Figure 4 shows that each (1) Bun dleC o ntext object

is related to 0 or more B undle Listen er objects, and that each Bund leLis te ner

object is related to a single Bund leC on te xt object. Relations usually have

<<interface>>
Bundle
Context

Admin
Permission

UserAdmin
Implementation

class interface implementation class

Permission
Admin

<<interface>>
Role

<<interface>>
User
OSGi Service-Platform Release 3 7-588

Conventions and Terms Introduction
some description associated with them. This description should be read
from left to right and top to bottom, and includes the classes on both sides.

For example: “A Bu ndleC o ntext object delivers bundle events to zero or

more B undleL istene r objects.”

Figure 4 Relations symbol

Associations are depicted with a dashed line. Associations are between

classes, and an association can be placed on a relation. For example, “every

Servic eR egis tr at io n object has an associated Ser vice Ref ere nce object.” This

association does not have to be a hard relationship, but could be derived in

some way.

When a relationship is qualified by a name or an object, it is indicated by

drawing a dotted line perpendicular to the relation and connecting this line

to a class box or a description. Figure 5 shows that the relationship between

a U ser Admin class and a R ole class is qualified by a name. Such an associa-

tion is usually implemented with a Dic t ion ary object.

Figure 5 Associations symb ol

Bundles are entities that are visible in normal application programming. For
example, when a bundle is stopped, all its services will be unregistered.

Therefore, the classes/interfaces that are grouped in bundles are shown on a

grey rectangle.

Figure 6 Bundles

1.4.4 Key Words

This specification consistently uses the words may, should, and must. Their

meaning is well defined in [1] Bradner, S., Key words for use in RFCs to Indicate

Requirement Levels. A summary follows.

<<interface>>
Bundle
Listener

<<interface>>
Bundle
Context

0..*1 delivers bundle events

<<interface>>
Role

<<interface>>
UserAdmin 0..*1

name

<<interface>>
Role

<<interface>>
UserAdmin 0..n1 has

name

UserAdminImpl RoleImpl
Implementation

bundle

Permission

0..n

1

8-588 OSGi Service-Platform Release 3

Introduction The Specif ication Process
• must – An absolute requirement. Both the Framework implementation
and bundles have obligations that are required to be fulfilled to conform

to this specification.

• should – Recommended. It is strongly recommended to follow the

description, but reasons may exist to deviate from this recommendation.

• may – Optional. Implementations must still be interoperable when these

items are not implemented.

1.5 The Specification Process

Within the OSGi, specifications are developed by Expert Groups (EG). If a
member company wants to participate in an EG, it must sign a Statement Of

Work (SOW). The purpose of an SOW is to clarify the legal status of the

material discussed in the EG. An EG will discuss material which already has

Intellectual Property (IP) rights associated with it, and may also generate

new IP rights. The SOW, in conjunction with the member agreement,

clearly defines the rights and obligations related to IP rights of the partici-
pants and other OSGi members.

To initiate work on a specification, a member company first submits a

request for a proposal. This request is reviewed by the Market Requirement

Committee which can either submit it to the Technical Steering Committee

(TSC) or reject it. The TSC subsequently assigns the request to an EG to be
implemented.

The EG will draft a number of proposals that meet the requirements from

the request. Proposals usually contain Java code defining the API and

semantics of the services under consideration. When the EG is satisfied with

a proposal, it votes on it.

To assure that specifications can be implemented, reference implementa-

tions are created to implement the proposal. Test suites are also developed,

usually by a different member company, to verify that the reference imple-

mentation (and future implementations by OSGi member companies) ful-

fill the requirements of the specifications. Reference implementations and
test suites are only available to member companies.

Specifications combine a number of proposals to form a single document.

The proposals are edited to form a set of consistent specifications, which are

voted upon again by the EG. The specification is then submitted to all the

member companies for review. During this review period, member compa-
nies must disclose any IP claims they have on the specification. After this

period, the OSGi board of directors publishes the specification.

This Service Platform Release 3 specification was developed by the Core

Platform Expert Group (CPEG), Device Expert Group (DEG), Remote Man-

agement Expert Group (RMEG), and Vehicle Expert Group (VEG).

1.6 Version Information

This document specifies OSGi Service Platform Release 3. This specification
is backward compatible to releases 1 and 2.

New for this specification are:
OSGi Service-Platform Release 3 9-588

Version Information Introduction
• Wire Admin service
• Measurement utility

• Start Level service

• Execution Environments

• URL Stream and Content Handling

• Dynamic Import

• Position utility
• IO service

• XML service

• Jini service

• UPnP service

• OSGi Name-space

• Initial Provisioning service

Components in this specification have their own specification-version,

independent of the OSGi Service Platform, Release 3 specification. The fol-

lowing table summarizes the packages and specification-versions for the dif-

ferent subjects.

Item Package Version

Fra mew or k or g.o sgi . f ra mew or k 1. 2

Co nf ig ura t ion Admin ser vi ce or g.o sgi . ser vic e. cm 1. 1

Device Acc ess or g.o sgi . ser vic e. device 1. 1

Http Ser vi ce or g.o sgi . ser vic e. http 1. 1

IO C onn ecto r or g.o sgi . ser vic e. io 1. 0

J in i ser vi ce or g.o sgi . ser vic e. j in i 1. 0

Log Se rvice or g.o sgi . ser vic e. log 1. 2

Meta type or g.o sgi . ser vic e. me tatype 1. 0

Pack age Admin ser vi ce or g.o sgi . ser vic e. pack age admin 1. 1

Permis s io n Admin ser vice or g.o sgi . ser vic e. permis s io nadmin 1. 1

Pref ere nce s Se rvic e or g.o sgi . ser vic e. pref s 1. 0

Init ia l Pr o vi s ion ing or g.o sgi . ser vic e. pro vis io ning 1. 0

Bundl e S tart Level s or g.o sgi . ser vic e. start l evel 1. 0

Unive rsal P l ug & Play servic e or g.o sgi . ser vic e. upnp 1. 0

UR L S trea m an d C on tent or g.o sgi . ser vic e. ur l 1. 0

Use r Ad mi n se rvice or g.o sgi . ser vic e. usera dmin 1. 0

Wir e Ad mi n or g.o sgi . ser vic e. wir ead mi n 1. 0

Mea sure me nt ut i l i ty or g.o sgi . ut i l .me asur ement 1. 0

Pos it ion ut i l i ty or g.o sgi . ut i l .p osi t ion 1. 0

Servic e Tr ac ker or g.o sgi . ut i l . t r ac ker 1. 2

XML Par ser s or g.o sgi . ut i l .xml 1. 0

Tab le 1 Packages and versions
10-588 OSGi Service-Platform Release 3

Introduction Compliance Program
When a component is represented in a bundle, a specification-version is
needed in the declaration of the Import-Package or Export-Package manifest

headers. Package versioning is described in Sharing Packages on page 46.

1.7 Compliance Program

The OSGi offers a compliance program for the software product that

includes an OSGi Framework and a set of zero or more core bundles collec-

tively referred to as a Service Platform. Any services which exist in the

or g.o sgi name-space and that are offered as part of a Service Platform must

pass the conformance test suite in order for the product to be considered for
inclusion in the compliance program. A Service Platform may be tested in

isolation and is independent of its host Virtual Machine. Certification

means that a product has passed the conformance test suite(s) and meets

certain criteria necessary for admission to the program, including the

requirement for the supplier to warrant and represent that the product con-

forms to the applicable OSGi specifications, as defined in the compliance
requirements.

The compliance program is a voluntary program and participation is the

supplier's option. The onus is on the supplier to ensure ongoing compliance

with the certification program and any changes which may cause this com-

pliance to be brought into question should result in re-testing and re-sub-
mission of the Service Platform. Only members of the OSGi alliance are

permitted to submit certification requests.

1.7.1 Compliance Claims.

In addition, any product that contains a certified OSGi Service Platform may
be said to contain an OSGi Compliant Service Platform. The product itself is

not compliant and should not be claimed as such.

More information about the OSGi Compliance program, including the pro-

cess for inclusion and the list of currently certified products, can be found at

http://www.osgi.org/compliance.

1.8 References

[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels

http://www.ietf.org/rfc/rfc2119.txt, March 1997.

[2] OSGi Service Gateway Specification 1.0

http://www.osgi.org/resources/spec_download.asp

[3] OSGi Service Platform, Release 2, October 2001

http://www.osgi.org/resources/spec_download.asp
OSGi Service-Platform Release 3 11-588

References Introduction
12-588 OSGi Service-Platform Release 3

OSGi Service-Platform Release 3 13-588

Reference Section

The following section contains documents that are for reference only and

are not considered normative.

14-588 OSGi Service-Platform Release 3

Reference Architecture Version 1.0 Introduction
2 Reference Architecture

Version 1.0

2.1 Introduction

This chapter provides an OSGi reference architecture. This section is neither

a specification nor normative. Its purpose is to define a clear and concise ter-
minology as a foundation for the OSGi specifications.

The primary OSGi reference architecture is based on a model where an oper-

ator manages a potentially large network of service platforms. It assumes

that the service platforms are fully controlled by the operator and are used

to run services from many different service providers.

This is, however, only one scenario for using the OSGi specifications. Other

models might be similar to the deployments of PCs (where the end user has

full control over the Service Platform), might be industrial applications (for

example, mobile phone base stations where a management center is fully

responsible for all aspects), or might be some intermediate model. The wide
applicability of the OSGi specifications for networked services makes it

impossible to pin-point one model as the final architecture for OSGi. There-

fore, some alternate models are discussed in the last sections of this chapter.

The OSGi reference architecture should therefore not be used to restrict pos-

sible applications of the OSGi specifications. The OSGi specifications are
developed in a cohesive and de-coupled way to allow them to be used in

many circumstances, not limited by a single reference architecture.

2.1.1 Essentials

• Business Driven – The architecture must be driven from the point of view
of the Operator. The Operator needs to make a business case illustrating

the management of Service Platforms providing fee based services to end

users.

• Complete – The architecture must be sufficiently detailed as to allow the

vendors to produce robust implementations.

• Not Constraining – Service Platforms vary greatly in their capabilities and
the network environments in which they operate. The architecture

should therefore not overly constrain implementations.

• Open – Being a standard and not a design for a specific system, the OSGi

reference architecture must consider and support a number of different

scenarios.

• Not Normative – The reference architecture should not be used as a nor-

mative specification.

2.1.2 Entities

• Service Platform – A instantiation of a Java VM, an OSGi Framework, and

a set of running bundles.
OSGi Service-Platform Release 3 15-588

Introduction Reference Architecture Version 1.0
• Service Platform Server (SPS) – The hardware that hosts one or more
Service Platforms.

• Operator – The organization that is in charge of a number of Service Plat-

forms.

• Service Application – A suite of bundles, documentation, and support

software that together form an application that provides a utility to the

Service User.
• Service User – The person that receives the benefits of a Service Appli-

cation.

• Service Provider – The organization that procures or develops Service

Applications and deploys these applications via a Service Deployment

Manager on Service Platforms.

• Service Deployment Manager (SDM) – The system that deploys and par-
tially manages the Service Applications of one or more Service Providers.

• Service Operations Support – Supporting software and hardware that does

not reside on the Service Platform Server but is needed to execute the

Service Application.

• Service Aggregator – A Service Provider that is responsible for assuring

the integrity of service applications from different Service Providers and
consolidating them into a single offering.

• Service Developer – An organization that develops Service Applications.

• Manufacturer – The organization that builds a Service Platform Server.

• Owner – The person or organization that has ownership of a Service

Platform Server.

• Charging Provider – The organization that receives accounting infor-

mation and that provides a consolidated bill to the Service Customer.
• Service Platform Identifier – A unique identity for a Service Platform.

• Service Customer – The entity used for billing.

• Network Provider – The organization that provides the network connec-

tivity to the Service Platforms.

• Certification Authority – An organization that can manage certificates

used to authenticate systems, individuals, and organizations.
16-588 OSGi Service-Platform Release 3

Reference Architecture Version 1.0 Entity Descriptions
Figure 7 Architecture Diagram

2.2 Entity Descriptions

It should be noted that most entities are roles. One particular person or orga-

nization can have several roles simultaneously. For example, the same orga-

nization might act as a Service Provider, Service Platform Operator and Service

Deployment Manager.

Service
Platform
Server

Service
Platform

Operator

in
vo

iced by

Service
Application

Service
User

Service
Provider

Service
Aggregator

Service
Bundle

Service
Deployment
Manager

Service
Operations
Support

executes

Service
Customer

p
ro

vides

delegates to

deplo
ys fo

r

deploys on

supports

executes

con
sists o

f

responsible for

subscribes to services of

aggergates fo
r

1

0..* 0..*

1

1..*

1

0..*

0,1

1..*

0,1 0..*
0..* 0..*

1

1..*

0,1

0..*

0,1 0..*

0,1 0..*

0..*

receives services

Service
Developer

procures from develops

0..*

0..*

0..*

1..*

p
erm

its

1

0..*has member

ch
arges1

on behalf of

controls

1

Network
Provider

connects

Manufacturer

b
uild

s
1

1..*
Owner

owns1 0..*

Charging
Provider

receives paym
ent

services for

0..*

0..*

uses infrastructure of
OSGi Service-Platform Release 3 17-588

Entity Descriptions Reference Architecture Version 1.0
2.2.1 Service Platform

The primary function of the Service Platform is to manage the execution life-

cycle of Service Applications. Service Applications consist of bundles that the
Service Platform is capable of dynamically loading, activating, deactivating,

updating, and unloading.

2.2.2 Service Platform Server

The Service Platform Server (SPS) hosts one or more Service Platforms. It can

be equipped with very specialized hardware suited for a specific application
domain. For example, it can contain an MPEG 4 decoder chip or it can house

any number of processors executing any number of Service Platforms.

2.2.3 Operator

The primary responsibility of the Operator is to control who is allowed to
deploy services to the Service Platform in question i.e. control which Service

Deployment Managers are allowed to manage the particular Service Platform.

In addition to this, the Operator can also manage other functions related to a

specific Service Platform instance.

2.2.4 Service Application

A Service Application is a set of bundles that collectively implement a specific

function used within a Service Platform.

2.2.5 Service User

The Service User is defined to be an entity, possibly human, that does one or
more of the following:

• Initiates the necessary business events required to ensure that a specific

Service Application is deployed on a specific Service Platform.

• Interacts with a specific Service Application during its execution.

Service Users are end users. They might or might not interact directly with

the Service Platform Server as they use it. When incurring charges for using

a service, a Service User must be associated with a Service Customer. For

example, when a Service User watches a Pay-TV movie, the associated Ser-

vice Customer incurs the charges.

2.2.6 Service Provider

The Service Provider represents a business related entity. The Service Pro-

vider supplies the necessary means to provide the business related support

of a specific Service Application. The Service Provider is also responsible for

delegating the tasks of service deployment and service operation manage-
ment to the Service Deployment Manager and Service Operations Support.

2.2.7 Service Deployment Manager

The Service Deployment Manager (SDM) acts on behalf of the Service Pro-

vider. The SDM manages all issues related to the life-cycle of Service Appli-
cations that are external to the Service Platform.
18-588 OSGi Service-Platform Release 3

Reference Architecture Version 1.0 Entity Descriptions
2.2.8 Service Operations Support

The Service Operations Support (SOS) acts on behalf of the Service Provider.

The SOS is responsible for the systems that operate in conjunction with the
Service Applications. For example, if a Service Application is acting as a

Web client accessing a Web server that provides support to the application,

the Web server is part of the responsibilities of the SOS.

2.2.9 Service Developer

A Service Developer writes Service Applications. In general, they are consid-
ered to be the same as the Service Provider. However, there are cases where

the distinction is important. For example, a software company could spe-

cialize in generic service application development and sell software suites

to Service Providers.

2.2.10 Service Aggregator

A Service Aggregator is a Service Provider that consolidates Service Applica-

tions provided by other Service Providers into one distinct offering and

resolves dependencies and conflicts between different Service Applications.

A Service Aggregator is similar to a general contractor who consolidates the
Service Applications of multiple subcontractors.

There is little in this architecture that is specific to a Service Aggregator.

Except as noted, information about a Service Provider also applies to a Ser-

vice Aggregator.

2.2.11 Manufacturer

The Manufacturer is responsible for integration of the SPS hardware, operat-

ing system, Java VM, and OSGi Framework. There are two general cases for

the Service Platform Server:

• The generic SPS

• The special-purpose SPS

The generic SPS is manufactured to be managed by any Operator. The spe-

cial-purpose SPS is manufactured for a specific Operator. The latter case is

simpler because keys, certificates, addresses, etc. can be installed at the fac-
tory, eliminating the need for a secure protocol that allows these items to be

assigned at install time.

2.2.12 Owner

The Owner owns the Service Platform Server. Owner is used loosely here so

it applies to a lessor as well.

In most cases, the Owner is assumed to be a Service User. However, there are

some cases where this might not be true. A landlord might buy and install a

single SPS to be shared by the tenants in an apartment building. Each tenant

has the role of Owner, but the multiple tenants might not trust each other.

In many cases, the entity performing the Owner role can also be the Opera-

tor.
OSGi Service-Platform Release 3 19-588

Entity Descriptions Reference Architecture Version 1.0
2.2.13 Service Platform Identifier

The Service Platform Identifier (SPI) is a character string that is assigned at

some point in time before the Service Platform is running, also known as
staging. This identifier must be stored in the Service Platform Server so that

it is available to the Service Platform software when it starts. The identifier

must also be made available to the Owner. The identifier can be printed on

the exterior of the Service Platform Server either on its box or the accompa-

nying literature. If the manufacturer uses a smart card to hold the Service

Platform Identifier, it could, for example, be printed on the smart card.

The identifier must be unique across all service platforms, and it should be

formatted according to the following scheme:

SPI := domain ’:’ tail
domain := alpha (alpha | digit | ’_’) *
tail := alpha (alpha | digit | [-+/._]) *

The first part of the string is a domain identifier, which defines the structure

and format of the rest of the identifier. The domain identifier and the tail are

delimited by a colon (“:”). The domain identifier can indicate anything, such

as manufacturer, phone number, or some other existing name-space. For
example:

MSISDN:+46706066934
VIN:123456789-345678
ACME:SerNo987654321-0

The Service Platform Identifier can be permanent or changeable. An exam-
ple of a permanent identifier is a serial number built into the Service Plat-

form Server and used under the assumption that only one Service Platform

executes on that server.

A changeable identifier might be one that can be created during the initial

provisioning of the SPS, either by the Service Platform itself or by an exter-
nal entity. A changeable identifier might be based on a permanent one, such

as a serial number built into the Service Platform Server. For example, a

server serial number appended with the ordering number of the service

platform can be a suitable identifier.

It is important for the Service Platform Identifier to be unique and for the
Operator to understand the nature (permanent or otherwise) of the Service

Platform Identifier.

2.2.14 Service Customer

The Service Customer is the entity that is responsible for paying charges that
are incurred using services. A Service Customer is associated with a Charg-

ing Provider.

A Service Customer can have one or more Service Users associated with it.

For example, in a single household, the telephone subscription is usually

associated with a single person in that household, but all family members
can use the telephone. In this case, the other family members would be Ser-

vice Users.
20-588 OSGi Service-Platform Release 3

Reference Architecture Version 1.0 Entity Descriptions
2.2.15 Network Provider

The Network Provider provides and manages wide-area network connectiv-

ity between the Service Platform and outside parties. Outside parties
include the Operator and other Service Providers. In the case where the Ser-

vice Platform is connected via the Internet, the Network Provider is

assumed to include the Internet Service Provider (ISP) functionality.

A Service Platform that connects to the Internet using DSL might have (in

the aftermath of deregulation) five companies responsible for the various
layers: the phone company responsible for the copper wires to the home,

the DSL service provider responsible for the ATM connectivity, the ISP

responsible for Internet connectivity, the Operator responsible for opera-

tion of the Service Platform, and finally the other Service Provider(s) respon-

sible for the value added service(s) running.

This model applies to both IP and non-IP network layers and to both contin-

uous and intermittent availability. Every effort is made to avoid making

assumptions that the network service is Internet (IP) or that it is continu-

ously available.

2.2.16 Charging Provider

The Charging Provider performs the following roles in the OSGi reference

architecture:

• Grants (or denies), the Service Platform the ability to perform a specific

service for a specific Service User,

• Stores and/or forwards charging events coming from the Service
Platform,

• Invoices the Service Customer,

• Settles bills with the Service Provider.

The Charging Provider is a recognized entity in the OSGi architecture but

does not play a role in any of the specifications in this document.

2.2.17 Certification Authority

A Certification Authority is a trusted third-party organization or company

that issues digital certificates used to create digital signatures and public-

private key pairs. The Certification Authority guarantees that the individual
granted the unique certificate is, in fact, who he or she claims to be. Typi-

cally, a Certification Authority makes these certificates available in some

common database (usually a directory.) Certificate Authorities must be

trusted in order for their certificates to be meaningful. The Certificate

Authority is part of a Public Key Infrastructure (PKI). A very large PKI can

also include a registration authority or even a local registration authority
that does actual physical verification of the credentials.
OSGi Service-Platform Release 3 21-588

The Service Gateway Model Reference Architecture Version 1.0
2.3 The Service Gateway Model

Great care has been taken to make the OSGi specifications as general as pos-
sible. However, an important application area of the specifications is large

scale systems with residential gateways. A typical description of such an

architecture is described in [5] An Electronic Service’s enabler. The basic model

is illustrated in Figure 8 Possible Gateway model.

Figure 8 Possible Gateway model

Where the Service Platform Server (SPS) represents a communication gate-

way, the gateway Operator is a party that normally assumes the following

roles:

• Service Provider – for managing the gateway WAN connection and man-

aging the local networks. The latter might span from only ensuring that

the local devices have proper connectivity to controlling all operations

related to these devices.

• Operator – for the Service Platforms in the SPS.

• Service Deployment Manager – for the services running on the Service Plat-
forms in the SPS.

• Service Operations Support – for the services running on the Service Plat-

forms in the SPS.

Gateway
Operator

Service
Platform

Operator Service
Operations
Support

Service
Deployment
Manager

Service
Provider

Service
Gateway

Wide Area
Access

Network
Provider

Local
networks

Local Devices

controls

provides network access for

provides network

access for

1..*

0..*

0..*

0..*

is connected

1

0..*

is connected
1 0..*Residence

Operator Location
22-588 OSGi Service-Platform Release 3

Reference Architecture Version 1.0 The Service Gateway Model
2.3.1 System environment for a service gateway

A Service Platform Server is often an IP gateway between a WAN and one or

more local networks. In addition, it is also able to execute arbitrary services
and is therefore called a service gateway. The separate tasks of a service gate-

way are a Service Platform and an Internet Protocol gateway. This model

also supports service gateways with non-IP based WAN connections

through a Non-IP WAN Connection.

By separating the IP gateway from the Service Platform it is simpler to apply
existing solutions for network and security management of IP gateways to

service gateways.

It should be noted that the division of the service gateway is logical and not

physical. A typical service gateway probably uses a single processor that

executes both the Service Platform and the IP gateway functions (and/or
Non-IP WAN connection functions).

2.3.1.1 IP Gateway

The IP gateway deals with forwarding incoming IP traffic from WAN, LAN,

and Service Platforms to the appropriate next hop, WAN, LAN or Service
Platform. Firewall functions are typically located in the IP gateway. The IP

gateway can, from a functional perspective, be viewed as a standard access

router.

2.3.1.2 Non-IP Local Network Adaptor

Communication with non-IP based local networks is performed through an
adaptor for the specific type of network. This adaptor can include functions

such as firewall, address translation (NAT), and more.

2.3.1.3 Local Devices Network

A local bus is used for communication with local devices. The local bus
technologies differ depending on various factors such as the following:

• Type of service gateway (e.g. residential, vehicle)

• Market (e.g. US, Europe, or Asia)

Typical local bus technologies are as follows:

• European Installation Bus (EIB)

• Ethernet

• Wireless Ethernet, WiFi

• Firewire, IEEE 1394B

• Media Oriented Systems Transport (MOST)

A local device is something that is connected to the local buses, sends and/or

receives information from the Service Platform, and/or sends and/or

receives information through the IP gateway.

Devices that are able to communicate through the IP gateway are separated
from devices that must communicate through the Service Platform. Secu-

rity solutions for these two cases are somewhat different and, therefore, the

distinction is important.
OSGi Service-Platform Release 3 23-588

Other Models Reference Architecture Version 1.0
2.3.1.4 Wide Area Network

A service gateway is typically connected to a Wide Area Network (WAN).

Typically, a service gateway is connected to just one WAN, but multiple

WANs connected to a single service gateway are not excluded. Typical

WAN technologies are as follows:

• DSL

• Ethernet

• Cellular phone networks (e.g. GSM, AMPS)

The WAN is most commonly used to carry Internet Protocol (IP) traffic. A

WAN with the capability of carrying IP traffic is called an IP WAN.

Some service gateways do not have IP connectivity or only have IP connec-

tivity under special circumstances. For example, a Service Gateway in a car

might communicate with its Gateway Operator using wireless protocols

(e.g. GSM SMS).

2.3.1.5 Mediation of IP with non-IP

Operators, Service Providers, and Service Aggregators are typically con-

nected to the Service Platform using the Internet or a private IP network. For

the Operator to communicate with Service Platforms, which are not capable

of communicating using IP, some kind of mediation of the communication

is required. A WAP (Wireless Access Protocol used by telephones) gateway
is one example.

2.4 Other Models

The OSGi reference architecture is designed to handle the complexity of a

Operator based network with external service providers. This does not mean

that the OSGi reference architecture is limited to this model. Care has been

taken to ensure that the architecture, and thus the services that are devel-

oped for this architecture, can be used in many different situations. The fol-
lowing sections discuss possible applications of the architecture that differ

from the typical service gateway model.

2.4.1 Industrial Model

The OSGi networked services model is applicable when computers need to
be remotely managed but there is no need for an open Service Provider

model.

A typical example is a cellular network. In cellular networks, base stations

provide coverage to subscribers throughout the country. Base stations are

complex computers that run large and complex software programs. Today,
most of these systems are proprietary and use proprietary or standardized

management protocols for remote management. The size of the networks

usually requires procurement of services from multiple vendors, creating

unavoidable inter operability problems.
24-588 OSGi Service-Platform Release 3

Reference Architecture Version 1.0 Other Models
Figure 9 Industrial example: a cellular network

Implementing the OSGi specifications in this way enables the use of stan-

dardized software (from different vendors) for many functions that are writ-

ten today with proprietary software. The OSGi architecture of managed

services enables the cellular management system to manage the network

much more coherently than if such a architecture is not used. It would, for

example, be possible to define bundles that implement operator optimized
management policies local in the base station, something that is hard to do

with today’s systems.

The mapping of an industrial cellular network model to the OSGi reference

architecture is depicted in Figure 10.

Figure 10 Industrial Model Mapping Example

The industrial model does not require all software to be written in Java,

something that is often not feasible for economic and technical reasons.

Java can be restricted to the control layers where performance is less of an
issue. The core of the applications can be based on native code. For this rea-

son, the OSGi bundle specifically allows native code to be embedded in the

JAR file (even for multiple operating systems).

Base

Station

Cellular

Operator

Base
Station

Cellular
Operator

Service
Platform

owns 0..*

Operator Owner

1

Service
Deployment
Manager

Service
Provider

Service User
OSGi Service-Platform Release 3 25-588

Other Models Reference Architecture Version 1.0
The industrial model is applicable whenever many computers are net-
worked and need to be managed from one or more centralized management

centers, as in the following examples:

• Assembly lines

• Firewalls in remote offices

• Point of sales terminals
• Energy Management systems for large buildings

• Alarm Systems

• Fleet management

2.4.2 Self-Managed Model

Another feasible implementation of the OSGi reference architecture is the
self-managed model. This model is similar to the model that is used with

computers (PCs) in the home; the Service User assumes the role of the Oper-

ator and manages the systems. In this model, the Service Platform contains

the Service Deployment Manager (probably as a bundle) that allows self

management, for example, via a Web based interface.

Figure 11 Self Managed Model Mapping Example

This model is applicable for applications written in Java running on Service

Platform Servers within the same local network as the Operator. The num-

ber of applications is small enough to not require a management server, as
shown in the following examples:

• Router/Firewall box

• WiFi base station

• Printer

• Private Branch Exchange (PBX)

2.4.3 Virtual Gateway Model

Many models have the implicit assumption that the Server Platform Server

(SPS) is placed in a home or on the customer premises. This is, however, not

necessary. It is possible to place the SPS in the network in an Operator con-
trolled environment and provide the services via the network. This architec-

ture has the following advantages:

• More Operator control over the hardware.

PCUser

Service
Platform

owns 1

Operator Owner

1

Service
Provider

Service
Deployment
Manager

Owner
26-588 OSGi Service-Platform Release 3

Reference Architecture Version 1.0 Security
• Less truck rolls to homes where residents are not always available.
• Resources are more efficiently used when they can be shared.

• Easier to secure in all aspects.

The disadvantage of this model is that it makes it harder to connect local

devices because all services must be delivered over the network and cannot

have a local component. Such a model is described in [6] Telia’s Service Deliv-

ery Solution for the Home.

Figure 12 Virtual Gateway Mapping Example

2.5 Security

Overall security is only as strong as the weakest link. Therefore, it must be

possible to implement each applicable OSGi specification in a secure way.

All specifications must assume that their implementations will be used in a

hostile environment, such as being connected to the Internet, where secu-

rity is paramount.

This implies that all specifications must contain a security analysis and

guidelines section that discusses security implications. In cases where secu-

rity is not applicable, it should be argued why it is not applicable in that

case.

2.6 References

[4] X.200 OSI Reference Model

http://www.itu.int/rec/

recommendation.asp?type=items&lang=e&parent=T-REC-X.200-199407-I

[5] An Electronic Service’s enabler

http://www.ericsson.com/about/publications/review/1999_01/files/

1999015.pdf

Gateway
Operator

Service
Platform

Virtual
Gateway Host

Network
Provider

Local Devices

is connected

1 0..* 0..*1

containscontrols

connects

provides

services

0..*

0..*

0..*

1

Operator location

Residence
OSGi Service-Platform Release 3 27-588

References Reference Architecture Version 1.0
[6] Telia’s Service Delivery Solution for the Home

http://www.osgi.org/news/osgi_news/research_ieee_artikel_020415.pdf
28-588 OSGi Service-Platform Release 3

Remote Management Reference Architecture Version 1.0 Introduction
3 Remote Management

Reference Architecture

Version 1.0

3.1 Introduction

The remote management reference architecture defines a comprehensive
management model that leverages the possibilities of a Service Platform to

allow management systems and Server Platforms to inter-operate in a non-

proprietary way. The remote management reference architecture is derived

from the OSGi Reference Architecture on page 15.

This chapter details a remote management reference architecture to be used
by other OSGi specifications. This management reference architecture is not

normative, nor is it possible to claim compliance to it. The purpose of this

architecture is to define a consistent terminology for use throughout the

specifications.

This remote management reference architecture should not be used to
restrict possible applications of the OSGi specifications. The OSGi specifica-

tions are developed in a cohesive and de-coupled way to allow them to be

used in many different circumstances, not limited by this reference architec-

ture.

This reference architecture is not complete and might be extended in future
releases of the OSGi specifications.

3.1.1 Essentials

• Business Driven – While remote management is intended to relieve the

end user from any administrative duties, the customer for a remote man-
agement solution is an Operator. A remote management architecture

must address the business needs of the Operator.

• Complete – The remote management architecture must be sufficiently

specified to allow managementsystem vendors to produce robust and

interoperable implementations.

• Not Constraining – Because Service Platforms vary greatly in their capabil-
ities and in the network environments in which they operate, the remote

management architecture should not overly constrain the implemen-

tation of a remote management solution.

• Owned – It must be possible for an Operator to establish and maintain

control over the management of a Service Platform. In other words, a

competing Operator cannot take control of a Service Platform without

consent of the owner.
• Upgradeable – It must be possible for the Operator to upgrade or replace

the Management Agent.
OSGi Service-Platform Release 3 29-588

Introduction Remote Management Reference Architecture Version 1.0
• Provisioned – There must be a set of reasonable alternatives for provi-
sioning remote management for a Service Platform. While it may be

acceptable to provision a Service Platform during manufacturing, it

must be possible to complete provisioning after manufacturing. A very

complete set of provisioning alternatives includes a means of com-

pleting the provisioning after the end user has taken possession of the

Service Platform Server with a minimum of user interaction.
• Compatible – In whatever language the services and OSGi framework are

written, the primary life-cycle management characteristics must be

similar to the current Java based Framework.

• Managed – Existing and future local life-cycle management and configu-

ration services should be leveraged for remote management.

• Extendable – It must be possible to support different management pro-
tocols that may be added incrementally, even on already deployed plat-

forms.

• Granular – Remote management may be implemented as a collection of

services, each useful in itself.

• Open – Because it is a standard and not a design for a specific system, the

remote management architecture of OSGi must consider and support a
number of different scenarios.

• Initial Provisioning – The remote management reference architecture

must provide a standard for staging a platform, binding to an operator,

and downloading an initial management agent.

3.1.2 Entities

• Remote Manager – The Operator’s system(s) that are communicating with

the Service Platforms to provide remote management.

• Management Agent – A set of one or more bundles that run on the Service

Platform and communicate with the Remote Manager to provide man-

agement of the Service Platform. In certain cases, a Management Agent

can also be provided by the System Bundle.
• Management Bundle – An OSGi Bundle that has AdminPe rmissio n and can

control the life-cycle and configuration of other bundles.

• Initial Provisioning – The process in which a Service Platform is provi-

sioned with a Management Agent.
30-588 OSGi Service-Platform Release 3

Remote Management Reference Architecture Version 1.0 Scope
Figure 13 Remote Management Entities

3.2 Scope

The concept of a Service Platform includes zero administration usage by the
Service Users, allowing them to make decisions on a service subscription

level rather than worry about details like software versions, needed revi-

sions of drivers, conflicting dependencies between different software pack-

ages, etc.

The Service Platform should be designed to have a high availability and

deliver services with a specified level of determinism. For Service Platforms
operated by an Operator, these requirements necessitate remote management

and monitoring of the Service Platform services and devices.

Remote Management, in this context, may include (As adapted from [7]

X.700 Management framework for OSI/CCITT applications):

• Bundle life-cycle management

• Configuration management

• Performance management

• Fault management

• Accounting management

• Security management

Remote management is fundamentally a process involving two distinct

roles, with one party acting as agent (recipient) and the other acting as man-

ager (sender) of management commands. There are two distinct roles: one

that is managed and one that manages.

Operator

Remote
Manager

Service
Platform

Service
Platform
Server

Management
Bundle

Service
Bundle

Management
Agent

controls

communicates with

m
anages w

ith is m
anaged b

y

runs

hosted by

0..*

0..*

1

0..*

0..*

1

1..* 1

0..*

0,1
OSGi Service-Platform Release 3 31-588

Scope Remote Management Reference Architecture Version 1.0
The entity on the Service Platform that receives the management instruc-
tions is called the Management Agent. The entity responsible for managing

the Service Platform is the Operator. The component of the Operator's infra-

structure that provides this management will be called the Remote Manager.

The reference architecture combines the Management Agent and Remote

Manager in the Service Deployment Manager.

3.2.1 Remote Manager

The Remote Manager is the system that exposes the remote management

interface of the Service Platform to the Operator. Because different manage-

ment protocols present different views of remote management of a plat-

form, only high-level requirements for the capabilities of the Remote

Manager are specified.

Primarily, the Remote Manager is expected to perform a certain set of opera-

tions on the Service Platform. Those operations may be classified as:

• Bundle life-cycle management – Installing, starting, updating, stopping and

uninstalling bundles.
• Security management – Setting the Permissions for bundles and handling

User data on the Service Platform.

• Configuration management – Setting configuration data.

• Fault management. – Running diagnostics and correcting problems.

• Accounting management – Collecting accounting information and sending

them to the Charging Provider (The OSGi currently has no specifications
related to accounting).

• Performance management – Optimizing resource usage on the Service

Platform (The OSGi currently has no specifications related to perfor-

mance management).

No restrictions are made here as to what kinds of systems may behave as a
Remote Manager or Management Agent. Thus, peer-to-peer management is

theoretically possible, with either peer playing the Remote Manager role at

times and the Management Agent role at other times.

3.2.2 Management Agent

A Management Agent is implemented with a Management Bundle (which may

be the System Bundle). The Management Agent should accept communica-

tions from the Remote Manager or may initiate them.

The Management Agent is a Management Bundle and must, therefore, have

Ad minPer missio n . There may be more than one Management Agent. Each
Management Agent may be configured to communicate with different

Remote Managers and may use different protocols. Assuming each Manage-

ment Agent has administrator permissions, Management Agents have equal

power to affect the operations of the Service Platform.

In order to establish and maintain the security of the Service Platform, the
Management Agent must be involved in any action that results in bundle

download or installation, configuration, permissions management, or other

important changes to the Service Platform. Ideally, the designated Manage-
32-588 OSGi Service-Platform Release 3

Remote Management Reference Architecture Version 1.0 Communications
ment Agent is the only means by which management actions can be
affected from the outside. In that way, the Management Agent can be an

effective gatekeeper, allowing only Remote Managers with proper creden-

tials to change the operation of the Service Platform.

3.3 Communications

A key aspect of the Remote Management reference architecture is that it

does not define a protocol between the Remote Manager and the Manage-

ment Agent, nor does it make any statements about what occurs between

these entities. The reference architecture is only concerned with the exter-
nal interfaces of the Management Agent and the Remote Manager.

The purpose of the reference architecture is to allow interoperability

between any proprietary management system and any Service Platform.

This is achieved by installing a management vendor-specific Management

Agent in the Service Platform that can communicate with a proprietary
management system. Requirements on the communications between the

Remote Manager and Management Agent are therefore not necessary. They

have become implementation details that are left up to the implementers of

the Management Agent and the Remote Manager.

Figure 14 Abstracting the Communications

The following sections discuss some of the aspects of implementing a

Remote Manager and a Management Agent.

3.3.1 Connectivity

Service Platforms are deployed in a wide variety of situations. Though

generic IP connectivity will be available in many of those situations, it

should not be assumed to be always present. A significant number of instal-

lations will have low-bandwidth, intermittent connectivity. OSGi Manage-

ment Systems that need to be widely applicable should take this into
account.

3.3.2 Protocols

There are already both standard and proprietary management protocols in

the industry. Some are suited to managing certain kinds of Service Plat-
forms over certain types of networks. New standards may be needed in order

to have an open solution that is suitable for wireless wide area networks

(GSM, GPRS, CDMA, etc.).

Management System vendors, or independent software developers, can

develop Management Agents that adopt applicable standards. These Man-
agement Agents can then be used by existing management systems that

support these protocols.

Remote
Manager communicates with

Management
Agent

Remote Management System Service Platform

(protocol not specified)

requires service

specifications
requires API

specifications

Vendor A Vendor B
OSGi Service-Platform Release 3 33-588

Init ial Provisioning Remote Management Reference Architecture Version 1.0
3.3.3 Secure Connections

Communications may be secure or not, depending upon the operating envi-

ronment of the Service Platform and Operator. It is strongly recommended
that OSGi solutions should have at least the following:

• Mutual authentication

• Message integrity checking

• Confidentiality

3.3.4 Network Restrictions

There will be many networks that do not allow direct access from the

Remote Manager to a Service Platform. Network firewalls, network address

translation (NAT), non-IP networks, and other constructions often make it

impossible to directly contact a Service Platform from the Operator pre-

mises. In contrast, the Service Platform can usually contact the Remote
Manager when needed. This means that there is often a need for an out-of-

band signalling mechanism to ask the Service Platform to initiate contact

with the Remote Manager. This is depicted in Figure 15.

For example, in a vehicle, a message, like the GSM Short Message Service

(SMS), could be used to request the vehicle to contact the Remote Manager.
However, many cases exist where such an out-of-band signalling mecha-

nism is not available or is prohibitively expensive for normal day-to-day

operations.

Remote management implementations must address this issue with care.

Figure 15 Network Restrictions

3.4 Initial Provisioning

The term Initial Provisioning refers to all the steps required to enable remote

management. This may include downloading and starting a Management

Agent, configuring this bundle with information about the Remote Man-

ager, establishing sufficient permissions for the Management Bundle, and

establishing a security association between the Management Agent and the

Remote Manager.

Starting at production, the Service Platform may be provisioned for a certain

Operator who uses a certain kind of Remote Manager.

Remote Manager

Firewall

Management
Agent

Management
Agent

Management
Agent

Management
Agent

Private IP numberingPublic IP numbering

Out-of-band signalling
34-588 OSGi Service-Platform Release 3

Remote Management Reference Architecture Version 1.0 Security
A Service Platform without provisioning may be provisioned on its way to
the operational site where it is installed. Other Service Platforms must be

adapted to a specific Operator and Remote Manager when they are activated

at their operational site.

Part of provisioning a Remote Manager and Management Agent for manage-

ment is to establish the security association between them. If public key
cryptography is used, it implies that each has either the other's certificates

or is provisioned with a suitable Certification Authority. For other commu-

nication schemes, other information is provisioned. For example, if a sym-

metric key authentication and digest algorithm (such as MD5) is used, a

shared secret is provisioned before management is established.

3.5 Security

Consider all the communications between a Service Platform and other

devices and systems. The vast majority of these communications may be
classified as normal operation, meaning that services on the platform are

communicating with devices on local networks and remote systems on

wide area networks in order to accomplish their goals. For example, a media

service running on a platform may be interacting with a remote media

server from which it receives content and a local device on which the con-

tent is rendered. The media service may also communicate with a Charging

Provider. The Charging Provider may even reconfigure the media service on

the platform if the user has signed up for a different level of service.

Some of these communications may be secure (confidential, with great

attention paid to mutual authentication), and some may be clear, unen-

coded transmissions. Even broadcasting of these communications is consid-
ered part of normal application functions.

That these communications cannot disrupt normal operation of the service

platform is taken as an article of faith in the OSGi core platform design.

However, misuse of the core platform features can easily compromise the

security of the Service Platform.

For example, bundles with AdminPe rmissio n must be few. Errant assign-

ment of AdminPer missio n severely compromises the platform.

By contrast, a Management Agent must have Admin Permis sio n in order to

manage. The communications between a Management Agent and any
remote system must be carefully examined. Mutual authentication, confi-

dentiality, and message integrity checks should be used.

The remote management architecture specifies neither an abstract manage-

ment protocol nor any transport protocols that may be used to carry a man-

agement protocol. Consequently, most of the security considerations for
remote management can only be addressed through recommendations such

as those mentioned here in the previous paragraphs.

In addition to the authentication of peers, it is also desirable to encrypt the

response data so that it may contain privacy related data.
OSGi Service-Platform Release 3 35-588

References Remote Management Reference Architecture Version 1.0
3.6 References

[7] X.700 Management framework for OSI/CCITT applications

http://www.itu.int/rec/

recommendation.asp?type=folders&lang=e&parent=T-REC-X.700

[8] The Java Security Architecture for JDK 1.4

http://java.sun.com/j2se/1.4/docs/guide/security
36-588 OSGi Service-Platform Release 3

OSGi Service-Platform Release 3 37-588

Normative Section

The following section contains OSGi normative specifications. Every

attempt will be made to make future versions of these specifications to be

backward compatible with these specifications.

38-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Introduction
4 Framework

Specification

Version 1.2

4.1 Introduction

The Framework forms the core of the OSGi Service Platform specifications.
It provides a general-purpose, secure, and managed Java framework that

supports the deployment of extensible and downloadable service applica-

tions known as bundles.

OSGi-compliant devices can download and install OSGi bundles, and

remove them when they are no longer required. Installed bundles can regis-
ter a number of services that can be shared with other bundles under strict

control of the Framework.

The Framework manages the installation and update of bundles in an OSGi

environment in a dynamic and scalable fashion, and manages the depen-

dencies between bundles and services.

It provides the bundle developer with the resources necessary to take advan-

tage of Java’s platform independence and dynamic code-loading capability

in order to easily develop, and deploy on a large scale, services for small-

memory devices.

Equally important, the Framework provides a concise and consistent pro-

gramming model for Java bundle developers, simplifying the development

and deployment of services by de-coupling the service’s specification (Java

interface) from its implementations. This model allows bundle developers

to bind to services solely from their interface specification. The selection of

a specific implementation, optimized for a specific need or from a specific
vendor, can thus be deferred to run-time.

A consistent programming model helps bundle developers cope with scal-

ability issues – critical because the Framework is intended to run on a vari-

ety of devices whose differing hardware characteristics may affect many

aspects of a service implementation. Consistent interfaces insure that the
software components can be mixed and matched and still result in stable

systems.

As an example, a service developed to run on a high-end device could store

data on a local hard drive. Conversely, on a diskless device, data would have

to be stored non-locally. Application developers that use this service can
develop their bundles using the defined service interface without regard to

which service implementation will be used when the bundle is deployed.
OSGi Service-Platform Release 3 39-588

Introduction Framework Specif ication Version 1.2
The Framework allows bundles to select an available implementation at
run-time through the Framework service registry. Bundles register new ser-

vices, receive notifications about the state of services, or look up existing

services to adapt to the current capabilities of the device. This aspect of the

Framework makes an installed bundle extensible after deployment: new

bundles can be installed for added features or existing bundles can be modi-

fied and updated without requiring the system to be restarted.

The Framework provides mechanisms to support this paradigm which aid

the bundle developer with the practical aspects of writing extensible bun-

dles. These mechanisms are designed to be simple so that developers can

quickly achieve fluency with the programming model.

4.1.1 Entities

Figure 16 on page 41 provides an overview of the classes and interfaces used

in the o rg. osg i . f ramew o rk package. It shows the relationships between the

different Framework entities. This diagram is for illustrative purposes only.

It can show details that may be implemented in different ways.
40-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Introduction
Figure 16 Class Diagram or g.o sgi . f r amew or k

<<interface>>
Bundle

<<interface>>
Bundle
Context

<<interface>>
Service
Registration

<<interface>>
Service
Reference

Admin
Permission

<<interface>>
Bundle
Activator

Bundle
Event

<<interface>>
Synchronous
BundleListener

Framework
Event

<<interface>>
Framework
Listener

<<interface>>
Service
Listener

ServiceEvent

<<interface>>
Service
Factory

<<interface>>
Bundle
Listener

Package
Permission

Service
Permission

<<interface>>
Filter

InvalidSyntax
Exception

Bundle
Exception

java.security.
Permission

java.lang.Object
service impl.

implementation
code of bundle

service controller
impl

bundle controller
impl

framework
impl

1

11

0..n

0..n

1

1

1

1 1 1

1

1

1

1

0..n 0..n 0..n

1..n 1

java.lang.
Throwable

0,1

1 1 1

<<interface>>
Constants

represented by

used
through

registers service

represented by

owned by

optionally
 implements

start/stop
bundle

uses service
0..n 0..n

service events

framework eventsbundle events

0,1

1

associated
with

1

1

1

1

associated
with

manages

implemented by
security
permissions

used
through
OSGi Service-Platform Release 3 41-588

Bundles Framework Specif ication Version 1.2
4.2 Bundles

In the OSGi Service Platform, bundles are the only entities for deploying
Java-based applications. A bundle is comprised of Java classes and other

resources which together can provide functions to end users and provide

components called services to other bundles, called services. A bundle is

deployed as a Java ARchive (JAR) file. JAR files are used to store applications

and their resources in a standard ZIP-based file format.

A bundle is a JAR file that:

• Contains the resources to implement zero or more services. These

resources may be class files for the Java programming language, as well

as other data such as HTML files, help files, icons, and so on.

• Contains a manifest file describing the contents of the JAR file and pro-
viding information about the bundle. This file uses headers to specify

parameters that the Framework needs in order to correctly install and

activate a bundle.

• States dependencies on other resources, such as Java packages, that must

be available to the bundle before it can run. The Framework must resolve

these packages prior to starting a bundle. See Sharing Packages on page
46.

• Designates a special class in the bundle to act as Bundle Activator. The

Framework must instantiate this class and invoke the start and stop

methods to start or stop the bundle respectively. The bundle’s imple-

mentation of the B undl e Activa to r interface allows the bundle to ini-

tialize (for example, registering services) when started, and to perform

cleanup operations when stopped.
• Can contain optional documentation in the O SGI- O PT directory of the

JAR file or one of its sub-directories. Any information in this directory

must not be required to run the bundle. It can, for example, be used to

store the source code of a bundle. Management systems may remove this

information to save storage space in the OSGi Service Platform.

Once a bundle is started, its functionality is provided and services are

exposed to other bundles installed in the OSGi Service Platform.

4.2.1 The System Bundle

In addition to normal bundles, the Framework itself is represented as a bun-
dle. The bundle representing the Framework is referred to as the system bun-

dle.

Through the system bundle, the Framework may register services that may

be used by other bundles. Examples of such services are the Package Admin

and Permission Admin services.

The system bundle is listed in the set of installed bundles returned by

Bundl eC onte xt . getB undle s() , although it differs from other bundles in the

following ways:

• The system bundle is always assigned a bundle identifier of zero (0).
• The system bundle ge tLoc at io n method returns the string: "S ys te m

Bundl e", as defined in the C onsta nts interface.
42-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Manifest Headers
• The system bundle cannot be life-cycle-managed like normal bundles. Its
life-cycle methods must behave as follows:

• start – Does nothing because the system bundle is already started.

• stop – Returns immediately and shuts down the Framework on

another thread.

• update – Returns immediately, then stops and restarts the Framework

on another thread.
• uninstall – The Framework must throw a Bundl eExcep tion indicating

that the system bundle cannot be uninstalled.

See Framework Startup and Shutdown on page 79 for more information

about the starting and stopping of the Framework.

• The system bundle’s B undl e.ge tHe ader s method returns a Dic t io nar y

object with implementation-specific manifest headers. For example, the
system bundle’s manifest file should contain an Export-Package header

declaring which packages are to be exported by the Framework (for

example, o rg .o sgi . f ra mewo r k).

4.3 Manifest Headers

A bundle can carry descriptive information about itself in the manifest file

that is contained in its JAR file under the name of M ETA- INF/M ANIFEST. MF .

The Framework defines OSGi manifest headers such as Export-Package and
Bundle-Activator, which bundle developers can use to supply descriptive

information about a bundle. Manifest headers must strictly follow the rules

for manifest headers as defined in [17] Manifest Format.

All manifest headers are optional and any standard manifest headers not

specified have no value by default (except for Bundle-Classpath that has dot
(’.’, \u002E) as default when no value is specified).

All manifest headers that may be declared in a bundle’s manifest file are

listed in Table 2, “Manifest Headers,” on page 44.

A Framework implementation must:

• Process the main section of the manifest. Individual sections of the man-

ifest may be ignored.

• Ignore unrecognized manifest headers. Additional manifest headers may

be defined by the bundle developer as needed.

• Ignore unknown attributes on OSGi-defined manifest headers.

4.3.1 Retrieving Manifest Headers

The Bund le interface defines a method to return manifest header informa-

tion: ge tHe ader s(). This method returns a Dict io nar y object that contains

the bundle’s manifest headers and values as key/value pairs.

This method requires AdminPe rmissi on because some of the manifest

header information may be sensitive, such as the packages listed in the

Export-Package header.

The getH ead ers method must continue to provide the manifest header

information after the bundle enters the UNINS TAL LED state.
OSGi Service-Platform Release 3 43-588

Manifest Headers Framework Specif ication Version 1.2
4.3.2 Manifest Headers

All specified manifest headers are listed in Table 2.

Header Sample Description

Bundl e-Ac t ivato r co m.ac me.f w. Act ivato r The name of the class that is used to

start and stop the bundle. See Starting

Bundles on page 59.

Bundl e-C a te go ry os gi , test , nur sery A comma separated list of category
names.

Bundl e-C la ssPa th / jar /http. ja r , . A comma separated list of JAR file path

names (inside the bundle) that should

be searched for classes and resources.

The period (’.’) specifies the bundle

itself. See Bundle Classpath on page 51.

Bundle-C ontac tAddr ess 2400 O sw ego R o ad

Aust in, 74 563 TX
Contact address if it is necessary to con-
tact the vendor.

Bundl e-C o pyr ig ht O SGi (c) 200 2 Copyright specification for this bundle.

Bundl e-De scr ipt io n Netw or k F i re wa l l A short description of this bundle.

Bundl e-Do cU R L http:/w w w.a cme. co m/

Fi rew al l /doc
A URL to documentation about this

bundle.

Bundl e-Na me Fi rew al l Name for this bundle. This should be a

short name and should contain no
spaces.

Bundl e-Na tiveC ode /l ib/http. DLL ;

 os name = Q NX ;

 os ve rs io n = 3 .1

A specification of native code contained

in this bundle’s JAR file. See Loading

Native Code Libraries on page 53.

Bundl e-R equ ired

Exe cutio nEnviro nment

CDC - 1. 0/Fo unda tio n-1.0 Comma separated list of execution envi-

ronments that must be present on the

Service Platform. See Execution Environ-

ment on page 52.

Bundle- UpdateLo cat io n http://w ww .a cme. co m/

Fi rew al l /bundle . ja r
If the bundle is updated, this location

should be used (if present) to retrieve

the updated JAR file.

Bundl e-Ve ndo r O SGi A text description of the vendor.

Bundl e-Ve rs io n 1.1 The version of this bundle.

Dyna micImp or t-

Pack age

co m.ac me.p lugin. * Comma separated list of package names
that should be dynamically imported

when needed. See Dynamically Import-

ing Packages on page 48.

Tab le 2 Manifest Headers
44-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Name-space
4.4 The Bundle Name-space

This section addresses the issues related to class loading in the Framework

and the details necessary to implement a Framework.

A classloader (C las sLo ader object) loads classes into the Java Virtual

Machine. When such classes refer to other classes or resources, they are

found through the same classloader. This classloader may load the class
itself or delegate the loading to another classloader. This approach effec-

tively creates a name-space for classes. A class is uniquely identified by its

fully qualified name and the classloader that created it. This implies that a

class can be loaded multiple times from different classloaders. These classes,

though they have the same name, are not compatible.

4.4.1 Bundles and Classloaders

Each bundle installed in the Framework and resolved must have a class-

loader associated with it (Frameworks may have multiple classloaders per

bundle). This classloader provides each bundle with its own name-space, to

avoid name conflicts, and allows package sharing with other bundles. The
bundle's classloader must find classes and resources in the bundle by search-

ing the bundle's classpath as specified by the Bundle-Classpath header in the

bundle's manifest. See Bundle Classpath on page 51 for more information on

this header.

Bundles collaborate by sharing objects that are an instance of a mutually
agreed class (or interface). This class must be loaded from the same class-

loader for both bundles. Otherwise, using the shared object will result in a

Cl assC astExc eptio n . Therefore, the Framework must ensure that all import-

ers of a class in an exported package use the same classloader to load that

class or interface.

For example, a bundle may register a service object under a class

co m.ac me.C with the Framework service registry. It is crucial that the bun-

dle that created the service object ("Bundle A") and the one retrieving it from

the service registry ("Bundle B") share the same class co m.ac me.C of which

Expor t-Pa cka ge o rg. osg i .ut i l . t ra cke r Comma separated list of package names

(with optional version specification)

that can be exported. See Exporting Pack-

ages on page 47.

Impo rt- Pac kage o rg. osg i .ut i l . t ra cke r ,

o rg. osg i .se rvice . io ;

spe ci f ica t ion- ver s ion =1.4

Comma separated list of package names
(with optional version specification)

that must be imported. See Importing

Packages on page 48

Header Sample Description

Table 2 Manifest Headers
OSGi Service-Platform Release 3 45-588

The Bundle Name-space Framework Specif ication Version 1.2
the service object must be an instance. If Bundle A and Bundle B use differ-
ent classloaders to load class co m. ac me .C , Bundle B’s attempt to cast the ser-

vice object to its version of class co m.ac me.C would result in a

Cla ssC astExce ptio n .

A bundle's classloader must also set the Pro tec t ion Domai n object for classes

loaded from the bundle, as well as participate in requests to load native
libraries selected by the Bundle-NativeCode manifest header.

The classloader for a bundle is created between installing and resolving the

bundle.

4.4.2 Sharing Packages

A bundle may offer to export all the classes and resources in a package by

specifying the package names in the Export-Package header in its manifest.

For each package offered for export, the Framework must choose one bun-

dle that will be the provider of the classes and resources in that package to

all bundles which import that package, or other bundles which offer to

export the same package.

Selecting a single package among all the exporters ensures that all bundles

share the same class and resource definitions. If a bundle does not partici-

pate in the sharing of a package – in other words, the bundle does not have

an Export-Package, Import-Package, or DynamicImport-Package manifest

header referencing the package – then attempts by the bundle to load a class
or resource from the package must not search the shared package space.

Only the system classpath and the bundle’s JAR file are searched for such a

package.

Figure 17 Package and class sharing

com.acme.a

javax.servlet

javax.servlet.http

com.elmer.fudd

javax.comm

javax.servlet

manifest manifest

classloader
bundle B

classloader
bundle A

instances
bundle A

instances
bundle B

instances compatible

javax.servlet

javax.comm

name-space
 database

when classes
exported or imported

 JAR file JAR file
46-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Name-space
Package sharing for a bundle is established during the process of resolving
the bundle. A bundle must only participate in sharing packages if the bun-

dle can be successfully resolved. A bundle that is not resolved must neither

export nor import packages. A bundle must have the necessary

Pac kag ePer missio n to participate in the sharing of a package.

A bundle declares the resources it offers to provide to other bundles using
Export-Package manifest headers, and declares the resources it needs using

Import-Package manifest headers. The DynamicImport-Package header

allows a bundle to specify packages that are imported when a package is

first needed.

4.4.3 Exporting Packages

The Export-Package manifest header allows a bundle to export Java pack-

ages to other bundles, exposing the packages to other bundles.

The Framework must guarantee that classes and resources in the exported

package’s name-space are loaded from the exporting bundle. Additionally,

the package’s classes and resources must be shared among bundles that
import the package. See Importing Packages on page 48.

If more than one bundle declares the same package in its Export-Package

manifest header, the Framework controls the selection of the exporting

bundle. The Framework must select for export the bundle offering the high-

est version of the declared package.

In order to export a package, a bundle must have

Pac kag ePer missio n[EXPO RT,<pa cka ge>] .

The Export-Package manifest header must conform to the following syntax:

Export-Package ::=
package-description
(’,’ package-description)*

package-description ::=
package-name (’;’ parameter)*

package-name ::=
<fully qualified package name>

parameter ::=
attribute ’=’ value

attribute ::= token
value ::= token | quoted-string

The only pac kag e-d escr ipt io n parameter recognized by the Framework is

the attribute spe ci f ica t ion- ver s ion . Its string value must conform to the
semantics described in the [15] The Java 2 Package Versioning Specification.

As an example, the following Export-Package manifest header declares that

the bundle provides all classes defined by version 2.1 of the ja va x.ser vlet

and javax. servle t .http packages.
OSGi Service-Platform Release 3 47-588

The Bundle Name-space Framework Specif ication Version 1.2
Export-Package: javax.servlet;
specification-version="2.1",

javax.servlet.http;
specification-version="2.1"

4.4.4 Importing Packages

The Import-Package manifest header allows a bundle to request access to

packages that have been exported by other bundles.

The Framework must guarantee that while a bundle is resolved, the bundle

is only exposed to one version of a package it has imported.

The fully qualified package name must be declared in the bundle’s Import-

Package manifest header for all packages a bundle needs, except for package

names beginning with:

java.

In order to be allowed to import a package (except for packages starting

with java.), a bundle must have Pa cka gePe rmissi on[EXPO R T| IMP OR T,

<pa cka ge>] . See Pac kage Per mi ss io n for more information.

The Import-Package manifest header must conform to the following syntax:

Import-Package ::=
package-description
(’,’ package-description)*

package-description =
package-name (’;’ parameter)*

package-name =

<fully qualified package name>

parameter = attribute ’=’ value
attribute = token
value = token | quoted-string

The only pac kage -de scr ipt io n parameter recognized by the Framework is

the attribute spec i f i cat io n- vers i on . Its string value must conform to the

semantics described in the [15] The Java 2 Package Versioning Specification.

As an example, the following Import-Package manifest header requires that

the bundle be resolved against the java x.ser vl et package version 2.1 or

above:

Import-Package: javax.servlet;
specification-version="2.1"

4.4.5 Dynamically Importing Packages

The DynamicImport-Package manifest header should be used when the

bundle cannot beforehand define a fixed set of packages to import because

this information is only known at run-time.
48-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Name-space
For example, the C la ss. f or Name idiom (where a class is loaded by giving a
Str i ng object with the name of the class) is used heavily in legacy and non-

OSGi applications to connect to classes that are not linked in but designated

by configuration information. One case is the Java Media Framework (JMF).

JMF uses system properties to specify class names for applicable coders/

decoders (codec). JMF uses Cla ss. f or Name to instantiate user defined

codecs.

In the default case, the C lass. fo rName method must only look in the calling

bundle or in any of the imported packages from other bundles. The nature

of Cla ss. f or Name is that the package is usually not known when the bundle

is created; it comes from run-time configuration information or from infor-

mation otherwise dynamically obtained. When the bundle needs to import
a package that it could not foresee when it was created, it should specify the

DynamicImport-Package manifest header.

The syntax of DynamicImport-Package manifest header is as follows:

DynamicImport-Package ::==
package-name (’,’ package-name) * | ’*’

package-name ::= <fully qualified package name>
| <partial package name> ’.*’

Package names may end in a wildcard (’.*’), meaning all packages that start

with this name. For example. if the DynamicImport-Package header con-
tains o rg.o sgi .*, packages like o rg .o sgi .s ervic e. i o and

or g.o sgi . impl . ser vic e.w ir ead mi n must match the header. A single ’*’

matches all packages and allows a bundle to import any exported package.

This manifest header must be consulted by the bundle’s classloader when:

• A class or resource needs to be loaded

• This resource is not on the classpath, and

• It is not already imported

If this header contains a package name that matches (including wildcard

matching) the class’ (or resource’s) package name, then the classloader must
try to import this package as if it was imported during bundle resolving.

This includes the necessary Pa cka gePe rmissi on[IM PO RT|EXP OR T,

<pack age >] checks as well as establishing the package import dependencies

for the Package Admin service.

There must be no noticeable difference between a bundle that statically
imported a package (via Import-Package or Export-Package) and a bundle

that has dynamically imported a package.

The DynamicImport-Package header must not be consulted when the bun-

dle is installed and then resolved. Packages that are indicated in this header

must not be required to be exported during resolving.

Caution is advised when the dynamic import specification matches pack-

ages contained in the bundle’s JAR file. Dynamic Import must take prece-

dence over classes and resources provided by the bundle’s JAR file.
OSGi Service-Platform Release 3 49-588

The Bundle Name-space Framework Specif ication Version 1.2
This implies that when a package is contained in the bundle’s JAR file but
might also be loaded dynamically, a resource or class might be loaded from

the bundle’s JAR file before another bundle had the opportunity to export

the package (this can actually result in split packages). It is therefore recom-

mended to avoid dynamically importing packages that are also available

from the bundle’s JAR file.

4.4.5.1 Dynamic Import Example

The ACME company has wrapped JMF in a bundle. Plug-ins for JMF are sold

separately. However, they do not want other companies to provide plug-ins

for their JMF bundle. They therefore require plug-ins to come from their

own package name-space (co m.a cme. *).

The bundle containing JMF requires the following manifest header:

DynamicImport-Package: com.acme.*

A bundle containing codecs should export the packages where the codec
appears in:

Export-Package: com.acme.mp3,com.acme.wave

When the JMF now tries to load the codec class c om. acme. mp3. MP3C o dec ,

the JMF bundle’s classloader(s) must import the co m.ac me.mp3 package
dynamically.

4.4.5.2 Dynamic Import and versioning

It is impossible to specify a version with a dynamic import header because it

is the purpose of this header to allow the import of unknown packages. It is

therefore important that this header is used only for scenarios where the
packages are not sensitive to versions. If the packages are known, the

Import-Package header should be used.

4.4.6 Importing a Lower Version Than Exporting

Exporting a package does not imply that the exporting bundle will actually
use the classes it offers for export. Multiple bundles can offer to export the

same package; the Framework must select only one of those bundles as the

exporter.

A bundle will implicitly import the same package name and version level as

it exports, and therefore a separate Import-Package manifest header for this
package is unnecessary. If the bundle can function using a lower specifica-

tion version of the package than it exports, then the lower version can be

specified in an Import-Package manifest header.

4.4.7 Code Executed Before Started

Packages exported from a bundle are exposed to other bundles as soon as the

bundle has been resolved. This condition could mean that another bundle

could call methods in an exported package before the bundle exporting the

package is started.
50-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Name-space
4.4.8 Recommended Export Strategy

Although a bundle can export all its classes to other bundles, this practice is

discouraged except in the case of particularly stable library packages that

will need updating only infrequently. The reason for this caution is that the

Framework may not be able to promptly reclaim the space occupied by the
exported classes if the bundle is updated or uninstalled.

Bundle designs that separate interfaces from their implementations are

strongly preferred. The bundle developer should put the interfaces into a

separate Java package to be exported, while keeping the implementation

classes in different packages that are not exported.

If the same interface has multiple implementations in multiple bundles, the

bundle developer can package the interface package into all of these bun-

dles; the Framework must select one, and only one, of the bundles to export

the package, and the interface classes must be loaded from that bundle.

Interfaces with the same package and class name should have exactly the
same signature. Because a modification to an interface affects all of its call-

ers, interfaces should be carefully designed and remain backward compati-

ble once deployed.

4.4.9 Bundle Classpath

Intrabundle classpath dependencies are declared in the Bundle-Classpath

manifest header. This declaration allows a bundle to declare its internal

classpath using one or more JAR files that are contained in the bundle’s JAR

file. For example, a bundle’s JAR file could contain servlet.jar and cocoon.jar

as entries. Both entries need to be part of the bundle’s classpath. The Bundle-

Classpath manifest header specifies these embedded JAR files.

The Bundle-Classpath manifest header is a list of comma-separated file

names. A file name can be either dot (’ . ’) or the path of a JAR file contained

in the bundle’s JAR file. The dot represents the bundle’s JAR file itself.

Classpath dependencies must be resolved as follows:

• If a Bundle-Classpath header is not declared, the default value of dot (’.’)

is used, which specifies the bundle’s JAR file.

• If a Bundle-Classpath manifest header is declared and dot (’.’) is not an

element of the classpath, the bundle’s JAR file must not be searched. In

this case, only the JAR files specified within the bundle’s JAR file must be
searched.

The Bundle-Classpath manifest header must conform to the following syn-

tax:

Bundle-Classpath ::= path (’,’ path)*

path ::= <path name of nested JAR file with
"/"-separated components> | ’.’

For example, the following declaration in a bundle’s manifest file would

expose all classes and resources stored in the JAR file, but also all classes and

resources defined in se rvlet . jar , to the bundle:

Bundle-Classpath: .,
lib/servlet.jar
OSGi Service-Platform Release 3 51-588

Execution Environment Framework Specif ication Version 1.2
The Framework must ignore missing files in the Bundle-Classpath headers.
However, a Framework should publish a Framework Event of type ER RO R

for each file that is not found in the bundle’s JAR with an appropriate mes-

sage.

4.5 Execution Environment

A bundle that is restricted to one or more Execution Environments must

carry a header in its manifest file to indicate this dependency. This header is

Bundle-RequiredExecutionEnvironment. The syntax of this header is a list

of comma separated names of Execution Environments.

Bundle-RequiredExecutionEnvironment ::=
ee-name (’,’ ee-name)*

ee-name ::= <defined execution environment name>

For example:

Bundle-RequiredExecutionEnvironment: C DC -1.0/F o undatio n- 1. 0,
 OSGi/Minimum-1.0

If a bundle includes this header in the manifest then the bundle must only
use methods with signatures that are a proper subset of all mentioned Exe-

cution Environments.

The Bundle-RequireExecutionEnvironment header indicates a pre-requisite

to the Framework. If a bundle with this header is installed or updated, the

Framework must verify that the listed execution environments match the
available execution environments during the installation of the bundle.

When the pre-requisite cannot be fulfilled, the Framework must throw a

BundleException during installation with an appropriate message.

The OSGi Execution Environments are defined in Execution Environment

Specification on page 427.

4.5.1 Naming of Execution Environments

Execution Environments require a proper name so that they can be identi-

fied from a Bundle’s manifest as well as provide an identification from a

Framework to the bundle of what Execution Environments are imple-
mented. Names consist of any set of characters except whitespace characters

and the comma character (’ ,’, or \u002C). The OSGi has defined a number of

Execution Environments. See Execution Environment Specification on page

427.

The naming scheme is further based on J2ME configuration and profile
names. There is no clear definition for this naming scheme but the same

type of names are used in different specifications.

The J2ME scheme uses a configuration and a profile name to designate an

execution environment. The OSGi naming combines those two names into

a single Execution Environment name.

There already exist a number of Execution Environments from J2ME that

are likely to be supported in Service Platform Servers. The value for the Exe-

cution Environment header must be compatible with these specifications.
52-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Loading Native Code Libraries
A J2ME Execution Environment name is defined as a combination of a con-
figuration and a profile name. In J2ME, these are 2 different System proper-

ties. These properties are:

 microedition.configuration
 microedition.profile

For example, Foundation Profile has an Execution Environment name of

CDC - 1. 0/Fo unda tio n-1.0 . Table 3 on page 53, contains a number of exam-

ples.

The or g.o sgi . f ra mew or k.e xe cutio nenvir on me nt property from
Bun dleC on text .getP ro per ty(Str ing) must contain a comma separated list of

Execution Environment names implemented on the Service Platform.

4.6 Loading Native Code Libraries

If a bundle has a Bundle-NativeCode manifest header, the bundle should

contain native code libraries that must be available for the bundle to exe-

cute. When a bundle makes a request to load a native code library, the

f ind Libr ary method of the caller's classloader must be called to return the

file path name in which the Framework has made the requested native
library available.

The bundle must have the required R untimePe rmissi on [lo adL ibra ry. <

l ibr ar y name >] in order to load native code in the OSGi Service Platform.

The Bundle-NativeCode manifest header must conform to the following

syntax:

Bundle-NativeCode ::=
nativecode-clause (’,’ nativecode-clause) *

nativecode-clause ::= nativepaths (’;’ env-parameter)*

Name Description

CDC - 1. 0/Fo unda tio n-1.0 Equal to J2ME Foundation Profile

O SGi/M inimum-1.0 OSGi EE that is a minimal set that allows the

implementation of an OSGi Framework.

Java Emb edde d-1.2 Java Embedded

Java Ca rd Java Card

CL DC- 1. 0/MI DP-1.0 MIDP

Per son al Ja va- 1. 2 Personal Java

J2EE-1.2 Java 2 EE

J2SE- 1. 3 Java 2 SE

Table 3 Sample EE names
OSGi Service-Platform Release 3 53-588

Loading Native Code Libraries Framework Specif ication Version 1.2

nativepaths ::= nativepath (’;’ nativepath)*

nativepath ::= </ separated path>

env-parameter ::= (processordef | osnamedef |
osversiondef | languagedef)

processordef ::= ’processor’ ’=’ value
osnamedef ::= ’osname’ ’=’ value
osversiondef ::= ’osversion’ ’=’ value
languagedef ::= ’language’ ’=’ value

value ::= token | quoted-string

The following is a typical example of a native code declaration in a bundle’s

manifest:

Bundle-NativeCode: /lib/http.DLL ;
/lib/zlib.dll ;

osname = Windows95 ;
osname = Windows98 ;
osname = WindowsNT ;
processor = x86 ;
language = en ;
language = se ,

/lib/solaris/libhttp.so ;
osname = Solaris ;
osname = SunOS ;
processor = sparc,

/lib/linux/libhttp.so ;
osname = Linux ;
processor = mips

If a Bundle-NativeCode clause contains duplicate env- par ameter entries,

the corresponding values must be OR’ed together. This feature must be care-

fully used because the result is not always obvious. This is highlighted by

the following example:

// The effect of this header
// is probably not the intended effect!
Bundle-NativeCode: /lib/http.DLL ;

osname = Windows95 ;
osversion = 3.1 ;
osname = WindowsXP ;
osversion = 5.1

The previous example implies that the native library will load on Windows

XP 3.1 and later, which was probably not intended. The single clause should

be split up when the expected effect is desired:

Bundle-NativeCode: /lib/http.DLL ;
osname = Windows95 ;
osversion = 3.1,

 /lib/http.DLL ;
54-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Finding Classes and Resources
osname = WindowsXP ;
osversion = 5.1

If multiple native code libraries need to be installed on one platform, they

must be specified in the same clause for that platform.

4.6.1 Native Code Algorithm

In the description of this algorithm, [x] represents the value of the Frame-

work property x and ~ = represents the match operation. The match opera-

tion is a case insensitive comparison. The manifest header should contain

the generic name for that property but the Framework should attempt to
include aliases when it matches. (See Environment Properties on page 63). If a

property is not an alias, or has the wrong value, the Operator should set the

appropriate system property to the generic name or to a valid value (System

properties with this name override the Framework construction of these

properties). For example, if the operating system returns version 2.4.2-kwt,

the Operator should set the system property o rg .o sgi . f ra me wo rk .o s.ver s io n
to 2.4.2.

The Framework must select the native code clause selected by the following

algorithm:

1. Select only the native code clauses for which the following expressions
all evaluate to true.

• os name ~= [o rg. os gi . f rame wo rk. os .name]

• pro ce sso r ~= [o rg. osg i . f ramew o rk. pro ce ssor]

• os ve rs io n <= [o rg .o sgi . f ra mewo rk .o s.ver s io n] or osver s io n is not

specified

• lang uage ~ = [or g.o sgi . f r amew or k. la ngua ge] or la nguag e is not spec-
ified

2. If no native clauses were selected in step 1, a B undle Excepti on is thrown,

terminating this algorithm.

3. The selected clauses are now sorted in the following priority order:
• os ve rs io n : o sver s ion in descending order, o svers i on not specified

• lang uage : lang uage specified, lang uage not specified

• Position in the Bundle-NativeCode manifest header: lexical left to

right.

4. The first clause of the sorted clauses from step 3 must be used as the
selected native code clause.

If a selected native code library cannot be found in the bundle's JAR file,

then the bundle installation must fail.

4.7 Finding Classes and Resources

Framework implementations must follow the rules defined in this section

regarding class and resource loading to create a predictable environment for

bundle developers.
OSGi Service-Platform Release 3 55-588

Finding Classes and Resources Framework Specif ication Version 1.2
A bundle's classloader responds to requests by the bundle to load a resource
or class. The bundle's classloader must use a delegation model. Upon a

request to load a resource or class, the following classloaders must be

searched for the first occurrence of the class or resource, in the following

order:

1. The system classloader.

2. The classloader of the bundle that exports the shared package to which

the resource belongs and that package is imported.

3. The bundle’s own classloader. The bundle is searched in the order speci-

fied in the Bundle-Classpath manifest header. See Bundle Classpath on
page 51.

A class loaded from a bundle must always belong to that bundle's

Pro tect i onDo main object.

4.7.1 Resources

In order to have access to a resource in a bundle, appropriate permissions

are required. A bundle must always be given the necessary permissions by

the Framework to access the resources contained in its JAR file (these per-

missions are Framework implementation dependent), as well as permission

to access any resources in imported packages.

When f ind Res our ce is called on a bundle's classloader, the caller is checked

for the appropriate permission to access the resource. If the caller does not

have the necessary permission, the resource is not accessible and nul l must

be returned. If the caller has the necessary permission, then a UR L object to

the resource must be returned. Once the UR L object is returned, no further

permission checks are performed when the contents of the resource are
accessed. The UR L object must use a scheme defined by the Framework

implementation, and only the Framework implementation must be able to

construct such UR L objects of this scheme. The external form of this U RL

object must be defined by the implementation.

A resource in a bundle may also be accessed by using the
Bundl e.g etRe sour ce method. This method calls g etRe sou rce on the bun-

dle's classloader to perform the search. The caller of B undl e.ge tRe sour ce

must have Ad mi nPer mi ssio n.

4.7.2 Automatically Importing java.*

All bundles must dynamically import packages which wildcard match

java. * (this must be automatic and should not be specified with a Dynam-

icImport-Package manifest header).

Since bundles are not required to specify packages beginning with j ava. in

the Import-Package manifest header, this allows ja va.* packages to be pro-
vided by either the normal system classpath or via another bundle with no

knowledge beforehand of from where the package originates.That is, it

allows the classpath to be extended with ja va packages by bundles.

In support of the above, the Framework must give all bundles the implied

permission: Pac kag ePer missio n[IMP OR T," j ava. *"] to allow them to success-
fully import packages starting with java . .
56-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Object
4.8 The Bundle Object

For each bundle installed in the OSGi Service Platform, there is an associ-
ated B undle object. The Bun dle object for a bundle can be used to manage

the bundle’s life-cycle. This is usually done with a Management Agent.

4.8.1 Bundle Identifier

The bundle identifier is unique and persistent. It has the following proper-

ties:

• The identifier is of type l ong .

• Once its value is assigned to a bundle, that value must not be reused for

another bundle, even if the original bundle is reinstalled.

• Its value must not change as long as the bundle remains installed.

• Its value must not change when the bundle is updated.

The Bund le interface defines a ge tB undl eId() method for returning a bun-

dle’s identifier.

4.8.2 Bundle Location

The bundle location is the location string that was specified when the bun-

dle was installed. The B undle interface defines a getLo ca t io n() method for

returning a bundle’s location attribute.

A location string uniquely identifies a bundle and must not change when a

bundle is updated.

4.8.3 Bundle State

A bundle may be in one of the following states:

• INSTALLED – The bundle has been successfully installed. Native code
clauses must have been validated.

• RESO LVED – All Java classes that the bundle needs are available. This

state indicates that the bundle is either ready to be started or has stopped.

• STARTING – The bundle is being started, and the B undle Activato r . star t

method has been called and has not yet returned.

• STO PPING – The bundle is being stopped, and the B undleAc tivato r .s to p
method has been called and has not yet returned.

• ACTIVE – The bundle has successfully started and is running.

• UNI NSTALLED – The bundle has been uninstalled. It cannot move into

another state.
OSGi Service-Platform Release 3 57-588

The Bundle Object Framework Specif ication Version 1.2
Figure 18 State diagram Bundle

When a bundle is installed, it is stored in the persistent storage of the Frame-

work and remains there until it is explicitly uninstalled. Whether a bundle

has been started or stopped must be recorded in the persistent storage of the

Framework. A bundle that has been persistently recorded as started must be
started whenever the Framework starts until the bundle is explicitly

stopped. The Start Level service influences the actual starting and stopping

of bundles. See Start Level Service Specification on page 137.

The B undle interface defines a getS ta te() method for returning a bundle’s

state.

Bundle states are expressed as a bit-mask to conveniently determine the

state of a bundle. A bundle can only be in one state at any time. The follow-

ing code sample can be used to determine if a bundle is in the STAR TI NG ,

AC TIVE , or STOP PING state:

if ((b.getState() & (STARTING | ACTIVE | STOPPING) != 0)
...

4.8.4 Installing Bundles

The B undle Co ntext interface, which is given to the Bundle Activator of a

bundle, defines the following methods for installing a bundle:

• instal lBund le(Str i ng) – Installs a bundle from the specified location

string (which should be a URL).

• instal lBund le(Str i ng, I nputStr eam) – Installs a bundle from the specified

InputStr eam object.

Every bundle is uniquely identified by its location string. If an installed bun-

dle is using the specified location, the insta l lB undle methods must return

the B undle object for that installed bundle and not install a new bundle.

The installation of a bundle in the Framework must be:

INSTALLED

UNINSTALLED

STARTING STOPPING

ACTIVE

update

uninstall

uninstall resolve

start

stop

install

RESOLVED

Explicit transition

Automatic transition
58-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Object
• Persistent – The bundle must remain installed across Framework and Java
VM invocations until it is explicitly uninstalled.

• Atomic – The install method must completely install the bundle or, if the

installation fails, the OSGi Service Platform must be left in the same state

as it was in before the method was called.

When installing a bundle, the Framework attempts to resolve the bundle’s
native code dependencies. If this attempt fails, the bundle must not be

installed. See Loading Native Code Libraries on page 53.

Once a bundle has been installed, a Bund le object is created and all remain-

ing life-cycle operations must be performed upon this object. The returned

Bun dle object can be used to start, stop, update, and uninstall the bundle.

4.8.5 Resolving Bundles

A bundle can enter the R ESO LVED state when the Framework has success-

fully resolved the bundle's code dependencies. These dependencies include:

• Classpath dependencies from the bundle’s Bundle-Classpath manifest
header.

• Package dependencies from the bundle’s Export-Package and Import-

Package manifest headers.

If the bundle’s dependencies are resolved, selected packages declared in the

bundle’s Export-Package manifest header must be exported.

A bundle may be resolved at the Framework implementation’s discretion

once the bundle is installed.

4.8.6 Starting Bundles

The B undl e interface defines the star t() method for starting a bundle. If this

method succeeds, the bundle’s state is set to ACTIVE and it remains in this

state until it is stopped. The optional Start Level service influences the

actual starting and stopping of bundles. See Start Level Service Specification on

page 137.

In order to be started, a bundle must first be resolved. The Framework must

attempt to resolve the bundle, if not already resolved, when trying to start

the bundle. If the bundle fails to resolve, the start method must throw a

Bun dleExce ptio n .

If the bundle is resolved, the bundle must be activated by calling its Bundle
Activator object, if one exists. The B undl eActivato r interface defines meth-

ods that the Framework invokes when it starts and stops the bundle.

To inform the OSGi environment of the fully qualified class name serving as
its Bundle Activator, a bundle developer must declare a Bundle-Activator

manifest header in the bundle’s manifest file. The Framework must instanti-

ate a new object of this class and cast it to a B undle Activato r instance. It

must then call the B undle Activato r . star t method to start the bundle.

The following is an example of a Bundle-Activator manifest header:

Bundle-Activator: com.acme.BA
OSGi Service-Platform Release 3 59-588

The Bundle Object Framework Specif ication Version 1.2
A class acting as Bundle Activator must implement the Bundl eActiva tor
interface, be declared p ubl ic , and have a public default constructor so an

instance of it may be created with C la ss.ne wIn stanc e.

Supplying a Bundle Activator is optional. For example, a library bundle that

only exports a number of packages usually does not need to define a Bundle

Activator. A bundle providing a service should do so, however, because this

is the only way for the bundle to obtain its B undle Co ntext object and get

control when started.

The B undle Activato r interface defines these methods for starting and stop-

ping a bundle:

• start(B undleC o ntext) – This method can allocate resources that a

bundle needs and start threads, and also usually registers the bundle’s

services. If this method does not register any services, the bundle can reg-

ister the services it needs at a later time, for example in a callback, as long

as it is in the AC TI VE state.

• stop(B undle Co ntext) – This method must undo all the actions of the

Bundl eActiva tor .star t(B undl eCo ntext) method. However, it is unnec-

essary to unregister services or Framework listeners because they must

be cleaned up by the Framework anyway.

4.8.7 Stopping Bundles

The B undle interface defines the stop() method for stopping a bundle. This

stops a bundle and sets the bundle’s state to RESO LVED .

The B undle Activato r interface defines a s top(B undleC o ntext) method,
which is invoked by the Framework to stop a bundle. This method must

release any resources allocated since activation. All threads associated with

the stopping bundle should be stopped immediately. The threaded code

may no longer use Framework related objects (such as services and

Bundl eC onte xt objects) once its stop method returns.

This method may unregister services. However, if the stopped bundle had

registered any services, either through its Bun dleAc tivator .s tart method, or

while the bundle was in the AC TI VE state, the Framework must automati-

cally unregister all registered services when the bundle is stopped.

The Framework must guarantee that if a B undl eActiva to r .sta rt method has

executed successfully, that same B undle Activato r object must be called at
its Bu ndleAc tivato r .stop method when the bundle is deactivated. After call-

ing the sto p method, that particular B undl eActivato r object must never be

used again.

Packages exported by a stopped bundle continue to be available to other

bundles. This continued export implies that other bundles can execute code
from a stopped bundle, and the designer of a bundle should assure that this

is not harmful. Exporting only interfaces is one way to prevent this execu-

tion when the bundle is not started. Interfaces do not contain executable

code so they cannot be executed.

4.8.8 Updating Bundles

The B undle interface defines two methods for updating a bundle:
60-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Context
• upda te() – This method updates a bundle.
• upda te(InputStr eam) – This method updates a bundle from the spec-

ified I nputStr eam object.

The update process supports migration from one version of a bundle to a

newer, backward-compatible version, of the same bundle.

A bundle New er , is backward compatible with another bundle, O lde r if:

• New er provides at least the services provided by O lder .

• Each service interface in Ne we r is compatible (as defined in [12] The Java

Language Specification, Section 13.5) with its counterpart in O ld er .

• For any package exported by O ld er , Ne wer must export the same
package, which must be compatible with its counterpart in O lder .

A Framework must guarantee that only one version of a bundle’s classes is

available at any time. If the updated bundle had exported any packages that

are used by other bundles, those packages must not be updated; their old

versions must remain exported until the
or g.o sgi .ser vice. admin. Pac kag eAdmin.r ef resh Pack age s method has been

called or the Framework is restarted.

4.8.9 Uninstalling Bundles

The Bund le interface defines a method for uninstalling a bundle from the

Framework: un instal l (). This method causes the Framework to notify other
bundles that the bundle is being uninstalled, and sets the bundle’s state to

UNI NSTALLED . The Framework must remove any resources related to the

bundle that it is able to remove. This method must always uninstall the bun-

dle from the persistent storage of the Framework.

Once this method returns, the state of the OSGi Service Platform must be
the same as if the bundle had never been installed, unless the uninstalled

bundle has exported any packages (via its Export-Package manifest header)

and was selected by the Framework as the exporter of these packages.

If the bundle did export any packages that are used by other bundles, the

Framework must continue to make these packages available to their

importing bundles until one of the following conditions is satisfied:

• The or g.o sgi . ser vi ce. admin. Pac kage Admin .ref resh Pac kage s method

has been called.

• The Framework is restarted.

4.9 The Bundle Context

The relationship between the Framework and its installed bundles is real-

ized by the use of B undle Co ntext objects. A B undl eC onte xt object repre-

sents the execution context of a single bundle within the OSGi Service

Platform, and acts as a proxy to the underlying Framework.

A Bund leC onte xt object is created by the Framework when a bundle is
started. The bundle can use this private Bu ndleC o ntext object for the fol-

lowing purposes:
OSGi Service-Platform Release 3 61-588

The Bundle Context Framework Specif ication Version 1.2
• Installing new bundles into the OSGi environment. See Installing Bundles
on page 58.

• Interrogating other bundles installed in the OSGi environment. See

Getting Bundle Information on page 62.

• Obtaining a persistent storage area. See Persistent Storage on page 62.

• Retrieving service objects of registered services. See ServiceReference

Objects on page 66.
• Registering services in the Framework service. See Registering Services on

page 66.

• Subscribing or unsubscribing to events broadcast by the Framework. See

Events on page 77.

When a bundle is started, the Framework creates a B undle Co ntext object
and provides this object as an argument to the sta rt(Bu ndleC o ntext)

method of the bundle’s Bundle Activator. Each bundle is provided with its

own Bun dleC on text object; these objects should not be passed between bun-

dles, as the B undleC o ntext object is related to the security and resource allo-

cation aspects of a bundle.

After the stop (B undle Co ntext) method is called, the B undle Co ntext object

must no longer be used. Framework implementations must throw an excep-

tion if the B undleC o ntext object is used after a bundle is stopped.

4.9.1 Getting Bundle Information

The Bund leC on te xt interface defines methods which can be used to retrieve
information about bundles installed in the OSGi Service Platform:

• getBu ndle() – Returns the single Bundl e object associated with the

Bundl eC onte xt object.

• getBu ndles () – Returns an array of the bundles currently installed in the

Framework.
• getBu ndle(lo ng) – Returns the B undle object specified by the unique

identifier, or nul l if no matching bundle is found.

Bundle access is not restricted; any bundle can enumerate the set of installed

bundles. Information that can identify a bundle, however (such as its loca-

tion, or its header information), is only provided to callers that have
Ad minPer missio n .

4.9.2 Persistent Storage

The Framework should provide a private persistent storage area for each

installed bundle on platforms with some file system support.

The B undle Co ntext interface defines access to this storage in terms of the

Fi le class, which supports platform-independent definitions of file and

directory names.

The B undle Co ntext interface defines a method to access the private persis-
tent storage area: g etData Fi le (S tr ing). This method takes a relative file

name as an argument and translates it into an absolute file name in the bun-

dle’s persistent storage area and returns a Fi le object. This method returns

nul l if there is no support for persistent storage.
62-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 The Bundle Context
The Framework must automatically provide the bundle with
Fi l ePer missio n[READ | WR ITE | DELETE,<stor age ar ea >] to allow the bun-

dle to read, write, and delete files in that storage area.

Further F i lePe rmiss i on s for this area can be set with a relative path name.

For example, Fi lePer missio n[EXECU TE,bin /*] spec i f ie s that the sub-direc-

tory in the bundle’s private data area may contain executables (this only
provides execute permission within the Java environment and does not

handle the potential underlying operating system issues related to executa-

bles).

This special treatment applies only to Fi l ePer miss io n objects assigned to a

bundle. Default permissions must not receive this special treatment. A
Fi l ePer miss io n for a relative path name assigned via the

setDef aultP ermis s ion method must be ignored.

4.9.3 Environment Properties

The Bund leC onte xt interface defines a method for returning information

pertaining to Framework properties: ge tPro per ty(S tr ing). This method can
be used to return the following Framework properties:

Property name Description

or g.o sgi . f r amew or k.ver s io n The specification version of the Framework.

The vendor of the Framework implementation. or g.o sgi . f r amew or k.ven dor

or g.o sgi . f r amew or k. l angua ge The language being used. See ISO 639, International Stan-

dards Organization See [16] Codes for the Representation of

Names of Languages for valid values.

or g.o sgi . f r amew or k.

 exec ution enviro nment

A comma separated list of provided Execution Environ-

ments (EE). All methods of each listed EE must be present on
the Service Platform. For example, this property could con-

tain:

CDC-1.0/Foundation-1.0,OSGi/Minimum-1.0

A Service Platform implementation must provide all the sig-
natures that are defined in the mentioned EEs. Thus the Exe-

cution Environment for a specific Service Platform Server

must be the combined set of all signatures of all EEs in the

o rg. osg i . f ramew o rk. execu tione nviro nment property.

or g.o sgi . f r amew or k.p ro cess or Processor name. The following table defines a list of proces-

sor names. New processors are made available on the OSGi

web site in the Developers Zone. Names should be matched

case insensitive.

Name Aliases Description

68 k 68 000 an d up

AR M Intel Str ong ARM

Table 4 Property Names
OSGi Service-Platform Release 3 63-588

The Bundle Context Framework Specif ication Version 1.2
Alpha C o mpaq

Igni te psc1k P TS C

Mip s S GI

PAri sc H ew lett Pac kar d

Po we rPC pow er pp c M oto ro la / IBM

Spa rc S UN

x86 pentium i3 86

i48 6 i586

i68 6

I ntel

or g.o sgi . f ra mew or k.o s.ver s io n The version of the operating system. If the version does not

fit the standard x.y.z format (e.g. 2.4.32-kwt), then the Opera-

tor should define a System property with this name.

or g.o sgi . f ra mew or k.o s.na me The name of the operating system (OS) of the host computer.
The following table defines a list of OS names. New OS

names are made available on the OSGi web site in the Devel-

opers Zone. Names should be matched case insensitive.

Name Aliases Description

AIX I BM

Digita lU nix C o mpaq

Fr eeB SD F re e B SD

HP UX H ew lett Pac kar d

IR IX S i l ic on Gra phic s

Linux O pe n so ur ce

Ma cO S Ap ple

Netw are No vel l

O penB SD O pe n so ur ce

NetBS D O pe n so ur ce

O S2 OS /2 I BM

Q NX pro cnto Q NX

So lar is S un M icr o Systems

SunO S S un M icr o Systems

VxWo rks W indR iver Syste ms

Wi ndow s9 5 Win9 5

Wind ow s 9 5

M icr os of t W indo ws 95

Wi ndow s9 8 Win9 8

Wind ow s 9 8

M icr os of t W indo ws 98

Property name Description

Tab le 4 Property Names
64-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Services
All Framework properties may be defined by the Operator as System proper-

ties. If these properties are not defined as System properties, the Framework

must construct these properties from relevant standard Java System proper-
ties.

The alias list is names that have been reported to be returned by certain ver-

sions of the related operating systems. Frameworks should try to convert

these aliases to the canonical OS or processor name. The bundle developer

should use the canonical name in the Bundle-NativeCode manifest header.

4.10 Services

In the OSGi Service Platform, bundles are built around a set of cooperating
services available from a shared service registry. Such an OSGi service is

defined semantically by its service interface and implemented as a service

object.

The service interface should be specified with as few implementation

details as possible. OSGi has specified many service interfaces for common
needs and will specify more in the future.

The service object is owned by, and runs within, a bundle. This bundle must

register the service object with the Framework service registry so that the

service’s functionality is available to other bundles under control of the

Framework.

Dependencies between the bundle owning the service and the bundles

using it are managed by the Framework. For example, when a bundle is

stopped, all the services registered with the Framework by that bundle must

be automatically unregistered.

The Framework maps services to their underlying service objects, and pro-
vides a simple but powerful query mechanism that enables an installed bun-

dle to request the services it needs. The Framework also provides an event

mechanism so that bundles can receive events of service objects that are reg-

istered, modified, or unregistered.

W indo wsNT Wi nNT

Wi ndow s NT

Mic ro sof t W indo w s NT

W indo wsC E Wi nCE

Wi ndow s CE

Mic ro sof t W indo w s C E

W indo ws20 00 Wi n2000
Wi ndow s

2000

Mic ro sof t W indo w s 200 0

W indo wsX P Wi ndow s XP,

Wi nXP

Mic ro sof t W indo w s XP

Property name Description

Table 4 Property Names
OSGi Service-Platform Release 3 65-588

Services Framework Specif ication Version 1.2
4.10.1 ServiceReference Objects

In general, registered services are referenced through S ervic eRe fer enc e

objects. This avoids creating unnecessary dynamic service dependencies
between bundles when a bundle needs to know about a service but does not

require the service object itself.

A S ervic eR efer enc e object can be stored and passed on to other bundles

without the implications of dependencies. When a bundle wishes to use the

service, it can be obtained by passing the Ser vice Ref ere nce object to
Bundl eC onte xt . getSe rvice (S ervic eR efe renc e). See Obtaining Services on

page 70.

A S ervic eR efer enc e object encapsulates the properties and other meta

information about the service object it represents. This meta information

can be queried by a bundle to assist in the selection of a service that best
suits its needs.

When a bundle queries the Framework service registry for services, the

Framework must provide the requesting bundle with the Ser vi ceR efe ren ce

objects of the requested services, rather than with the services themselves.

Getting a Se rvice Re fer ence object from a S ervic eRe gistr at io n object must

not require any permission.

A S ervic eR efer enc e object is valid only as long as the service object it refer-

ences has not been unregistered. However, its properties must remain avail-

able as long as the S ervic eRe fer enc e object exists.

4.10.2 Service Interfaces

A service interface is the specification of the service’s public methods.

In practice, a bundle developer creates a service object by implementing its

service interface and registers the service with the Framework service regis-

try. Once a bundle has registered a service object under an interface/class
name, the associated service can be acquired by bundles under that interface

name, and its methods can be accessed by way of its service interface.

When requesting a service object from the Framework, a bundle can specify

the name of the service interface that the requested service object must

implement. In the request, the bundle may optionally specify a filter string
to further narrow the search.

Many service interfaces are defined and specified by organizations such as

the OSGi organization. A service interface that has been accepted as a stan-

dard can be implemented and used by any number of bundle developers.

4.10.3 Registering Services

A bundle introduces a service by registering a service object with the Frame-

work service registry. A service object registered with the Framework is

exposed to other bundles installed in the OSGi environment.
66-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Services
Every registered service object has a unique S ervic eR egistr at io n object, and
has one or more Se rvice Ref ere nce objects that refer to it. These

Ser viceR ef ere nce objects expose the registration properties of the service

object, including the set of service interfaces/classes they implement. The

Ser viceR ef ere nce object can then be used to acquire a service object that

implements the desired service interface.

The Framework permits bundles to register and unregister service objects

dynamically. Therefore, a bundle is permitted to register service objects

from the time its Bund leActi va tor .sta rt method is called until its

Bun dleAc ti va tor .sto p method is called and returns.

A bundle registers a service object with the Framework by calling one of the
Bun dleC on text . re gister Ser vice methods on its B undle Co ntext object:

• reg ister Ser vi ce(Str ing,O bj ect , Dict io nar y) – For a service object regis-

tered under a single service interface of which it is an instance.

• reg ister Ser vi ce(Str ing[] ,O bjec t ,Dic t iona ry) – For a service object regis-

tered under multiple service interfaces of which it is an instance.

The names of the service interfaces under which a bundle wants to register
its service are provided as arguments to the Bundl eC onte xt . reg ister Ser vi ce

method. The Framework must ensure that the service object actually is an

instance of all the service interfaces specified by the arguments, except for a

Service Factory. See Service Factories on page 74.

To perform this check, the Framework must load the C lass object for each
specified service interface from either the bundle or a shared package. See

Sharing Packages on page 46. For each C lass object, C lass. is In stanc e must be

called and return true on the C las s object with the service object as the argu-

ment.

The service object being registered may be further described by a Dict i ona ry
object, which contains the properties of the service as a collection of key/

value pairs.

The service interface names under which a service object has been success-

fully registered are automatically added to the service object’s properties

under the key o bje ctC lass . This value must be set automatically by the
Framework and any value provided by the bundle must be overridden.

If the service object is successfully registered, the Framework must return a

Ser viceR egi stra ti on object to the caller. A service object can be unregistered

only by the holder of its Se rvice Re gistra t io n object (see the unr egis te r()

method). Every successful service object registration must yield a unique
Ser viceR egi stra ti on object even if the same service object is registered mul-

tiple times.

Using the Ser vi ceR egi strat i on object is the only way to reliably change the

service object’s properties after it has been registered (see setPr o per-

t ies(Dic t iona ry)). Modifying a service object’s Dict i ona ry object after the
service object is registered may not have any effect on the service’s proper-

ties.
OSGi Service-Platform Release 3 67-588

Services Framework Specif ication Version 1.2
4.10.4 Early Need For ServiceRegistration Object

The registration of a service object will cause all registered S ervic eListe ner

objects to be notified. This is a synchronous notification. This means that
such a listener can get access to the service and call its methods before the

regi sterS ervic e method has returned the Ser viceR eg istra t ion object. In cer-

tain cases, access to the Ser viceR egi stra ti on object is necessary in such a

callback. However, the registering bundle has not yet received the

Servic eR egis tr at io n object. Figure 19 on page 68 shows such a sequence.

Figure 19 Callback sequence event registration.

In a case as described previously, access to the registration object can be

obtained with a S ervic eF acto ry object. If a S ervic eF acto ry object is regis-

tered, the Framework must call-back the registering bundle with the

Servic eF acto ry method ge tS ervic e(Bun dle, Ser vic eR egis tr at io n) . The

required Se rvice Re gistra t io n object is a parameter in this method.

4.10.5 Service Registration Properties

Properties hold information as key/value pairs. The key is a Str i ng object

and the value should be a type recognized by F i l ter objects (see Filters on

page 73 for a list). Multiple values for the same key are supported with
arrays ([]) and Vecto r objects.

The values of properties should be limited to primitive or standard Java

types to prevent unwanted interbundle dependencies. The Framework can-

not detect dependencies that are created by the exchange of objects between

bundles via the service properties.

The key of a property is not case sensitive. O bje ctC lass , OB JEC TC LASS and

obj ectc lass all are the same property key. A Framework must, however,

return the key in Ser viceR ef ere nce. getPr op ertyKeys in exactly the same

case as it was last set. When a Dic t io nary object that contains keys that only

differ in case is passed, the Framework must raise an exception.

The properties of a S ervic eRe gistr at io n object are intended to provide infor-

mation about the service object. The properties should not be used to partici-

pate in the actual function of the service. Modifying the properties for the

service registration is a potentially expensive operation. For example, a

Framework may pre-process the properties into an index during registration
to speed up later look-ups.

T2T1

deliver event

get service

Framework (not a thread)

In method

The registerService

registerService

callback

method has not

returned yet, so there

is no ServiceRegistration

return

return

object
68-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Services
The Fi l te r interface supports complex filtering and can be used to find
matching service objects. Therefore, all properties share a single name-space

in the Framework service registry. As a result, it is important to use descrip-

tive names or formal definitions of shorter names to prevent conflicts. Sev-

eral OSGi specifications reserve parts of this name-space. All properties

starting with s ervic e. and the property ob jectC la ss are reserved for use by

OSGi specifications.

Table 5 Standard Framework Service Registry Properties contains a list of pre-

defined properties.

Property Key Type Constants Property Description

ob jectC la ss Str i ng[] O BJEC TCLAS S The obj ectC las s property contains

the set of class and interface names

under which a service object is reg-

istered with the Framework. The
Framework must set this property

automatically. The Framework

must guarantee that when a service

object is retrieved with

Bun dleC on text .getS ervic e(Ser vice

Re fer ence), it can be cast to any of
these classes or interfaces.

ser vi ce.

desc r ip ti on

Str i ng SERVI CE_DESC RI PTIO N The ser vi ce. desc r ipt i on property is

intended to be used as documenta-

tion and is optional. Frameworks
and bundles can use this property

to provide a short description of a

registered service object. The pur-

pose is mainly for debugging

because there is no support for

localization.

ser vi ce. id Lo ng SERVI CE_ID Every registered service object is

assigned a unique s ervic e. id by the

Framework. This number is added

to the service object’s properties.

The Framework assigns a unique
value to every registered service

object that is larger than values

provided to all previously regis-

tered service objects.

Table 5 Standard Framework Service Registry Properties
OSGi Service-Platform Release 3 69-588

Services Framework Specif ication Version 1.2
4.10.6 Permission Check

The process of registering a service object is subject to a permission check.

The registering bundle must have S ervic ePe rmissi on[R EG ISTER, <i nterf ac e

name>] to register the service object under all the service interfaces speci-

fied.

Otherwise, the service object must not be registered, and a

Secu r ityExcep ti on must be thrown. See Permission Types on page 82 for

more information.

4.10.7 Obtaining Services

In order to use a service object and call its methods, a bundle must first

obtain a Se rvice Ref er ence object. The Bund leC onte xt interface defines two

methods a bundle can call to obtain S ervic eR efe renc e objects from the

Framework:

servic e.p id Str ing SERVIC E_PID The s ervic e.pi d property option-

ally identifies a persistent, unique

name for the service object. This
name must be assigned by the bun-

dle registering the service and

should be a unique string. Every

time this service object is regis-

tered, including after a restart of

the Framework, this service object
should be registered with the same

servic e.p id property value. The

value can be used by other bundles

to persistently store information

about this service object.

servic e.r anki ng Intege r SERVIC E_RANKING When registering a service object, a

bundle may optionally specify a

servic e.r anki ng number as one of

the service object’s properties. If

multiple qualifying service inter-
faces exist, a service with the high-

est SERVI CE_R ANKI NG number, or

when equal to the lowest

SERVIC E_ID, determines which ser-

vice object is returned by the

Framework.

servic e.ven dor Str ing SERVIC E_VENDOR This optional property can be used

by the bundle registering the ser-

vice object to indicate the vendor.

Property Key Type Constants Property Description

Tab le 5 Standard Framework Service Registry Properties
70-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Services
• getSe rvic eRe fer enc e(Str ing) – This method returns a Ser viceR ef ere nce
object to a service object that implements, and was registered under, the

name of the service interface specified as Str ing . If multiple such service

objects exist, the service object with the highest SER VICE_R ANKING is

returned. If there is a tie in ranking, the service object with the lowest

SERVI CE_ID (the service object that was registered first) is returned.

• getSe rvic eRe fer enc es(Str in g,Str ing) – This method returns an array of
Ser viceR ef ere nce objects that:

• Implement and were registered under the given service interface.
• Satisfy the search filter specified. The filter syntax is further

explained in Filters on page 73.

Both methods must return nul l if no matching service objects are returned.

Otherwise the caller receives one or more S ervic eR efe renc e objects. These

objects can be used to retrieve properties of the underlying service object, or
they can be used to obtain the actual service object via the B undle Co ntext

object.

4.10.8 Getting Service Properties

To allow for interrogation of service objects, the Se rvice Re fer ence interface
defines these two methods:

• getPr op ertyKeys() – Returns an array of the property keys that are

available.

• getPr op erty(Str i ng) – Returns the value of a property.

Both of these methods must continue to provide information about the ref-

erenced service object, even after it has been unregistered from the Frame-

work. This requirement can be useful when a Ser vi ceR efe ren ce object is

stored with the Log Service.

4.10.9 Getting Service Objects

The Bund leC onte xt object is used to obtain the actual service object so that
the Framework can account for the dependencies. If a bundle retrieves a ser-

vice object, that bundle becomes dependent upon the life-cycle of that regis-

tered service object. This dependency is tracked by the Bun dleC o ntext

object used to obtain the service object, and is one reason that it is important

to be careful when sharing B undl eCo ntext objects with other bundles.

The method Bu ndleC o ntext .g etSer vice(Se rvice Re fer ence) returns an

object that implements the interfaces as defined by the obj ectC la ss prop-

erty.

This method has the following characteristics:

• Returns nul l if the underlying service object has been unregistered.

• Determines if the caller has Se rvice Per mi ssio n[GET, <i nterf ac e na me>] ,

to get the service object using at least one of the service interfaces under

which the service was registered. This permission check is necessary so

that Se rvice Re fer ence objects can be passed around freely without com-

promising security.

• Increments the usage count of the service object by one for this

Bun dleC on text object.
OSGi Service-Platform Release 3 71-588

Stale References Framework Specif ication Version 1.2
• If the service object implements the Ser viceF ac tor y interface, it is not
returned. Instead, if the bundle context’s usage count of the service

object is one, the object is cast to a Ser vice Fac tor y object and the

getSe rvice method is called to create a customized service object for the

calling bundle. Otherwise, a cached copy of this customized object is

returned. See Service Factories on page 74 for more information about

Ser vic eF acto ry objects.

Both of the Bu ndleC o ntext .ge tSer vi ceR efe ren ce methods require that the

caller has the required S ervic ePe rmissio n[GET,<name >] to get the service

object for the specified service interface names. If the caller lacks the

required permission, these methods must return nul l .

4.10.10 Information About Registered Services

The B undle interface defines these two methods for returning information

pertaining to service usage of the bundles:

• getR egiste redS ervic es() – Returns the service objects that the bundle

has registered with the Framework.
• getSe rvice sInU se() – Returns the service objects that the bundle is

using.

4.11 Stale References

The Framework must manage the dependencies between bundles. This

management is, however, restricted to Framework structures. Bundles must

listen to events generated by the Framework to clean up and remove stale

references.

A stale reference is a reference to a Java object that belongs to the classloader

of a bundle that is stopped or is associated with a service object that is unreg-

istered. Standard Java does not provide any generic means to clean up stale

references, and bundle developers must analyze their code carefully to

ensure that stale references are deleted.

Stale references are potentially harmful because they hinder the Java gar-

bage collector from harvesting the classes, and possibly the instances, of

stopped bundles. This may result in significantly increased memory usage

and can cause updating native code libraries to fail. Bundles tracking ser-

vices are strongly recommended to use the Service Tracker. See Service

Tracker Specification on page 391.

Service developers can minimize the consequences (but not completely pre-

vent) of stale references by using the following mechanisms:

• Implement service objects using the S ervic eFa cto ry interface. The
methods in the Ser viceF ac tor y interface simplify tracking bundles that

use their service objects. See Service Factories on page 74.

• Use indirection in the service object implementations. Service objects

handed out to other bundles should use a pointer to the actual service

object implementation. When the service object becomes invalid, the

pointer is set to nul l , effectively removing the reference to the actual

service object.
72-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Filters
The behavior of a service that becomes unregistered is undefined. Such ser-
vices may continue to work properly or throw an exception at their discre-

tion. This type of error should be logged.

4.12 Filters

The Framework provides a Fi l ter interface, and uses a search filter syntax in

the ge tSer vi ceR ef ere nce(s) method that is based on an RFC 1960-based

search filter string. See [13] A String Representation of LDAP Search Filters. Fil-

ter objects can be created by calling B undle Co ntext .c re ateF i l ter (S tr ing)

with the chosen filter string.

The syntax of a filter string is based upon the string representation of LDAP

search filters as defined in [13] A String Representation of LDAP Search Filters.

It should be noted that RFC 2254: A String Representation of LDAP Search

Filters supersedes RFC 1960 but only adds extensible matching and is not

applicable for this OSGi Framework API.

The string representation of an LDAP search filter uses a prefix format, and

is defined with the following grammar:

filter ::= ’(’ filter-comp ’)’
filter-comp ::= and | or | not | item
and ::= ’&’ filter-list
or ::= ’|’ filter-list
not ::= ’!’ filter
filter-list ::= filter | filter filter-list
item ::= simple | present | substring
simple ::= attr filter-type value
filter-type ::= equal | approx | greater | less
equal ::= ’=’
approx ::= ’~=’
greater ::= ’>=’
less ::= ’<=’
present ::= attr ’=*’
substring ::= attr ’=’ initial any final
inital ::= () | value
any ::= ’*’ star-value
star-value ::= () | value ’*’ star-value
final ::= () | value

attr is a string representing an attribute, or key, in the properties objects of

the services registered with the Framework. Attribute names are not case

sensitive; that is, cn and CN both refer to the same attribute. a ttr must not

contain the characters '=', '>', '<', '~', '(' or ')'. attr may contain embedded

spaces but leading and trailing spaces must be ignored.

value is a string representing the value, or part of one, of a key in the proper-

ties objects of the registered services. If a valu e must contain one of the char-

acters '*', ’(’ or ')', then these characters should be preceded with the

backslash '(’\’) character. Spaces are significant in value . Space characters are

defined by C har ac te r . isWh iteSpa ce().
OSGi Service-Platform Release 3 73-588

Service Factories Framework Specif ication Version 1.2
Although both the su bstr in g and pr esen t productions can produce the
attr=* construct, this construct is used only to denote a presence filter.

The approximate match (’~ =’) production is implementation specific but

should at least ignore case and white space differences. Codes such as soun-

dex or other smart closeness comparisons are optional.

Comparison of values is not straightforward. Strings are compared differ-

ently than numbers and it is possible for an attr to have multiple values.

Keys in the match argument must always be S tr ing objects.

The comparison is defined by the object type of the attr ’s value. The follow-

ing rules apply for comparison:

• String objects – String comparison

• Integer, Long, Float, Double, Byte, Short objects – Numerical comparison

• Comparable objects – Comparison through the Co mpar abl e interface,.

• Character object – Character class based comparison

• Boolean objects – Equality comparisons only
• Array [] objects – Rules are recursively applied to values

• Vector – Rules are recursively applied to elements

Arrays of primitives are also supported, as well as nul l values and mixed

types. Big Intege r and B igDe cimal classes are not part of the minimal execu-

tion environment and should not be used when portability is an issue. The

framework must use the Co mpar abl e interface to compare objects not
listed.

An object that implements the Co mpa rab le interface can not compare

directly with the value from the filter (a string) because the C o mpar able

interface requires equal types. Such an object should therefore have a con-

structor that takes a Str i ng object as argument. If no such constructor exist,
the Framework is not able to compare the object and the expression will

therefore not match. Otherwise, a new object must be constructed with the

value from the filter. Both the original and constructed objects can then be

cast to Co mpa rab le and compared.

A F i l ter object can be used numerous times to determine if the match argu-
ment, a Se rvic eRe fer ence or a Dict io nar y object, matches the filter string

that was used to create the F i l ter object.

A filter matches a key that has multiple values if it matches at least one of

those values. For example,

Dictionary dict = new Hashtable();
dict.put("cn", new String[] { "a", "b", "c" });

The d ict will match true against a filter with "(cn =a)" but also "(c n=b)" .

The F i l ter .to Str i ng method must always return the filter string with unnec-
essary white space removed.

4.13 Service Factories

A Service Factory allows customization of the service object that is returned

when a bundle calls B undl eCo ntext . getSe rvice (S ervic eR efer enc e).
74-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Service Factories
Normally, the service object that is registered by a bundle is returned
directly. If, however, the service object that is registered implements the

Ser viceF ac tor y interface, the Framework must call methods on this object

to create a unique service object for each distinct bundle that gets the ser-

vice.

When the service object is no longer used by a bundle – for example, when
that bundle is stopped – then the Framework must notify the

Ser viceF ac tor y object.

Ser viceF ac tor y objects help manage bundle dependencies that are not

explicitly managed by the Framework. By binding a returned service object

to the requesting bundle, the service object can listen to events related to
that bundle and remove objects, for example listeners, registered by that

bundle when it is stopped. With a Service Factory, listening to events is not

even necessary, because the Framework must inform the Ser vi ceF ac tor y

object when a service object is released by a bundle, which happens auto-

matically when a bundle is stopped.

The Ser vi ceF acto ry interface defines the following methods:

• getSe rvic e(Bundl e,S ervic eRe gistr at io n) – This method is called by the

Framework if a call is made to B undle Co ntext . getSe rvice and the fol-

lowing are true:

• The specified S ervic eR efe renc e argument points to a service object

that implements the Ser vi ceF ac to r y interface.

• The bundle’s usage count of that service object is zero; that is, the
bundle currently does not have any dependencies on the service

object.

The call to B undle Co ntext . getSe rvice must be routed by the Framework

to this method, passing to it the Bund le object of the caller. The Frame-

work must cache the mapping of the requesting bundle-to-service, and

return the cached service object to the bundle on future calls to
Bun dleC on text .getS ervic e, as long as the requesting bundle's usage

count of the service object is greater than zero.

The Framework must check the service object returned by this method.

If it is not an instance of all the classes named when the service factory

was registered, nul l is returned to the caller that called getSe rvice . This

check must be done as specified in Registering Services on page 66.
• unge tS ervic e(Bun dle, Servic eR egis tr at io n,O bj ect) – This method is

called by the Framework if a call is made to

Bun dleC on text .unge tSer vi ce and the following are true:

• The specified S ervic eR efe renc e argument points to a service object

that implements the Ser vi ceF ac to r y interface.

• The bundle’s usage count for that service object must drop to zero

after this call returns; that is, the bundle is about to release its last

dependency on the service object.
The call to B undle Co ntext .un getSe rvice must be routed by the Frame-

work to this method so the S ervic eF acto ry object can release the service

object previously created.

Additionally, the cached copy of the previously created service object

must be unreferenced by the Framework so it may be garbage collected.
OSGi Service-Platform Release 3 75-588

Importing and Exporting Services Framework Specif ication Version 1.2
4.14 Importing and Exporting Services

The Export-Service manifest header declares the interfaces that a bundle
may register. It provides advisory information that is not used by the Frame-

work. This header is intended for use by server-side management tools.

The Export-Service manifest header must conform to the following syntax:

Export-Service ::= class-name (’,’ class-name)*
class-name ::= <fully qualified class name>

The Import-Service manifest header declares the interfaces the bundle may

use. It provides advisory information that is not used by the Framework.

This header is also intended for use by server-side management tools.

The Import-Service manifest header must conform to the following syntax:

Import-Service ::= class-name (’,’ class-name)*
class-name ::= <fully qualified class name>

4.15 Releasing Services

In order for a bundle to release a service object, it must remove the dynamic

dependency on the bundle that registered the service object. The B undle

Co ntext interface defines a method to release service objects: ung etSer -
vi ce(Ser vice Ref ere nce) . A Se rvice Re fer ence object is passed as the argu-

ment of this method.

This method returns a boolean value:

• fa ls e if the bundle’s usage count of the service object is already zero
when the method was called, or the service object has already been

unregistered.

• tr ue if the bundle’s usage count of the service object was more than zero

before this method was called.

4.16 Unregistering Services

The S ervic eR egistr at io n interface defines the unre gister () method to

unregister the service object. This must remove the service object from the

Framework service registry. The Ser vi ceR efe ren ce object for this
Servic eR egis tr at io n object can no longer be used to access the service

object.

The fact that this method is on the Se rvice Re gistra t io n object ensures that

only the bundle holding this object can unregister the associated service

object. The bundle that unregisters a service object, however, might not be

the same bundle that registered it. As an example, the registering bundle

could have passed the S ervic eR egistr at io n object to another bundle, endow-

ing that bundle with the responsibility of unregistering the service object.

Passing Ser viceR eg istra t ion objects should be done with caution.

After Se rvice Re gistra t io n.unr egis ter successfully completes, the service

object must be:
76-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Configurable Services
• Completely removed from the Framework service registry. As a conse-
quence, Ser vi ceR ef eren ce objects obtained for that service object can no

longer be used to access the service object. Calling

Bun dleC on text .getS ervic e method with the S ervic eR efe renc e object

must return nul l .

• Unregistered, even if other bundles had dependencies upon it. Bundles

must be notified of the unregistration through the publishing of a

Ser viceEvent object of type Ser viceEvent. UNR EGIS TER ING . This event is

sent synchronously in order to give bundles the opportunity to release

the service object.
After receiving an event of type S ervic eEvent.U NR EG ISTERI NG the bun-

dle should release the service object and release any references it has to

this object, so that the service object can be garbage collected by the Java

VM.

• Released by all using bundles. For each bundle whose usage count for the

service object remains greater than zero after all invoked Ser vi ceLi stener
objects have returned, the Framework must set the usage count to zero

and release the service object.

4.17 Configurable Services

The Co nfi gura ble interface is a minimalistic approach to configuration

management. The Configurable service is therefore intended to be super-

seded by the Configuration Admin service. See Configuration Admin Service

Specification on page 181.

A Configurable service is one that can be configured dynamically at run-

time to change its behavior. As an example, a configurable Http Service may

support an option to set the port number.

A service object is administered as configurable by implementing the

Co nf igura ble interface, which has one method: getC on f igur at io nO bje ct() .

This method returns an O bj ect instance that holds the configuration data of

the service. As an example, a configuration object could be implemented as

a Java Bean.

The configuration object handles all the configuration aspects of a service so

that the service object itself does not have to expose its configuration prop-

erties.

Before returning the configuration object, ge tCo nf i gura t ion Ob ject should

check that the caller has the required permission to access and manipulate

it, and if not, it should throw a S ecu r ityExcepti on . Note that the required
permission is implementation-dependent.

4.18 Events

The OSGi Framework supports the following types of events:

• Ser viceEvent – Reports registration, unregistration, and property

changes for service objects. All events of this kind must be delivered syn-

chronously.
OSGi Service-Platform Release 3 77-588

Events Framework Specif ication Version 1.2
• Bundl eEvent – Reports changes in the life-cycle of bundles.
• Fra mew or kEve nt – Reports that the Framework is started, startlevel has

changed, packages have been refreshed, or that an error has been

encountered.

4.18.1 Listeners

A listener interface is associated with each type of event. The following list
describes these listeners.

• Ser vic eLi stener – Called with an event of type Ser vi ceEvent when a

service object has been registered or modified, or is in the process of

unregistering. A security check must be performed for each registered

listener when a Ser vi ceEvent occurs. The listener must not be called

unless it has the required S ervic ePer missio n[GET,<inter fac e n ame>] for

at least one of the interfaces under which the service object is registered.

• Bundl eListe ner and Synchr on ousB undl eListe ner – Called with an event

of type B undle Eve nt when a bundle has been installed, started, stopped,

updated, or uninstalled. Synch ro nous Bund leLis te ner objects are called

synchronously during the processing of the event, and must be called

before any B undle Liste ner object is called.
• Fra mew or kListe ner – Called with an event of type F ra me wo rk Even t.

Bundl eC onte xt interface methods are defined which can be used to add and

remove each type of listener.

A bundle that uses a service object should register a Ser vice Listene r object
to track the availability of the service object, and take appropriate action

when the service object is unregistering (this can be significantly simplified

with the Service Tracker Specification on page 391).

Events can be asynchronously delivered, unless otherwise stated, meaning

that they are not necessarily delivered by the same thread that generated the

event. The thread used to call an event listener is not defined.

4.18.2 Delivering Events

When delivering an event asynchronously, the Framework must:

• Collect a snapshot of the listener list at the time the event is published

(rather than doing so in the future just prior to event delivery) but before
the event is delivered, so that listeners do not enter the list after the event

happened.

• Ensure that listeners on the list at the time the snapshot is taken still

belong to active bundles at the time the event is delivered.

If the Framework did not capture the current listener list when the event
was published, but instead waited until just prior to event delivery, then it

would be possible for a bundle to have started and registered a listener, and

the bundle could see its own Bundl eEvent. I NS TAL LED event, which would

be an error.

The following three scenarios illustrate this concept.

1. Scenario 1 event sequence:

• Event A is published.

• Listener 1 is registered.
78-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Framework Startup and Shutdown
• Asynchronous delivery of Event A is attempted.
Expected Behavior: Listener 1 must not receive Event A, because it was

not registered at the time the event was published.

2. Scenario 2 event sequence:

• Listener 2 is registered.

• Event B is published.
• Listener 2 is unregistered.

• Asynchronous delivery of Event B is attempted.

Expected Behavior: Listener 2 receives Event B, because Listener 2 was

registered at the time Event B was published.

3. Scenario 3 event sequence:
• Listener 3 is registered.

• Event C is published.

• The bundle that registered Listener 3 is stopped.

• Asynchronous delivery of Event C is attempted.

Expected Behavior: Listener 3 must not receive Event C, because its Bun-

dle Context object is invalid.

4.18.3 Synchronization Pitfalls

As a general rule, a Java monitor should not be held when event listeners are

called. This means that neither the Framework nor the originator of a syn-

chronous event should be in a monitor when a callback is initiated.

The purpose of a Java monitor is to protect the update of data structures.

This should be a small region of code that does not call any code the effect of

which cannot be overseen. Calling the OSGi Framework from synchronized

code can cause unexpected side effects. One of these side effects might be

deadlock. A deadlock is the situation where two threads are blocked because

they are waiting for each other.

Time-outs can be used to break deadlocks, but Java monitors do not have

time-outs. Therefore, the code will hang forever until the system is reset

(Java has deprecated all methods that can stop a thread). This type of dead-

lock is prevented by not calling the Framework (or other code that might

cause callbacks) in a synchronized block.

If locks are necessary when calling other code, use the Java monitor to create

semaphores that can time-out and thus provide an opportunity to escape a

deadlocked situation.

4.19 Framework Startup and Shutdown

A Framework implementation must be started before any services can be

provided. The details of how a Framework should be started is not defined in
this specification, and may be different for different implementations. Some

Framework implementations may provide command line options, and oth-

ers may read startup information from a configuration file. In all cases,

Framework implementations must perform all of the following actions in

the given order.
OSGi Service-Platform Release 3 79-588

Security Framework Specif ication Version 1.2
4.19.1 Startup

When the Framework is started, the following actions must occur:

1. Event handling is enabled. Events can now be delivered to listeners.

Events are discussed in Events on page 77.

2. The system bundle enters the STAR TI NG state. More information about

the system bundle can be found in The System Bundle on page 42.

3. A bundle’s state is persistently recorded in the OSGi environment. When

the Framework is restarted, all installed bundles previously recorded as

being started must be started as described in the Bund le.s ta rt method.

Any exceptions that occur during startup must be published as a Frame-

work event of type F ra mew or kEve nt.ER RO R . Bundles and their different

states are discussed in The Bundle Object on page 57. If the Framework
implements the optional Start Level specification, this behavior is differ-

ent. See Start Level Service Specification on page 137.

4. The system bundle enters the AC TI VE state.

5. A Framework event of type Fr amew o rkEvent. STARTED is broadcast.

4.19.2 Shutdown

The Framework will also need to be shut down on occasion. Shutdown can

also be initiated by stopping the system bundle, covered in The System Bun-

dle on page 42. When the Framework is shut down, the following actions

must occur in the given order:

1. The system bundle enters the STO PPI NG state.

2. All AC TIVE bundles are suspended as described in the B undle .sto p

method, except that their persistently recorded state indicates that they

must be restarted when the Framework is next started. Any exceptions
that occur during shutdown must be published as a Framework event of

type Fr amew or kEvent.ER RO R . If the Framework implements the

optional Start Level specification, this behavior is different. See Start

Level Service Specification on page 137.

3. Event handling is disabled.

4.20 Security

The Framework security model is based on the Java 2 specification. If secu-

rity checks are performed, they must be done according to [14] The Java Secu-

rity Architecture for JDK 1.2. It is assumed that the reader is familiar with this

specification.

The Java platform on which the Framework runs must provide the Java

Security APIs necessary for Java 2 permissions. On resource-constrained

platforms, these Java Security APIs may be stubs that allow the bundle
classes to be loaded and executed, but the stubs never actually perform the

security checks. The behavior of these stubs must be as follows:

• checkPermission – Return without throwing a S ecur ityExceptio n .

• checkGuard – Return without throwing a Se cur i tyExc eptio n .
80-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Security
• implies – Return true .

This behavior allows code to run as if all bundles have Al lPer missio n.

Many of the Framework methods require the caller to explicitly have cer-

tain permissions when security is enabled. Services may also have permis-

sions specific to them that provide more finely grained control over the
operations that they are allowed to perform. Thus a bundle that exposes ser-

vice objects to other bundles may also need to define permissions specific to

the exposed service objects.

For example, the User Admin service has an associated

Us erAdmin Permis sio n class that is used to control access to this service.

4.20.1 Permission Checks

When a permission check is done, j ava.s ecur ity .Acc essC o ntro l ler should

check all the classes on the call stack to ensure that every one of them has

the permission being checked.

Because service object methods often allow access to resources to which

only the bundle providing the service object normally has access, a common

programming pattern uses java .sec ur ity .Ac ces sCo ntro l le r . doP r iv i le ged in

the implementation of a service object. The service object can assume that

the caller is authorized to call the service object because a service can only

be obtained with the appropriate Se rvice Per mi ssio n[GET, < interf ac e
name>] . It should therefore use only its own permissions when it performs

its function.

As an example, the dial method of a fictitious PPP Service accesses the serial

port to dial a remote server and start up the PPP daemon. The bundle provid-

ing the PPP Service will have permission to execute programs and access the
serial port, but the bundles using the PPP Service may not have those per-

missions.

When the dial method is called, the first check will be to ensure that the

caller has permission to dial. This check is done with the following code:

SecurityManager sm = System.getSecurityManager();
if (sm != null)

sm.checkPermission(new com.acme.ppp.DialPermission());

If the permission check does not throw an exception, the dial method must

now enter a privileged state to actually cause the modem to dial and start
the PPP daemon as shown in the following example.

Process proc = (Process)
AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {
Process proc = null;
if (connectToServer())

proc = startDaemon();
return proc;

}
}

);
OSGi Service-Platform Release 3 81-588

Security Framework Specif ication Version 1.2
For alternate ways of executing privileged code, see [14] The Java Security

Architecture for JDK 1.2.

4.20.2 Privileged Callbacks

The following interfaces define bundle callbacks that are invoked by the

Framework:

• Bundl eActiva tor

• Ser vic eF acto ry

• Bundl e -, S ervic e-, and F ra me wo rk Listene r.

When any of these callbacks are invoked by the Framework, the bundle that

caused the callback may still be on the stack. For example, when one bundle
installs and then starts another bundle, the installer bundle may be on the

stack when the B undle Activato r . start method of the installed bundle is

called. Likewise, when a bundle registers a service object, it may be on the

stack when the Framework calls back the s ervic eCh ange d method of all

qualifying Ser vice Listene r objects.

Whenever any of these bundle callbacks try to access a protected resource or

operation, the access control mechanism should consider not only the per-

missions of the bundle receiving the callback, but also those of the Frame-

work and any other bundles on the stack. This means that in these callbacks,

bundle programmers normally would use do Pr iv i lege d calls around any

methods protected by a permission check (such as getting or registering ser-
vice objects).

In order to reduce the number of doP r iv i le ged calls by bundle programmers,

the Framework must perform a do Pr iv i l eged call around any bundle call-

backs. The Framework should have j ava.s ecur ity .Al lP ermis s ion . Therefore,

a bundle programmer can assume that the bundle is not further restricted
except for its own permissions.

Bundle programmers do not need to use do Pr iv i lege d calls in their imple-

mentations of any callbacks registered with and invoked by the Framework.

For any other callbacks that are registered with a service object and there-
fore get invoked by the service-providing bundle directly, d oPr iv i le ged calls

must be used in the callback implementation if the bundle’s own privileges

are to be exercised. Otherwise, the callback must fail if the bundle that initi-

ated the callback lacks the required permissions.

A framework must never load classes in a do Pr i vi lege d region, but must
instead use the current stack. This means that static initializers should

never assume that they are privileged. Any privileged code in a static initial-

izer must be guarded with a do Pr iv i l eged region in the static initializer.

4.20.3 Permission Types

The following permission types are defined by the Framework:

• Ad minPer missio n – Enables access to the administrative functions of the

Framework.

• Ser vic ePe rmissi on – Controls service object registration and access.

• Pac kage Permi ssio n – Controls importing and exporting packages.
82-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Security
4.20.4 AdminPermission

An AdminP ermiss ion has no parameters associated with it and is always

named admi n . Admin Permis sio n is required by all administrative functions.
AdminPe rmissio n has no actions.

4.20.5 Service Permission

A Ser vi cePe rmissi on has the following parameters.

• Interface Name – The interface name may end with a wildcard to match
multiple interface names. (See j ava. secu r ity .B asic Per miss io n for a dis-

cussion of wildcards.)

• Action – Supported actions are: R EGISTER – Indicates that the permission

holder may register the service object, and GET – Indicates that the

holder may get the service.

When an object is being registered as a service object using B undle

Co ntext . regi sterS ervic e , the registering bundle must have the

Ser viceP ermiss ion to register all the named classes. See Registering Services

on page 66.

When a Ser vic eR efe renc e object is obtained from the service registry using
Bun dleC on text .getS ervic eR efe renc e or

Bun dleC on text .getS ervic eR efe renc es, the calling bundle must have the

required S ervic ePer missio n[GET,<inter fa ce name>] to get the service

object with the named class. See ServiceReference Objects on page 66.

When a service object is obtained from a Ser vi ceR efe ren ce object using
Bun dleC on text .getS ervic e(Ser vi ceR ef ere nce) , the calling code must have

the required Ser vi ceP ermiss ion[GET,<na me>] to get the service object for at

least one of the classes under which it was registered.

Ser viceP ermiss ion must be used as a filter for the service events received by

the Service Listener, as well as for the methods to enumerate services,

including B undle. getR egis tere dSer vi ces and Bund le.g etSer vice sInU se .
The Framework must assure that a bundle must not be able to detect the

presence of a service that it does not have permission to access.

4.20.6 Package Permission

Bundles can only import and export packages for which they have the

required permission actions. A Pa cka gePe rmissio n must be valid across all

versions of a package.

A Pac kage Per mi ss io n has two parameters:

• The package that may be exported. A wildcard may be used. The granu-

larity of the permission is the package, not the class name.

• The action, either IM PO RT or EXPO R T . If a bundle has permission to

export a package, the Framework must automatically grant it per-

mission to import the package.

A Pac kage Per mi ss io n with * and EXP OR T as parameters would be able to

import and export any package.
OSGi Service-Platform Release 3 83-588

The Framework on Java 1.1 Framework Specif ication Version 1.2
4.20.7 Bundle Permissions

The B undl e interface defines a method for returning information pertaining

to a bundle’s permissions: ha sPer missio n(O bjec t). This method returns
tr ue if the bundle’s Protection Domain has the specified permission, and

fa ls e if it does not or if the object specified by the argument is not an

instance of ja va .se cur i ty. Per mi ss io n .

The parameter type is Ob ject so that the Framework can be implemented

on Java platforms that do not support Java 2 based security.

4.21 The Framework on Java 1.1

The Framework specification was authored assuming a Java 2 based run-

time environment. This section addresses issues in implementing and
deploying the OSGi Framework on Java 1.1 based run-time environments.

Overall, the OSGi specifications strive to allow implementations on Java 1.1

by not using classes in the APIs that are not available on Java 1. For example,

none of the APIs use Per missio n classes or classes of the collection frame-

work. However, some specified semantics can only be implemented in a
Java 2 environment.

4.21.1 ClassLoader.getResource

In JDK 1.1, the C lass Loa der class does not provide the f i ndRe sou rce method.

Therefore, references to the f ind Res our ce method in this document refer to

the ge tR eso ur ce method.

4.21.2 ClassLoader.findLibrary

Java 2 introduced the f indLib rar y method, which allows classloaders to par-

ticipate in the loading of native libraries. In JDK 1.1, all native code libraries

must be available on a single, global library path. Therefore, native code
libraries from different bundles have to reside in the same directory. If

libraries have the same name, unresolvable conflicts may occur.

4.21.3 Resource URL

A bundle's classloader returns resource U RL objects which use a Framework
implementation-specific UR LStr eamH andl er sub-class to capture security

information about the caller.

Prior to Java 2 no constructor which took a UR LStr eamH andl er object argu-

ment existed, requiring the Framework implementation to register a

UR LStr eamH andl er object. Conceivably, then, other code than the Frame-
work implementation could create this type of U RL object with falsified

security information, and is thus a security threat. Therefore, the

Bundl e.g etRe sour ce method cannot be implemented securely in Java ver-

sions prior to Java 2.
84-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 Changes
4.21.4 Comparable

The Filter is defined using the C ompa ra ble interface. This interface was

introduced in Java 2. Framework implementations that run on Java 1.1 must
take special care that this interface will not be available. The actual check

should therefore take place in code that can detect the presence of this inter-

face without linking to it, for example, using reflection.

4.22 Changes

This section defines the changes since the OSGi Service Platform Release 2.

4.22.1 Dynamic Import

A new bundle manifest header is added, DynamicImport-Package, that

allows a bundle to import packages of which it has no a priori knowledge.

Dynamic import is described in Dynamically Importing Packages on page 48.

4.22.2 Automatic Import of Java

A Framework must implicitly import all packages starting with java . for

each bundle. This is discussed in Automatically Importing java.* on page 56.

4.22.3 Native Code

The native code selection algorithm in Service Platform Release 2 selected a

lesser matching operating system when certain language dependent librar-
ies were present. The algorithm has been replaced with a more declarative

description. See Native Code Algorithm on page 55. A common mistake with

the native code clause was also highlighted with an example.

4.22.4 Synchronization Pitfalls

Using synchronized with Framework callbacks can cause deadlocks. A sec-

tion has been added that discusses these issues. See Synchronization Pitfalls on

page 79.

4.22.5 New Constants

A number of new constants have been added to the Co nsta nts class.

4.22.6 Different Default File Permissions

The interpretation of a relative file name in a Fi lePe rmiss i on object was

changed from undefined to relative to the bundle’s private persistent stor-

age area. This is discussed in Persistent Storage on page 62.

4.22.7 Use of System Properties

The mapping of System properties to the Bun dleC on text .ge tP ro per ty

method has been clarified in Environment Properties on page 63.
OSGi Service-Platform Release 3 85-588

Changes Framework Specif ication Version 1.2
4.22.8 Registering Services Under Classes of Non Imported
Packages

When a service object is registered with the Framework, a number of inter-

faces/classes are specified under which the service should be registered. Pre-

viously, it was not specified from where those classes originated, and some

Framework implementations decided to limit the source of these classes to
be from imported or private packages. This made it impossible to register an

object that was obtained from another bundle. This specification explicitly

allows services to be registered under class names that are not available to

the bundle.

4.22.9 Removed Reference to BigInteger/BigDecimal

The specification of the Filter class was the only reference to the Big Intege r

and B igDec imal classes. These classes are not part of the minimal execution

requirements. These classes implement the C ompa rab le interface so the Fil-

ter is now required to support this interface and the classes are no longer

required.

4.22.10 Security

The behavior of the P ermiss ion related stub classes in the OSGi Framework

have been defined and the security state of static initializers has been clari-

fied. See Security on page 80.

4.22.11 Bundle-RequiredExcecutionEnvironment

A new manifest header is introduced to specify a bundle’s requirements on

the execution environment. This is explained in Execution Environment on

page 52.

4.22.12 Filter name allows spaces

It was not well specified if the <a ttr> in the Filter syntax description allowed

spaces or not. This has been clarified to allow spaces. See Filters on page 73

for more information.

4.22.13 Source of FrameworkEvent.STARTED

The F ra me wo rk Eve nt class was updated to use the System Bundle for the

STAR TED event rather than null. The two argument constructor is depre-

cated.

4.22.14 Early Access to ServiceRegistration

A section was added describing how the Se rvice Reg istra t ion object can be

obtained before the re gister Ser vice method had returned. See Early Need

For ServiceRegistration Object on page 68.

4.22.15 Minor clarifications

• The javadoc for Bund leC onte xt .cr eate Fi l te r was updated to explicitly

declare that it may throw a NullPo inter Excepti on .
86-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
• The javadoc for Bu ndleC o ntext . ins ta l lB undle and Bu ndle. upda te
methods that take an I nputStr eam object argument were updated to

explicitly declare that they may throw a Sec ur i tyExce ptio n .

• The javadoc description in o rg. osg i . f r amew o rk. Co nstan ts .java for the

constant OB JEC TC LASS was updated to state the type is S tr ing[].

4.23 org.osgi.framework

The OSGi Framework Package. Specification Version 1.2.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.framework;specification-version=1.2

4.23.1 Summary

• AdminPermission – Indicates the caller’s authority to perform lifecycle

operations on or to get sensitive information about a bundle. [p.87]

• Bundle – An installed bundle in the Framework. [p.88]

• BundleActivator – Customizes the starting and stopping of this bundle.

[p.97]

• BundleContext – A bundle’s execution context within the Framework.
[p.98]

• BundleEvent – A Framework event describing a bundle lifecycle change.

[p.108]

• BundleException – A Framework exception used to indicate that a

bundle lifecycle problem occurred. [p.43]

• BundleListener – A BundleEvent listener. [p.109]
• Configurable – Supports a configuration object. [p.110]

• Constants – Defines standard names for the OSGi environment property,

service property, and Manifest header attribute keys. [p.110]

• Filter – An RFC 1960-based Filter. [p.116]

• FrameworkEvent – A general Framework event. [p.117]

• FrameworkListener – A FrameworkEvent listener. [p.119]
• InvalidSyntaxException – A Framework exception. [p.119]

• PackagePermission – A bundle’s authority to import or export a package.

[p.120]

• ServiceEvent – A service lifecycle change event. [p.121]

• ServiceFactory – Allows services to provide customized service objects in

the OSGi environment. [p.123]
• ServiceListener – A ServiceEvent listener. [p.124]

• ServicePermission – Indicates a bundle’s authority to register or get a

service. [p.124]

• ServiceReference – A reference to a service. [p.125]

• ServiceRegistration – A registered service. [p.127]

• SynchronousBundleListener – A synchronous BundleEvent listener.

[p.128]
AdminPermi ssi on
OSGi Service-Platform Release 3 87-588

org.osgi.framework Framework Specif ication Version 1.2
4.23.2 public final class AdminPermission
extends BasicPermission

Indicates the caller’s authority to perform lifecycle operations on or to get

sensitive information about a bundle.

AdminPermission has no actions or target.

The hashCode() method of AdminPermission is inherited from

java.security.BasicPermission. The hash code it returns is the hash

code of the name “AdminPermission”, which is always the same for all

instances of AdminPermission.

AdminPermis sion()

4.23.2.1 public AdminPermission()

� Creates a new AdminPermission object with its name set to “AdminPermis-

sion”.

AdminPermis sion(String,String)

4.23.2.2 public AdminPermission(String name, String actions)

name Ignored; always set to “AdminPermission”.

actions Ignored.

� Creates a new AdminPermission object for use by the Policy object to instan-

tiate new Permission objects.

equal s(Ob ject)

4.23.2.3 public boolean equals(Object obj)

obj The object being compared for equality with this object.

� Determines the equality of two AdminPermission objects.

Two AdminPermission objects are always equal.

Returns true if obj is an AdminPermission; false otherwise.
imp li es (Permi ssi on)

4.23.2.4 public boolean implies(Permission p)

p The permission to interrogate.

� Determines if the specified permission is implied by this object.

This method returns true if the specified permission is an instance of

AdminPermission.

Returns true if the permission is an instance of this class; false otherwise.
newPermissi onCo llection()

4.23.2.5 public PermissionCollection newPermissionCollection()

� Returns a new PermissionCollection object suitable for storing

AdminPermissions.

Returns A new PermissionCollection object.
Bundle

4.23.3 public interface Bundle

An installed bundle in the Framework.

A Bundle object is the access point to define the life cycle of an installed

bundle. Each bundle installed in the OSGi environment will have an associ-

ated Bundle object.
88-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
A bundle will have a unique identity, a long, chosen by the Framework.
This identity will not change during the life cycle of a bundle, even when

the bundle is updated. Uninstalling and then reinstalling the bundle will

create a new unique identity.

A bundle can be in one of six states:

• UNI NSTALLED [p.90]

• INSTALLED [p.89]

• RESO LVED [p.89]

• STARTING [p.90]

• STO PPING [p.90]

• ACTIVE [p.89]

Values assigned to these states have no specified ordering; they represent bit

values that may be ORed together to determine if a bundle is in one of the

valid states.

A bundle should only execute code when its state is one of STARTING,
ACTIVE, or STOPPING. An UNINSTALLED bundle can not be set to another

state; it is a zombie and can only be reached because invalid references are

kept somewhere.

The Framework is the only entity that is allowed to create Bundle objects,

and these objects are only valid within the Framework that created them.

ACTIVE

4.23.3.1 public static final int ACTIVE = 32

This bundle is now running.

A bundle is in the ACTIVE state when it has been successfully started.

The value of ACTIVE is 0x00000020.

INSTALLED

4.23.3.2 public static final int INSTALLED = 2

This bundle is installed but not yet resolved.

A bundle is in the INSTALLED state when it has been installed in the Frame-

work but cannot run.

This state is visible if the bundle’s code dependencies are not resolved. The
Framework may attempt to resolve an INSTALLED bundle’s code dependen-

cies and move the bundle to the RESOLVED state.

The value of INSTALLED is 0x00000002.

RESOLVED

4.23.3.3 public static final int RESOLVED = 4

This bundle is resolved and is able to be started.

A bundle is in the RESOLVED state when the Framework has successfully

resolved the bundle’s dependencies. These dependencies include:

• The bundle’s class path from its C ons ta nts.B U NDL E_C LASS PATH [p.110]

Manifest header.

• The bundle’s package dependencies from its

Co nsta nts.EXPO R T_PAC KAGE [p.113] and

Co nsta nts. IM PO RT_PAC KAGE [p.114] Manifest headers.
OSGi Service-Platform Release 3 89-588

org.osgi.framework Framework Specif ication Version 1.2
Note that the bundle is not active yet. A bundle must be put in the RESOLVED
state before it can be started. The Framework may attempt to resolve a bun-

dle at any time.

The value of RESOLVED is 0x00000004.

STARTING

4.23.3.4 public static final int STARTING = 8

This bundle is in the process of starting.

A bundle is in the STARTING state when the star t [p.93] method is active. A

bundle will be in this state when the bundle’s B undle Activato r . star t[p.97] is
called. If this method completes without exception, then the bundle has

successfully started and will move to the ACTIVE state.

The value of STARTING is 0x00000008.

STOPPING

4.23.3.5 public static final int STOPPING = 16

This bundle is in the process of stopping.

A bundle is in the STOPPING state when the sto p [p.94] method is active. A

bundle will be in this state when the bundle’s Bu ndleAc tivato r .sto p [p.98]
method is called. When this method completes the bundle is stopped and

will move to the RESOLVED state.

The value of STOPPING is 0x00000010.

UNINSTALLED

4.23.3.6 public static final int UNINSTALLED = 1

This bundle is uninstalled and may not be used.

The UNINSTALLED state is only visible after a bundle is uninstalled; the bun-

dle is in an unusable state and all references to the Bundle object should be

released immediately.

The value of UNINSTALLED is 0x00000001.

getBund leId ()

4.23.3.7 public long getBundleId()

� Returns this bundle’s identifier. The bundle is assigned a unique identifier

by the Framework when it is installed in the OSGi environment.

A bundle’s unique identifier has the following attributes:

• Is unique and persistent.
• Is a long.

• Its value is not reused for another bundle, even after the bundle is unin-

stalled.

• Does not change while the bundle remains installed.

• Does not change when the bundle is updated.

This method will continue to return this bundle’s unique identifier while

this bundle is in the UNINSTALLED state.

Returns The unique identifier of this bundle.
getHeaders()

4.23.3.8 public Dictionary getHeaders()

� Returns this bundle’s Manifest headers and values. This method returns all

the Manifest headers and values from the main section of the bundle’s Man-

ifest file; that is, all lines prior to the first blank line.
90-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
Manifest header names are case-insensitive. The methods of the returned
Dictionary object will operate on header names in a case-insensitive man-

ner.

For example, the following Manifest headers and values are included if they

are present in the Manifest file:

Bundle-Name
Bundle-Vendor
Bundle-Version
Bundle-Description
Bundle-DocURL
Bundle-ContactAddress

This method will continue to return Manifest header information while

this bundle is in the UNINSTALLED state.

Returns A Dictionary object containing this bundle’s Manifest headers and values.

Throws SecurityException – If the caller does not have the AdminPermission, and

the Java Runtime Environment supports permissions.
getLocation()

4.23.3.9 public String getLocation()

� Returns this bundle’s location identifier.

The bundle location identifier is the location passed to

Bun dleC on text . insta l lB undle [p.104] when a bundle is installed.

This method will continue to return this bundle’s location identifier while

this bundle is in the UNINSTALLED state.

Returns The string representation of this bundle’s location identifier.

Throws SecurityException – If the caller does not have the appropriate

AdminPermission, and the Java Runtime Environment supports permis-

sions.
getRegi steredServ ices ()

4.23.3.10 public ServiceReference[] getRegisteredServices()

� Returns this bundle’s ServiceReference list for all services it has registered

or null if this bundle has no registered services.

If the Java runtime supports permissions, a ServiceReference object to a
service is included in the returned list only if the caller has the

ServicePermission to get the service using at least one of the named

classes the service was registered under.

The list is valid at the time of the call to this method, however, as the Frame-

work is a very dynamic environment, services can be modified or unregis-
tered at anytime.

Returns An array of ServiceReference objects or null.

Throws IllegalStateException – If this bundle has been uninstalled.

See Also ServiceRegistration[p.127] , ServiceReference[p.125] ,

ServicePermission[p.124]
getResource(String)

4.23.3.11 public URL getResource(String name)

name The name of the resource. See java.lang.ClassLoader.getResource for a
description of the format of a resource name.
OSGi Service-Platform Release 3 91-588

org.osgi.framework Framework Specif ication Version 1.2
� Find the specified resource in this bundle. This bundle’s class loader is called
to search for the named resource. If this bundle’s state is INSTALLED, then

only this bundle will be searched for the specified resource. Imported pack-

ages cannot be searched when a bundle has not been resolved.

Returns a URL to the named resource, or null if the resource could not be found or if

the caller does not have the AdminPermission, and the Java Runtime Envi-
ronment supports permissions.

Throws IllegalStateException – If this bundle has been uninstalled.

Since 1.1
getServicesInUse()

4.23.3.12 public ServiceReference[] getServicesInUse()

� Returns this bundle’s ServiceReference list for all services it is using or

returns null if this bundle is not using any services. A bundle is considered

to be using a service if its use count for that service is greater than zero.

If the Java Runtime Environment supports permissions, a

ServiceReference object to a service is included in the returned list only if

the caller has the ServicePermission to get the service using at least one of

the named classes the service was registered under.

The list is valid at the time of the call to this method, however, as the Frame-
work is a very dynamic environment, services can be modified or unregis-

tered at anytime.

Returns An array of ServiceReference objects or null.

Throws IllegalStateException – If this bundle has been uninstalled.

See Also ServiceReference[p.125] , ServicePermission[p.124]
getState()

4.23.3.13 public int getState()

� Returns this bundle’s current state.

A bundle can be in only one state at any time.

Returns An element of UNINSTALLED, INSTALLED, RESOLVED, STARTING, STOPPING,

ACTIVE.
hasPermissi on(Ob ject)

4.23.3.14 public boolean hasPermission(Object permission)

permission The permission to verify.

� Determines if this bundle has the specified permissions.

If the Java Runtime Environment does not support permissions, this
method always returns true.

permission is of type Object to avoid referencing the

java.security.Permission class directly. This is to allow the Framework

to be implemented in Java environments which do not support permissions.

If the Java Runtime Environment does support permissions, this bundle and

all its resources including nested JAR files, belong to the same

java.security.ProtectionDomain; that is, they will share the same set of

permissions.

Returns true if this bundle has the specified permission or the permissions possessed
by this bundle imply the specified permission; false if this bundle does not
92-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
have the specified permission or permission is not an
instanceofjava.security.Permission.

Throws IllegalStateException – If this bundle has been uninstalled.
start()

4.23.3.15 public void start() throws BundleException

� Starts this bundle. If the Framework implements the optional Start Level

service and the current start level is less than this bundle’s start level, then

the Framework must persistently mark this bundle as started and delay the

starting of this bundle until the Framework’s current start level becomes

equal or more than the bundle’s start level.

Otherwise, the following steps are required to start a bundle:

1 If this bundle’s state is UNINSTALLED then an IllegalStateException is

thrown.

2 If this bundle’s state is STARTING or STOPPING then this method will wait

for this bundle to change state before continuing. If this does not occur
in a reasonable time, a BundleException is thrown to indicate this

bundle was unable to be started.

3 If this bundle’s state is ACTIVE then this method returns immediately.

4 If this bundle’s state is not RESOLVED, an attempt is made to resolve this

bundle’s package dependencies. If the Framework cannot resolve this

bundle, a BundleException is thrown.

5 This bundle’s state is set to STARTING.
6 The Bund leActiva tor .star t [p.97] method of this bundle’s

BundleActivator, if one is specified, is called. If the BundleActivator is

invalid or throws an exception, this bundle’s state is set back to

RESOLVED.

Any services registered by the bundle will be unregistered.

Any services used by the bundle will be released.
Any listeners registered by the bundle will be removed.

A BundleException is then thrown.

7 If this bundle’s state is UNINSTALLED, because the bundle was uninstalled

while the BundleActivator.start method was running, a

BundleException is thrown.

8 Since it is recorded that this bundle has been started, when the
Framework is restarted this bundle will be automatically started.

9 This bundle’s state is set to ACTIVE.

10 A bundle event of type Bund leEvent.S TAR TED [p.108] is broadcast.

Preconditions

• getState() in {INSTALLED}, {RESOLVED}.

Postconditions, no exceptions thrown

• getState() in {ACTIVE}.

• BundleActivator.start() has been called and did not throw an
exception.

Postconditions, when an exception is thrown

• getState() not in {STARTING}, {ACTIVE}.

Throws BundleException – If this bundle couldn’t be started. This could be because

a code dependency could not be resolved or the specified BundleActivator

could not be loaded or threw an exception.
OSGi Service-Platform Release 3 93-588

org.osgi.framework Framework Specif ication Version 1.2
IllegalStateException – If this bundle has been uninstalled or this bun-
dle tries to change its own state.

SecurityException – If the caller does not have the appropriate

AdminPermisson, and the Java Runtime Environment supports permissions.
stop()

4.23.3.16 public void stop() throws BundleException

� Stops this bundle.

The following steps are required to stop a bundle:

1 If this bundle’s state is UNINSTALLED then an IllegalStateException is
thrown.

2 If this bundle’s state is STARTING or STOPPING then this method will wait

for this bundle to change state before continuing. If this does not occur

in a reasonable time, a BundleException is thrown to indicate this

bundle was unable to be stopped.

3 If this bundle’s state is not ACTIVE then this method returns immedi-
ately.

4 This bundle’s state is set to STOPPING.

5 Since it is recorded that this bundle has been stopped, Framework is

restarted this bundle will not be automatically started.

6 The B undle Activato r . stop [p.98] method of this bundle’s

BundleActivator, if one is specified, is called. If this method throws an

exception, it will continue to stop this bundle. A BundleException will
be thrown after completion of the remaining steps.

7 Any services registered by this bundle must be unregistered.

8 Any services used by this bundle must be released.

9 Any listeners registered by this bundle must be removed.

10 If this bundle’s state is UNINSTALLED, because the bundle was uninstalled

while the BundleActivator.stop method was running, a
BundleException must be thrown.

11 This bundle’s state is set to RESOLVED.

12 A bundle event of type B undl eEvent.S TO PPED [p.108] is broadcast.

Preconditions

• getState() in {ACTIVE}.

Postconditions, no exceptions thrown

• getState() not in {ACTIVE, STOPPING}.

• BundleActivator.stop has been called and did not throw an exception.

Postconditions, when an exception is thrown

• None.

Throws BundleException – If this bundle’s BundleActivator could not be loaded or
threw an exception.

IllegalStateException – If this bundle has been uninstalled or this bun-

dle tries to change its own state.

SecurityException – If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permis-

sions.
unins tal l()
94-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.3.17 public void uninstal l() throws BundleException

� Uninstalls this bundle.

This method causes the Framework to notify other bundles that this bundle

is being uninstalled, and then puts this bundle into the UNINSTALLED state.

The Framework will remove any resources related to this bundle that it is
able to remove.

If this bundle has exported any packages, the Framework will continue to

make these packages available to their importing bundles until the

PackageAdmin.refreshPackages method has been called or the Frame-

work is relaunched.

The following steps are required to uninstall a bundle:

1 If this bundle’s state is UNINSTALLED then an IllegalStateException is

thrown.

2 If this bundle’s state is ACTIVE, STARTING or STOPPING, this bundle is
stopped as described in the Bundle.stop method. If Bundle.stop throws

an exception, a Framework event of type Fr amew or kEvent.ER RO R [p.117]

is broadcast containing the exception.

3 This bundle’s state is set to UNINSTALLED.

4 A bundle event of type Bund leEvent.U NINS TALL ED [p.108] is broadcast.

5 This bundle and any persistent storage area provided for this bundle by

the Framework are removed.

Preconditions

• getState() not in {UNINSTALLED}.

Postconditions, no exceptions thrown

• getState() in {UNINSTALLED}.

• This bundle has been uninstalled.

Postconditions, when an exception is thrown

• getState() not in {UNINSTALLED}.

• This Bundle has not been uninstalled.

Throws BundleException – If the uninstall failed. This can occur if another thread

is attempting to change the bundle’s state and does not complete in a timely

manner.

IllegalStateException – If this bundle has been uninstalled or this bun-

dle tries to change its own state.

SecurityException – If the caller does not have the appropriate

AdminPermission, and the Java Runtime Environment supports permis-
sions.

See Also stop()[p.94]
update()

4.23.3.18 public void update() throws BundleException

� Updates this bundle.

If this bundle’s state is ACTIVE, it will be stopped before the update and

started after the update successfully completes.
OSGi Service-Platform Release 3 95-588

org.osgi.framework Framework Specif ication Version 1.2
If the bundle being updated has exported any packages, these packages will
not be updated. Instead, the previous package version will remain exported

until the PackageAdmin.refreshPackages method has been has been

called or the Framework is relaunched.

The following steps are required to update a bundle:

1 If this bundle’s state is UNINSTALLED then an IllegalStateException is

thrown.

2 If this bundle’s state is ACTIVE, STARTING or STOPPING, the bundle is

stopped as described in the Bundle.stop method. If Bundle.stop throws

an exception, the exception is rethrown terminating the update.

3 The download location of the new version of this bundle is determined
from either the bundle’s C ons ta nts.B U NDL E_U PDATELO CATIO N [p.112]

Manifest header (if available) or the bundle’s original location.

4 The location is interpreted in an implementation dependent manner,

typically as a URL, and the new version of this bundle is obtained from

this location.

5 The new version of this bundle is installed. If the Framework is unable to
install the new version of this bundle, the original version of this bundle

will be restored and a BundleException will be thrown after completion

of the remaining steps.

6 If the bundle has declared an Bundle-RequiredExecutionEnvironment

header, then the listed execution environments must be verified against

the installed execution environments. If they do not all match, the

original version of this bundle will be restored and a BundleException
will be thrown after completion of the remaining steps.

7 This bundle’s state is set to INSTALLED.

8 If this bundle has not declared an Import-Package header in its Manifest

file (specifically, this bundle does not depend on any packages from

other bundles), this bundle’s state may be set to RESOLVED.

9 If the new version of this bundle was successfully installed, a bundle
event of type B undle Eve nt.U PDATED [p.108] is broadcast.

10 If this bundle’s state was originally ACTIVE, the updated bundle is started

as described in the Bundle.start method. If Bundle.start throws an

exception, a Framework event of type F ramew o rkEvent. ERR OR [p.117] is

broadcast containing the exception.

Preconditions

• getState() not in {UNINSTALLED}.

Postconditions, no exceptions thrown

• getState() in {INSTALLED, RESOLVED, ACTIVE}.

• This bundle has been updated.

Postconditions, when an exception is thrown

• getState() in {INSTALLED, RESOLVED, ACTIVE}.
• Original bundle is still used; no update occurred.

Throws BundleException – If the update fails.

IllegalStateException – If this bundle has been uninstalled or this bun-

dle tries to change its own state.
96-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
SecurityException – If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permis-

sions.

See Also stop()[p.94] , start()[p.93]
update(InputStream)

4.23.3.19 public void update(InputStream in) throws BundleException

in The InputStream from which to read the new bundle.

� Updates this bundle from an InputStream.

This method performs all the steps listed in Bundle.update(), except the
bundle will be read from the supplied InputStream, rather than a URL.

This method will always close the InputStream when it is done, even if an

exception is thrown.

Throws BundleException – If the provided stream cannot be read or the update fails.

IllegalStateException – If this bundle has been uninstalled or this bun-

dle tries to change its own state.

SecurityException – If the caller does not have the appropriate

AdminPermission, and the Java Runtime Environment supports permis-
sions.

See Also update()[p.95]
BundleActivator

4.23.4 public interface BundleActivator

Customizes the starting and stopping of this bundle.

BundleActivator is an interface that may be implemented when this bun-

dle is started or stopped. The Framework can create instances of this bun-

dle’s BundleActivator as required. If an instance’s

BundleActivator.start method executes successfully, it is guaranteed

that the same instance’s BundleActivator.stop method will be called
when this bundle is to be stopped.

BundleActivator is specified through the Bundle-Activator Manifest

header. A bundle can only specify a single BundleActivator in the Manifest

file. The form of the Manifest header is:

Bundle-Activator: class-name

where class-name is a fully qualified Java classname.

The specified BundleActivator class must have a public constructor that

takes no parameters so that a BundleActivator object can be created by
Class.newInstance().

start(BundleContext)

4.23.4.1 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

� Called when this bundle is started so the Framework can perform the bun-

dle-specific activities necessary to start this bundle. This method can be

used to register services or to allocate any resources that this bundle needs.

This method must complete and return to its caller in a timely manner.
OSGi Service-Platform Release 3 97-588

org.osgi.framework Framework Specif ication Version 1.2
Throws Exception – If this method throws an exception, this bundle is marked as
stopped and the Framework will remove this bundle’s listeners, unregister

all services registered by this bundle, and release all services used by this bun-

dle.

See Also Bundle.start[p.93]
stop(BundleContext)

4.23.4.2 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

� Called when this bundle is stopped so the Framework can perform the bun-

dle-specific activities necessary to stop the bundle. In general, this method
should undo the work that the BundleActivator.start method started.

There should be no active threads that were started by this bundle when this

bundle returns. A stopped bundle should be stopped and should not call any

Framework objects.

This method must complete and return to its caller in a timely manner.

Throws Exception – If this method throws an exception, the bundle is still marked

as stopped, and the Framework will remove the bundle’s listeners, unregister

all services registered by the bundle, and release all services used by the bun-

dle.

See Also Bundle.stop[p.94]
BundleContext

4.23.5 public interface BundleContext

A bundle’s execution context within the Framework. The context is used to

grant access to other methods so that this bundle can interact with the

Framework.

BundleContext methods allow a bundle to:

• Subscribe to events published by the Framework.

• Register service objects with the Framework service registry.

• Retrieve ServiceReferences from the Framework service registry.
• Get and release service objects for a referenced service.

• Install new bundles in the Framework.

• Get the list of bundles installed in the Framework.

• Get the Bund le [p.88] object for a bundle.

• Create File objects for files in a persistent storage area provided for the

bundle by the Framework.

A BundleContext object will be created and provided to this bundle when it

is started using the B undle Activato r . start [p.97] method. The same

BundleContext object will be passed to this bundle when it is stopped using

the B undleAc tivato r .s to p [p.98] method. BundleContext is generally for the

private use of this bundle and is not meant to be shared with other bundles
in the OSGi environment. BundleContext is used when resolving

ServiceListeners and EventListener objects.
98-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
The BundleContext object is only valid during an execution instance of this
bundle; that is, during the period from when this bundle is called by

BundleActivator.start until after this bundle is called and returns from

BundleActivator.stop (or if BundleActivator.start terminates with an

exception). If the BundleContext object is used subsequently, an

IllegalStateException must be thrown. When this bundle is restarted, a

new BundleContext object must be created.

The Framework is the only entity that can create BundleContext objects

and they are only valid within the Framework that created them.

addBund leLi stener(BundleL istener)

4.23.5.1 public void addBundleListener(BundleListener listener)

listener The BundleListener to be added.

� Adds the specified BundleListener object to this context bundle’s list of lis-

teners if not already present. See getB undle [p.100] for a definition of context

bundle. BundleListener objects are notified when a bundle has a lifecycle
state change.

If this context bundle’s list of listeners already contains a listener l such that

(l==listener), this method does nothing.

Throws IllegalStateException – If this context bundle has stopped.

See Also BundleEvent[p.108] , BundleListener[p.109]
addFrameworkL istener (FrameworkL istener)

4.23.5.2 public void addFrameworkListener(FrameworkListener listener)

listener The FrameworkListener object to be added.

� Adds the specified FrameworkListener object to this context bundle’s list of

listeners if not already present. See getB undle [p.100] for a definition of con-

text bundle. FrameworkListeners are notified of general Framework events.

If this context bundle’s list of listeners already contains a listener l such that

(l==listener), this method does nothing.

Throws IllegalStateException – If this context bundle has stopped.

See Also FrameworkEvent[p.117] , FrameworkListener[p.119]
addServiceL istener(ServiceLi stener,String)

4.23.5.3 public void addServiceListener(ServiceListener listener, String filter)
throws InvalidSyntaxException

listener The ServiceListener object to be added.

filter The filter criteria.

� Adds the specified ServiceListener object with the specified filter to

this context bundle’s list of listeners.

See getBu ndle [p.100] for a definition of context bundle, and F i l ter [p.116] for

a description of the filter syntax. ServiceListener objects are notified

when a service has a lifecycle state change.

If this context bundle’s list of listeners already contains a listener l such that

(l==listener), this method replaces that listener’s filter (which may be

null) with the specified one (which may be null).
OSGi Service-Platform Release 3 99-588

org.osgi.framework Framework Specif ication Version 1.2
The listener is called if the filter criteria is met. To filter based upon the class
of the service, the filter should reference the

Co nstan ts .O BJEC TCL ASS [p.115] property. If filter is null, all services are

considered to match the filter.

When using a filter, it is possible that the ServiceEvents for the complete

life cycle of a service will not be delivered to the listener. For example, if the
filter only matches when the property x has the value 1, the listener will

not be called if the service is registered with the property x not set to the

value 1. Subsequently, when the service is modified setting property x to the

value 1, the filter will match and the listener will be called with a

ServiceEvent of type MODIFIED. Thus, the listener will not be called with a

ServiceEvent of type REGISTERED.

If the Java Runtime Environment supports permissions, the

ServiceListener object will be notified of a service event only if the bun-

dle that is registering it has the ServicePermission to get the service using

at least one of the named classes the service was registered under.

Throws InvalidSyntaxException – If filter contains an invalid filter string

which cannot be parsed.

IllegalStateException – If this context bundle has stopped.

See Also ServiceEvent[p.121] , ServiceListener[p.124] ,

ServicePermission[p.124]
addServiceLi stener(ServiceLis tener)

4.23.5.4 public void addServiceListener(ServiceListener listener)

listener The ServiceListener object to be added.

� Adds the specified ServiceListener object to this context bundle’s list of
listeners.

This method is the same as calling

BundleContext.addServiceListener(ServiceListener listener,
String filter) with filter set to null.

Throws IllegalStateException – If this context bundle has stopped.

See Also addServiceListener(ServiceListener, String)[p.99]
createF ilter(String)

4.23.5.5 public Filter createFilter(String fi lter) throws Inval idSyntaxException

filter The filter string.

� Creates a Filter object. This Filter object may be used to match a

ServiceReference object or a Dictionary object. See F i l ter [p.116] for a

description of the filter string syntax.

If the filter cannot be parsed, an I nval id SyntaxExcep tion [p.119] will be

thrown with a human readable message where the filter became unpars-

able.

Returns A Filter object encapsulating the filter string.

Throws InvalidSyntaxException – If filter contains an invalid filter string that

cannot be parsed.

NullPointerException – If filter is null.

Since 1.1
getBund le()
100-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.5.6 public Bundle getBundle()

� Returns the Bundle object for this context bundle.

The context bundle is defined as the bundle that was assigned this

BundleContext in its BundleActivator.

Returns The context bundle’s Bundle object.

Throws IllegalStateException – If this context bundle has stopped.
getBund le(long)

4.23.5.7 public Bundle getBundle(long id)

id The identifier of the bundle to retrieve.

� Returns the bundle with the specified identifier.

Returns A Bundle object, or null if the identifier does not match any installed bundle.
getBund les()

4.23.5.8 public Bundle[] getBundles()

� Returns a list of all installed bundles.

This method returns a list of all bundles installed in the OSGi environment

at the time of the call to this method. However, as the Framework is a very
dynamic environment, bundles can be installed or uninstalled at anytime.

Returns An array of Bundle objects; one object per installed bundle.
getDataFil e(String)

4.23.5.9 public Fi le getDataFile(String filename)

filename A relative name to the file to be accessed.

� Creates a File object for a file in the persistent storage area provided for the

bundle by the Framework. This method will return null if the platform

does not have file system support.

A File object for the base directory of the persistent storage area provided
for the context bundle by the Framework can be obtained by calling this

method with an empty string (” “) as filename. See g etBun dle [p.100] for a

definition of context bundle.

If the Java Runtime Environment supports permissions, the Framework will

ensure that the bundle has the java.io.FilePermission with actions
read, write, delete for all files (recursively) in the persistent storage area

provided for the context bundle.

Returns A File object that represents the requested file or null if the platform does

not have file system support.

Throws IllegalStateException – If the context bundle has stopped.
getProperty(String)

4.23.5.10 public String getProperty(String key)

key The name of the requested property.

� Returns the value of the specified property. If the key is not found in the

Framework properties, the system properties are then searched. The method

returns null if the property is not found.

The Framework defines the following standard property keys:

• Co nsta nts.F RAM EW O RK_VER SIO N [p.114] - The OSGi Framework

version.
OSGi Service-Platform Release 3 101-588

org.osgi.framework Framework Specif ication Version 1.2
• Co nstan ts .FR AMEW O RK_VENDOR [p.114] - The Framework implemen-
tation vendor.

• Co nstan ts .FR AMEW O RK_LANGU AGE [p.114] - The language being used.

See ISO 639 for possible values.

• Co nstan ts .FR AMEW O RK_O S_NAME [p.114] - The host computer oper-

ating system.

• Co nstan ts .FR AMEW O RK_O S_VERSI ON [p.114] - The host computer oper-
ating system version number.

• Co nstan ts .FR AMEW O RK_PR OC ESSO R [p.114] - The host computer pro-

cessor name.

All bundles must have permission to read these properties.

Note: The last four standard properties are used by the

Co nstan ts .BU NDLE_NATIVECO DE [p.111] Manifest header’s matching algo-

rithm for selecting native language code.

Returns The value of the requested property, or null if the property is undefined.

Throws SecurityException – If the caller does not have the appropriate

PropertyPermission to read the property, and the Java Runtime Environ-

ment supports permissions.
getService(ServiceReference)

4.23.5.11 public Object getService(ServiceReference reference)

reference A reference to the service.

� Returns the specified service object for a service.

A bundle’s use of a service is tracked by the bundle’s use count of that ser-

vice. Each time a service’s service object is returned by g etSer vice [p.102] the

context bundle’s use count for that service is incremented by one. Each time
the service is released by ungetS ervic e [p.107] the context bundle’s use count

for that service is decremented by one.

When a bundle’s use count for a service drops to zero, the bundle should no

longer use that service. See g etBu ndle [p.100] for a definition of context bun-

dle.

This method will always return null when the service associated with this

reference has been unregistered.

The following steps are required to get the service object:

1 If the service has been unregistered, null is returned.

2 The context bundle’s use count for this service is incremented by one.

3 If the context bundle’s use count for the service is currently one and the

service was registered with an object implementing the ServiceFactory

interface, the Se rvice Fa cto ry.ge tS ervic e [p.123] method is called to

create a service object for the context bundle. This service object is
cached by the Framework. While the context bundle’s use count for the

service is greater than zero, subsequent calls to get the services’s service

object for the context bundle will return the cached service object.

If the service object returned by the ServiceFactory object is not an

instanceof all the classes named when the service was registered or the

ServiceFactory object throws an exception, null is returned and a
Framework event of type F rame wo rkEven t. ERR O R [p.117] is broadcast.

4 The service object for the service is returned.
102-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
Returns A service object for the service associated with reference, or null if the serv-
ice is not registered or does not implement the classes under which it was

registered in the case of a Service Factory.

Throws SecurityException – If the caller does not have the ServicePermission to

get the service using at least one of the named classes the service was regis-

tered under, and the Java Runtime Environment supports permissions.

IllegalStateException – If the context bundle has stopped.

See Also ungetService[p.107] , ServiceFactory[p.123]
getServiceReference(String)

4.23.5.12 public ServiceReference getServiceReference(String clazz)

clazz The class name with which the service was registered.

� Returns a ServiceReference object for a service that implements, and was

registered under, the specified class.

This ServiceReference object is valid at the time of the call to this method,

however as the Framework is a very dynamic environment, services can be

modified or unregistered at anytime.

This method is the same as calling g etSer vi ceR ef ere nces [p.103] with a null

filter string. It is provided as a convenience for when the caller is interested
in any service that implements the specified class.

If multiple such services exist, the service with the highest ranking (as spec-

ified in its Co nsta nts.SER VIC E_R ANKING [p.116] property) is returned.

If there is a tie in ranking, the service with the lowest service ID (as specified

in its C on stants. SERVIC E_ID [p.115] property); that is, the service that was
registered first is returned.

Returns A ServiceReference object, or null if no services are registered which im-

plement the named class.

See Also getServiceReferences[p.103]
getServiceReferences (String,String)

4.23.5.13 public ServiceReference[] getServiceReferences(String clazz, String
filter) throws Inval idSyntaxException

clazz The class name with which the service was registered, or null for all services.

filter The filter criteria.

� Returns a list of ServiceReference objects. This method returns a list of

ServiceReference objects for services which implement and were regis-

tered under the specified class and match the specified filter criteria.

The list is valid at the time of the call to this method, however as the Frame-

work is a very dynamic environment, services can be modified or unregis-

tered at anytime.

filter is used to select the registered service whose properties objects con-

tain keys and values which satisfy the filter. See Fi l ter [p.116] for a descrip-
tion of the filter string syntax.

If filter is null, all registered services are considered to match the filter.

If filter cannot be parsed, an Inval i dSyntaxExce ptio n [p.119] will be

thrown with a human readable message where the filter became unpars-
able.
OSGi Service-Platform Release 3 103-588

org.osgi.framework Framework Specif ication Version 1.2
The following steps are required to select a service:

1 If the Java Runtime Environment supports permissions, the caller is

checked for the ServicePermission to get the service with the specified

class. If the caller does not have the correct permission, null is returned.

2 If the filter string is not null, the filter string is parsed and the set of reg-

istered services which satisfy the filter is produced. If the filter string is
null, then all registered services are considered to satisfy the filter.

3 If clazz is not null, the set is further reduced to those services which are

an instanceof and were registered under the specified class. The com-

plete list of classes of which a service is an instance and which were spec-

ified when the service was registered is available from the service’s

Co nstan ts .O BJEC TCL ASS [p.115] property.
4 An array of ServiceReference to the selected services is returned.

Returns An array of ServiceReference objects, or null if no services are registered

which satisfy the search.

Throws InvalidSyntaxException – If filter contains an invalid filter string
which cannot be parsed.
installBundle(String)

4.23.5.14 public Bundle installBundle(String location) throws BundleException

location The location identifier of the bundle to install.

� Installs the bundle from the specified location string. A bundle is obtained
from location as interpreted by the Framework in an implementation

dependent manner.

Every installed bundle is uniquely identified by its location string, typically

in the form of a URL.

The following steps are required to install a bundle:

1 If a bundle containing the same location string is already installed, the

Bundle object for that bundle is returned.

2 The bundle’s content is read from the location string. If this fails, a

Bundl eExcep tion [p.43] is thrown.
3 The bundle’s Bundle-NativeCode dependencies are resolved. If this fails,

a BundleException is thrown.

4 The bundle’s associated resources are allocated. The associated resources

minimally consist of a unique identifier, and a persistent storage area if

the platform has file system support. If this step fails, a BundleException

is thrown.
5 If the bundle has declared an Bundle-RequiredExecutionEnvironment

header, then the listed execution environments must be verified against

the installed execution environments. If they are not all present, a

BundleException must be thrown.

6 The bundle’s state is set to INSTALLED.

7 If the bundle has not declared an Import-Package Manifest header (that
is, the bundle does not depend on any packages from other OSGi

bundles), the bundle’s state may be set to RESOLVED.

8 A bundle event of type B undl eEvent. I NS TAL LED[p.108] is broadcast.

9 The Bundle object for the newly installed bundle is returned.

Postconditions, no exceptions thrown

• getState() in {INSTALLED}, RESOLVED}.
104-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
• Bundle has a unique ID.

Postconditions, when an exception is thrown

• Bundle is not installed and no trace of the bundle exists.

Returns The Bundle object of the installed bundle.

Throws BundleException – If the installation failed.

SecurityException – If the caller does not have the appropriate

AdminPermission, and the Java Runtime Environment supports permis-

sions.
install Bundle(String,InputStream)

4.23.5.15 public Bundle installBundle(String location, InputStream in) throws
BundleException

location The location identifier of the bundle to install.

in The InputStream object from which this bundle will be read.

� Installs the bundle from the specified InputStream object.

This method performs all of the steps listed in

BundleContext.installBundle(String location), except that the bun-
dle’s content will be read from the InputStream object. The location identi-

fier string specified will be used as the identity of the bundle.

This method must always close the InputStream object, even if an excep-

tion is thrown.

Returns The Bundle object of the installed bundle.

Throws BundleException – If the provided stream cannot be read or the installation

failed.

SecurityException – If the caller does not have the appropriate

AdminPermission, and the Java Runtime Environment supports permis-
sions.

See Also installBundle(java.lang.String)[p.104]
registerService(S tring[],Ob ject,Dicti onary)

4.23.5.16 public ServiceRegistration registerService(String[] clazzes, Object
service, Dictionary properties)

clazzes The class names under which the service can be located. The class names in

this array will be stored in the service’s properties under the key

Co nsta nts.O BJ ECTC LASS [p.115] .

service The service object or a ServiceFactory object.

properties The properties for this service. The keys in the properties object must all be

String objects. See C o nstants [p.110] for a list of standard service property

keys. Changes should not be made to this object after calling this method. To

update the service’s properties the Ser vic eR egis tr at io n. setPro pe rt ies [p.127]

method must be called. properties may be null if the service has no prop-
erties.

� Registers the specified service object with the specified properties under the

specified class names into the Framework. A ServiceRegistration object

is returned. The ServiceRegistration object is for the private use of the

bundle registering the service and should not be shared with other bundles.
OSGi Service-Platform Release 3 105-588

org.osgi.framework Framework Specif ication Version 1.2
The registering bundle is defined to be the context bundle. See
getBu ndle [p.100] for a definition of context bundle. Other bundles can

locate the service by using either the g etSer vice Ref ere nce s[p.103] or

getSe rvice Ref ere nce [p.103] method.

A bundle can register a service object that implements the

Servic eF acto ry [p.123] interface to have more flexibility in providing service
objects to other bundles.

The following steps are required to register a service:

1 If service is not a ServiceFactory, an IllegalArgumentException is

thrown if service is not an instanceof all the classes named.
2 The Framework adds these service properties to the specified

Dictionary (which may be null): a property named

Co nstan ts .SER VICE_ID [p.115] identifying the registration number of the

service, and a property named Co nstants .O BJEC TCL ASS [p.115] con-

taining all the specified classes. If any of these properties have already

been specified by the registering bundle, their values will be overwritten
by the Framework.

3 The service is added to the Framework service registry and may now be

used by other bundles.

4 A service event of type Ser viceEvent. REGI STERED [p.122] is synchro-

nously sent.

5 A ServiceRegistration object for this registration is returned.

Returns A ServiceRegistration object for use by the bundle registering the service

to update the service’s properties or to unregister the service.

Throws IllegalArgumentException – If one of the following is true: service is

null. service is not a ServiceFactory object and is not an instance of all the

named classes in clazzes. properties contains case variants of the same
key name.

SecurityException – If the caller does not have the ServicePermission to

register the service for all the named classes and the Java Runtime Environ-

ment supports permissions.

IllegalStateException – If this context bundle was stopped.

See Also ServiceRegistration[p.127] , ServiceFactory[p.123]
regi sterService(String,Object,Dicti onary)

4.23.5.17 public ServiceRegistration registerService(String clazz, Object service,
Dictionary properties)

� Registers the specified service object with the specified properties under the

specified class name with the Framework.

This method is otherwise identical to r egi sterS ervic e(java. lang .Str ing[] ,

java. lang .O bjec t , java. ut i l .Di ct io nar y) [p.105] and is provided as a conve-
nience when service will only be registered under a single class name.

Note that even in this case the value of the service’s

Co nstan ts .O BJEC TCL ASS [p.115] property will be an array of strings, rather

than just a single string.

See Also registerService(java.lang.String[], java.lang.Object,
java.util.Dictionary)[p.105]
removeBundleL istener(BundleLis tener)
106-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.5.18 public void removeBundleListener(BundleListener listener)

listener The BundleListener object to be removed.

� Removes the specified BundleListener object from this context bundle’s

list of listeners. See getB undle [p.100] for a definition of context bundle.

If listener is not contained in this context bundle’s list of listeners, this

method does nothing.

Throws IllegalStateException – If this context bundle has stopped.
removeFrameworkLi stener(FrameworkLi stener)

4.23.5.19 public void removeFrameworkListener(FrameworkListener listener)

listener The FrameworkListener object to be removed.

� Removes the specified FrameworkListener object from this context bun-

dle’s list of listeners. See getB undle [p.100] for a definition of context bundle.

If listener is not contained in this context bundle’s list of listeners, this

method does nothing.

Throws IllegalStateException – If this context bundle has stopped.
removeServiceLi stener(ServiceLis tener)

4.23.5.20 public void removeServiceListener(ServiceListener listener)

listener The ServiceListener to be removed.

� Removes the specified ServiceListener object from this context bundle’s

list of listeners. See getB undle [p.100] for a definition of context bundle.

If listener is not contained in this context bundle’s list of listeners, this
method does nothing.

Throws IllegalStateException – If this context bundle has stopped.
ungetService(Serv iceReference)

4.23.5.21 public boolean ungetService(ServiceReference reference)

reference A reference to the service to be released.

� Releases the service object referenced by the specified ServiceReference

object. If the context bundle’s use count for the service is zero, this method

returns false. Otherwise, the context bundle’s use count for the service is

decremented by one. See getBu ndle [p.100] for a definition of context bun-
dle.

The service’s service object should no longer be used and all references to it

should be destroyed when a bundle’s use count for the service drops to zero.

The following steps are required to unget the service object:

1 If the context bundle’s use count for the service is zero or the service has

been unregistered, false is returned.

2 The context bundle’s use count for this service is decremented by one.

3 If the context bundle’s use count for the service is currently zero and the

service was registered with a ServiceFactory object, the
Ser viceF ac tor y. unge tS ervic e [p.123] method is called to release the

service object for the context bundle.

4 true is returned.

Returns false if the context bundle’s use count for the service is zero or if the service

has been unregistered; true otherwise.

Throws IllegalStateException – If the context bundle has stopped.
OSGi Service-Platform Release 3 107-588

org.osgi.framework Framework Specif ication Version 1.2
See Also getService[p.102] , ServiceFactory[p.123]
BundleEvent

4.23.6 public class BundleEvent
extends EventObject

A Framework event describing a bundle lifecycle change.

BundleEvent objects are delivered to BundleListener objects when a

change occurs in a bundle’s lifecycle. A type code is used to identify the

event type for future extendability.

OSGi reserves the right to extend the set of types.

INSTALLED

4.23.6.1 public static final int INSTALLED = 1

This bundle has been installed.

The value of INSTALLED is 0x00000001.

See Also BundleContext.installBundle[p.104]
STARTED

4.23.6.2 public static final int STARTED = 2

This bundle has been started.

The value of STARTED is 0x00000002.

See Also Bundle.start[p.93]
STOPPED

4.23.6.3 public static final int STOPPED = 4

This bundle has been stopped.

The value of STOPPED is 0x00000004.

See Also Bundle.stop[p.94]
UNINSTALLED

4.23.6.4 public static final int UNINSTALLED = 16

This bundle has been uninstalled.

The value of UNINSTALLED is 0x00000010.

See Also Bundle.uninstall[p.94]
UPDATED

4.23.6.5 public static final int UPDATED = 8

This bundle has been updated.

The value of UPDATED is 0x00000008.

See Also Bundle.update[p.95]
BundleEvent(int,Bundle)

4.23.6.6 public BundleEvent(int type, Bundle bundle)

type The event type.

bundle The bundle which had a lifecycle change.

� Creates a bundle event of the specified type.

getBund le()

4.23.6.7 public Bundle getBundle()

� Returns the bundle which had a lifecycle change. This bundle is the source

of the event.

Returns A bundle that had a change occur in its lifecycle.
getType()
108-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.6.8 public int getType()

� Returns the type of lifecyle event. The type values are:

• INSTALLED [p.108]

• STARTED [p.108]

• STO PPED [p.108]
• UP DATED [p.108]

• UNI NSTALLED [p.108]

Returns The type of lifecycle event.
BundleException

4.23.7 public class BundleException
extends Exception

A Framework exception used to indicate that a bundle lifecycle problem

occurred.

BundleException object is created by the Framework to denote an excep-

tion condition in the lifecycle of a bundle. BundleExceptions should not be

created by bundle developers.

BundleException(String,Throwab le)

4.23.7.1 public BundleException(String msg, Throwable throwable)

msg The associated message.

throwable The nested exception.

� Creates a BundleException that wraps another exception.

BundleException(String)

4.23.7.2 public BundleException(String msg)

msg The message.

� Creates a BundleException object with the specified message.

getNestedException()

4.23.7.3 public Throwable getNestedException()

� Returns any nested exceptions included in this exception.

Returns The nested exception; null if there is no nested exception.
BundleL istener

4.23.8 public interface BundleListener
extends EventListener

A BundleEvent listener.

BundleListener is a listener interface that may be implemented by a bun-

dle developer.

A BundleListener object is registered with the Framework using the

Bun dleC on text .ad dBund leLi stener [p.99] method. BundleListeners are

called with a BundleEvent object when a bundle has been installed, started,
stopped, updated, or uninstalled.

See Also BundleEvent[p.108]
bundleChanged(BundleEvent)

4.23.8.1 public void bundleChanged(BundleEvent event)

event The BundleEvent.

� Receives notification that a bundle has had a lifecycle change.
OSGi Service-Platform Release 3 109-588

org.osgi.framework Framework Specif ication Version 1.2
Conf igurable

4.23.9 public interface Configurable

Supports a configuration object.

Configurable is an interface that should be used by a bundle developer in

support of a configurable service. Bundles that need to configure a service

may test to determine if the service object is an instanceof Configurable.

getConfi gurationOb ject()

4.23.9.1 public Object getConfigurationObject()

� Returns this service’s configuration object.

Services implementing Configurable should take care when returning a

service configuration object since this object is probably sensitive.

If the Java Runtime Environment supports permissions, it is recommended

that the caller is checked for the appropriate permission before returning

the configuration object. It is recommended that callers possessing the
appropriate AdminP ermis sio n[p.87] always be allowed to get the configura-

tion object.

Returns The configuration object for this service.

Throws SecurityException – If the caller does not have an appropriate permission
and the Java Runtime Environment supports permissions.
Constants

4.23.10 public interface Constants

Defines standard names for the OSGi environment property, service prop-

erty, and Manifest header attribute keys.

The values associated with these keys are of type java.lang.String, unless

otherwise indicated.

See Also Bundle.getHeaders[p.90] , BundleContext.getProperty[p.101] ,

BundleContext.registerService[p.105]

Since 1.1
BUNDLE_ACTIVATOR

4.23.10.1 public static final String BUNDLE_ACTIVATOR = “Bundle-Activator”

Manifest header attribute (named “Bundle-Activator”) identifying the bun-
dle’s activator class.

If present, this header specifies the name of the bundle resource class that

implements the BundleActivator interface and whose start and stop

methods are called by the Framework when the bundle is started and

stopped, respectively.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_CATEGORY

4.23.10.2 public static final String BUNDLE_CATEGORY = “Bundle-Category”

Manifest header (named “Bundle-Category”) identifying the bundle’s cate-

gory.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_CLASSPATH
110-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.10.3 public static final String BUNDLE_CLASSPATH = “Bundle-ClassPath”

Manifest header (named “Bundle-ClassPath”) identifying a list of nested JAR

files, which are bundle resources used to extend the bundle’s classpath.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_CONTACTADDRESS

4.23.10.4 public static final String BUNDLE_CONTACTADDRESS = “Bundle-
ContactAddress”

Manifest header (named “Bundle-ContactAddress”) identifying the contact
address where problems with the bundle may be reported; for example, an

email address.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_COPYRIGHT

4.23.10.5 public static final String BUNDLE_COPYRIGHT = “Bundle-Copyright”

Manifest header (named “Bundle-Copyright”) identifying the bundle’s copy-

right information, which may be retrieved from the Dictionary object

returned by the Bundle.getHeaders method.

BUNDLE_DESCRIPTION

4.23.10.6 public static final String BUNDLE_DESCRIPTION = “Bundle-Description”

Manifest header (named “Bundle-Description”) containing a brief descrip-

tion of the bundle’s functionality.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_DOCURL

4.23.10.7 public static final String BUNDLE_DOCURL = “Bundle-DocURL”

Manifest header (named “Bundle-DocURL”) identifying the bundle’s docu-

mentation URL, from which further information about the bundle may be

obtained.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_NAME

4.23.10.8 public static final String BUNDLE_NAME = “Bundle-Name”

Manifest header (named “Bundle-Name”) identifying the bundle’s name.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_NATIVECODE

4.23.10.9 public static final String BUNDLE_NATIVECODE = “Bundle-NativeCode”

Manifest header (named “Bundle-NativeCode”) identifying a number of

hardware environments and the native language code libraries that the bun-

dle is carrying for each of these environments.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_NATIVECODE_LANGUAGE
OSGi Service-Platform Release 3 111-588

org.osgi.framework Framework Specif ication Version 1.2
4.23.10.10 public static final String BUNDLE_NATIVECODE_LANGUAGE = “language”

Manifest header attribute (named “language”) identifying the language in

which the native bundle code is written specified in the Bundle-NativeCode

Manifest header. See ISO 639 for possible values.

The attribute value is encoded in the Bundle-NativeCode Manifest header
like:

Bundle-NativeCode: http.so ; language=nl_be ...
BUNDLE_NATIVECODE_OSNAME

4.23.10.11 public static final String BUNDLE_NATIVECODE_OSNAME = “osname”

Manifest header attribute (named “osname”) identifying the operating sys-

tem required to run native bundle code specified in the Bundle-NativeCode

Manifest header).

The attribute value is encoded in the Bundle-NativeCode Manifest header

like:

Bundle-NativeCode: http.so ; osname=Linux ...
BUNDLE_NATIVECODE_OSVERSION

4.23.10.12 public static final String BUNDLE_NATIVECODE_OSVERSION =
“osversion”

Manifest header attribute (named “osversion”) identifying the operating

system version required to run native bundle code specified in the Bundle-

NativeCode Manifest header).

The attribute value is encoded in the Bundle-NativeCode Manifest header

like:

Bundle-NativeCode: http.so ; osversion=”2.34” ...
BUNDLE_NATIVECODE_PROCESSOR

4.23.10.13 public static final String BUNDLE_NATIVECODE_PROCESSOR =
“processor”

Manifest header attribute (named “processor”) identifying the processor
required to run native bundle code specified in the Bundle-NativeCode Man-

ifest header).

The attribute value is encoded in the Bundle-NativeCode Manifest header

like:

Bundle-NativeCode: http.so ; processor=x86 ...
BUNDLE_REQUIREDEXECUTIONENVIRONMENT

4.23.10.14 public static final String BUNDLE_REQUIREDEXECUTIONENVIRONMENT =
“Bundle-RequiredExecutionEnvironment”

Manifest header (named “Bundle-RequiredExecutionEnvironment”) identi-
fying the required execution environment for the bundle. The service plat-

form may run this bundle if any of the execution environments named in

this header matches one of the execution environments it implements.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

Since 1.2
BUNDLE_UPDATELOCATION

4.23.10.15 public static final String BUNDLE_UPDATELOCATION = “Bundle-
112-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
UpdateLocation”

Manifest header (named “Bundle-UpdateLocation”) identifying the location

from which a new bundle version is obtained during a bundle update opera-

tion.

The attribute value may be retrieved from the Dictionary object returned
by the Bundle.getHeaders method.

BUNDLE_VENDOR

4.23.10.16 public static final String BUNDLE_VENDOR = “Bundle-Vendor”

Manifest header (named “Bundle-Vendor”) identifying the bundle’s vendor.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

BUNDLE_VERSION

4.23.10.17 public static final String BUNDLE_VERSION = “Bundle-Version”

Manifest header (named “Bundle-Version”) identifying the bundle’s version.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

DYNAMICIMPORT_PACKAGE

4.23.10.18 public static final String DYNAMICIMPORT_PACKAGE = “DynamicImport-
Package”

Manifest header (named “DynamicImport-Package”) identifying the names

of the packages that the bundle may dynamically import during execution.

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

Since 1.2
EXPORT_PACKAGE

4.23.10.19 public static final String EXPORT_PACKAGE = “Export-Package”

Manifest header (named “Export-Package”) identifying the names (and

optionally version numbers) of the packages that the bundle offers to the

Framework for export.

The attribute value may be retrieved from the Dictionary object returned
by the Bundle.getHeaders method.

EXPORT_SERVICE

4.23.10.20 public static final String EXPORT_SERVICE = “Export-Service”

Manifest header (named “Export-Service”) identifying the fully qualified
class names of the services that the bundle may register (used for informa-

tional purposes only).

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

FRAMEWORK_EXECUTIONENVIRONMENT

4.23.10.21 public static final String FRAMEWORK_EXECUTIONENVIRONMENT =
“org.osgi.framework.executionenvironment”

Framework environment property (named “org.osgi.framework.execution-

environment”) identifying execution environments provided by the Frame-
work.

The value of this property may be retrieved by calling the

BundleContext.getProperty method.
OSGi Service-Platform Release 3 113-588

org.osgi.framework Framework Specif ication Version 1.2
Since 1.2
FRAMEWORK_LANGUAGE

4.23.10.22 public static final String FRAMEWORK_LANGUAGE =
“org.osgi.framework.language”

Framework environment property (named “org.osgi.framework.language”)

identifying the Framework implementation language (see ISO 639 for possi-
ble values).

The value of this property may be retrieved by calling the

BundleContext.getProperty method.

FRAMEWORK_OS_NAME

4.23.10.23 public static final String FRAMEWORK_OS_NAME =
“org.osgi.framework.os.name”

Framework environment property (named “org.osgi.framework.os.name”)

identifying the Framework host-computer’s operating system.

The value of this property may be retrieved by calling the

BundleContext.getProperty method.

FRAMEWORK_OS_VERSION

4.23.10.24 public static final String FRAMEWORK_OS_VERSION =
“org.osgi.framework.os.version”

Framework environment property (named “org.osgi.framework.os.version”)

identifying the Framework host-computer’s operating system version num-

ber.

The value of this property may be retrieved by calling the

BundleContext.getProperty method.

FRAMEWORK_PROCESSOR

4.23.10.25 public static final String FRAMEWORK_PROCESSOR =
“org.osgi.framework.processor”

Framework environment property (named “org.osgi.framework.processor”)
identifying the Framework host-computer’s processor name.

The value of this property may be retrieved by calling the

BundleContext.getProperty method.

FRAMEWORK_VENDOR

4.23.10.26 public static final String FRAMEWORK_VENDOR =
“org.osgi.framework.vendor”

Framework environment property (named “org.osgi.framework.vendor”)

identifying the Framework implementation vendor.

The value of this property may be retrieved by calling the

BundleContext.getProperty method.

FRAMEWORK_VERSION

4.23.10.27 public static final String FRAMEWORK_VERSION =
“org.osgi.framework.version”

Framework environment property (named “org.osgi.framework.version”)

identifying the Framework version.

The value of this property may be retrieved by calling the

BundleContext.getProperty method.

IMPORT_PACKAGE
114-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.10.28 public static final String IMPORT_PACKAGE = “Import-Package”

Manifest header (named “Import-Package”) identifying the names (and

optionally, version numbers) of the packages that the bundle is dependent

on.

The attribute value may be retrieved from the Dictionary object returned
by the Bundle.getHeaders method.

IMPORT_SERVICE

4.23.10.29 public static final String IMPORT_SERVICE = “Import-Service”

Manifest header (named “Import-Service”) identifying the fully qualified
class names of the services that the bundle requires (used for informational

purposes only).

The attribute value may be retrieved from the Dictionary object returned

by the Bundle.getHeaders method.

OBJECTCLASS

4.23.10.30 public static final String OBJECTCLASS = “objectClass”

Service property (named “objectClass”) identifying all of the class names

under which a service was registered in the Framework (of type

java.lang.String[]).

This property is set by the Framework when a service is registered.

PACKAGE_SPECIFICATION_VERSION

4.23.10.31 public static final String PACKAGE_SPECIFICATION_VERSION =
“specification-version”

Manifest header attribute (named “specification-version”) identifying the

version of a package specified in the Export-Package or Import-Package

Manifest header.

The attribute value is encoded in the Export-Package or Import-Package

Manifest header like:

Import-Package: org.osgi.framework ; specification-ver-
sion=”1.1”
SERVICE_DESCRIPTION

4.23.10.32 public static final String SERVICE_DESCRIPTION = “service.description”

Service property (named “service.description”) identifying a service’s

description.

This property may be supplied in the properties Dictionary object passed

to the BundleContext.registerService method.

SERVICE_ID

4.23.10.33 public static final String SERVICE_ID = “service. id”

Service property (named “service.id”) identifying a service’s registration

number (of type java.lang.Long).

The value of this property is assigned by the Framework when a service is

registered. The Framework assigns a unique value that is larger than all pre-

viously assigned values since the Framework was started. These values are

NOT persistent across restarts of the Framework.

SERVICE_PID

4.23.10.34 public static final String SERVICE_PID = “service.pid”

Service property (named “service.pid”) identifying a service’s persistent

identifier.
OSGi Service-Platform Release 3 115-588

org.osgi.framework Framework Specif ication Version 1.2
This property may be supplied in the propertiesDictionary object passed
to the BundleContext.registerService method.

A service’s persistent identifier uniquely identifies the service and persists

across multiple Framework invocations.

By convention, every bundle has its own unique namespace, starting with
the bundle’s identifier (see B undle. getB undle Id [p.90]) and followed by a dot

(.). A bundle may use this as the prefix of the persistent identifiers for the

services it registers.

SERVICE_RANKING

4.23.10.35 public static final String SERVICE_RANKING = “service.ranking”

Service property (named “service.ranking”) identifying a service’s ranking

number (of type java.lang.Integer).

This property may be supplied in the properties Dictionary object

passed to the BundleContext.registerService method.

The service ranking is used by the Framework to determine the default ser-

vice to be returned from a call to the

Bundl eC onte xt . getSe rvice Re fer ence [p.103] method: If more than one ser-

vice implements the specified class, the ServiceReference object with the

highest ranking is returned.

The default ranking is zero (0). A service with a ranking of

Integer.MAX_VALUE is very likely to be returned as the default service,

whereas a service with a ranking of Integer.MIN_VALUE is very unlikely to

be returned.

If the supplied property value is not of type java.lang.Integer, it is
deemed to have a ranking value of zero.

SERVICE_VENDOR

4.23.10.36 public static final String SERVICE_VENDOR = “service.vendor”

Service property (named “service.vendor”) identifying a service’s vendor.

This property may be supplied in the properties Dictionary object passed

to the BundleContext.registerService method.

SYSTEM_BUNDLE_LOCATION

4.23.10.37 public static final String SYSTEM_BUNDLE_LOCATION = “System Bundle”

Location identifier of the OSGi system bundle, which is defined to be “System

Bundle”.

Fil ter

4.23.11 public interface Filter

An RFC 1960-based Filter.

Filter objects can be created by calling B undle Co ntext .c re ateF i l ter [p.100]

with the chosen filter string.

A Filter object can be used numerous times to determine if the match

argument matches the filter string that was used to create the Filter object.

Some examples of LDAP filters are:

“(cn=Babs Jensen)”
“(!(cn=Tim Howes))”
“(&(” + Constants.OBJECTCLASS +
116-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
“=Person)(|(sn=Jensen)(cn=Babs J*)))”
“(o=univ*of*mich*)”

Since 1.1
equal s(Ob ject)

4.23.11.1 public boolean equals(Object obj)

obj The object to compare against this Filter object.

� Compares this Filter object to another object.

Returns If the other object is a Filter object, then returns

this.toString().equals(obj.toString(); false otherwise.
hashCode()

4.23.11.2 public int hashCode()

� Returns the hashCode for this Filter object.

Returns The hashCode of the filter string; that is, this.toString().hashCode().
match(Serv iceReference)

4.23.11.3 public boolean match(ServiceReference reference)

reference The reference to the service whose properties are used in the match.

� Filter using a service’s properties.

The filter is executed using properties of the referenced service.

Returns true if the service’s properties match this filter; false otherwise.
match(Dicti onary)

4.23.11.4 public boolean match(Dictionary dictionary)

dictionary The Dictionary object whose keys are used in the match.

� Filter using a Dictionary object. The Filter is executed using the

Dictionary object’s keys and values.

Returns true if the Dictionary object’s keys and values match this filter; false oth-
erwise.

Throws IllegalArgumentException – If dictionary contains case variants of the

same key name.
toString()

4.23.11.5 public String toString()

� Returns this Filter object’s filter string.

The filter string is normalized by removing whitespace which does not

affect the meaning of the filter.

Returns Filter string.
FrameworkEvent

4.23.12 public class FrameworkEvent
extends EventObject

A general Framework event.

FrameworkEvent is the event class used when notifying listeners of general

events occuring within the OSGI environment. A type code is used to iden-
tify the event type for future extendability.

OSGi reserves the right to extend the set of event types.

ERROR

4.23.12.1 public static final int ERROR = 2

An error has occurred.
OSGi Service-Platform Release 3 117-588

org.osgi.framework Framework Specif ication Version 1.2
There was an error associated with a bundle.

The value of ERROR is 0x00000002.

PACKAGES_REFRESHED

4.23.12.2 public static final int PACKAGES_REFRESHED = 4

A PackageAdmin.refreshPackage operation has completed.

This event is broadcast when the Framework has completed the refresh

packages operation initiated by a call to the PackageAdmin.refreshPackages

method.

The value of PACKAGES_REFRESHED is 0x00000004.

See Also org.osgi.service.packageadmin.PackageAdmin.refreshPackages

Since 1.2
STARTED

4.23.12.3 public static final int STARTED = 1

The Framework has started.

This event is broadcast when the Framework has started after all installed

bundles that are marked to be started have been started and the Framework
has reached the intitial start level.

The value of STARTED is 0x00000001.

See Also org.osgi.service.startlevel.StartLevel
STARTLEVEL_CHANGED

4.23.12.4 public static final int STARTLEVEL_CHANGED = 8

A StartLevel.setStartLevel operation has completed.

This event is broadcast when the Framework has completed changing the

active start level initiated by a call to the StartLevel.setStartLevel method.

The value of STARTLEVEL_CHANGED is 0x00000008.

See Also org.osgi.service.startlevel.StartLevel

Since 1.2
FrameworkEvent(int,Object)

4.23.12.5 public FrameworkEvent(int type, Object source)

type The event type.

source The event source object. This may not be null.

� Creates a Framework event.

Deprecated Since 1.2. This constructor is deprecated in favor of using the other construc-

tor with the System Bundle as the event source.
FrameworkEvent(int,Bundle,Throwable)

4.23.12.6 public FrameworkEvent(int type, Bundle bundle, Throwable throwable)

type The event type.

bundle The event source.

throwable The related exception. This argument may be null if there is no related ex-
ception.

� Creates a Framework event regarding the specified bundle.

getBund le()
118-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.12.7 public Bundle getBundle()

� Returns the bundle associated with the event. This bundle is also the source

of the event.

Returns The bundle associated with the event.
getThrowable()

4.23.12.8 public Throwable getThrowable()

� Returns the exception associated with the event.

If the event type is ERROR, this method returns the exception related to the

error.

Returns An exception if an event of type ERROR or null.
getType()

4.23.12.9 public int getType()

� Returns the type of bundle state change.

The type values are:

• STARTED [p.118]

• ERR O R [p.117]

• PAC KAG ES_REF RESH ED [p.118]
• STARTLEVEL_C HANGED [p.118]

Returns The type of state change.
FrameworkLi stener

4.23.13 public interface FrameworkListener
extends EventListener

A FrameworkEvent listener.

FrameworkListener is a listener interface that may be implemented by a
bundle developer. A FrameworkListener object is registered with the

Framework using the B undle Co ntext .a ddF rame wo rkL istene r[p.99] method.

FrameworkListener objects are called with a FrameworkEvent objects when

the Framework starts and when asynchronous errors occur.

See Also FrameworkEvent[p.117]
frameworkEvent(FrameworkEvent)

4.23.13.1 public void frameworkEvent(FrameworkEvent event)

event The FrameworkEvent object.

� Receives notification of a general FrameworkEvent object.

Inval idSyntaxException

4.23.14 public class InvalidSyntaxException
extends Exception

A Framework exception.

An InvalidSyntaxException object indicates that a filter string parameter

has an invalid syntax and cannot be parsed.

See Fi l te r [p.116] for a description of the filter string syntax.

Inval idSyntaxException(String,String)

4.23.14.1 public InvalidSyntaxException(String msg, String filter)

msg The message.

filter The invalid filter string.
OSGi Service-Platform Release 3 119-588

org.osgi.framework Framework Specif ication Version 1.2
� Creates an exception of type InvalidSyntaxException.

This method creates an InvalidSyntaxException object with the specified

message and the filter string which generated the exception.

getFi lter()

4.23.14.2 public String getFilter()

� Returns the filter string that generated the InvalidSyntaxException

object.

Returns The invalid filter string.

See Also BundleContext.getServiceReferences[p.103] ,

BundleContext.addServiceListener[p.99]
PackagePermissi on

4.23.15 public final class PackagePermission
extends BasicPermission

A bundle’s authority to import or export a package.

A package is a dot-separated string that defines a fully qualified Java pack-

age.

For example:

org.osgi.service.http

PackagePermission has two actions: EXPORT and IMPORT. The EXPORT action
implies the IMPORT action.

EXPORT

4.23.15.1 public static final String EXPORT = “export”

The action string export.

IMPORT

4.23.15.2 public static final String IMPORT = “import”

The action string import.

PackagePermissi on(String,S tring)

4.23.15.3 public PackagePermission(String name, String actions)

name Package name.

actions EXPORT, IMPORT (canonical order).

� Defines the authority to import and/or export a package within the OSGi

environment.

The name is specified as a normal Java package name: a dot-separated string.

Wildcards may be used. For example:

org.osgi.service.http
javax.servlet.*
*

Package Permissions are granted over all possible versions of a package. A
bundle that needs to export a package must have the appropriate

PackagePermission for that package; similarly, a bundle that needs to

import a package must have the appropriate PackagePermssion for that

package.

Permission is granted for both classes and resources.

equal s(Ob ject)
120-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
4.23.15.4 public boolean equals(Object obj)

obj The object to test for equality with this PackagePermission object.

� Determines the equality of two PackagePermission objects. This method

checks that specified package has the same package name and

PackagePermission actions as this PackagePermission object.

Returns true if obj is a PackagePermission, and has the same package name and ac-

tions as this PackagePermission object; false otherwise.
getActions()

4.23.15.5 public String getActions()

� Returns the canonical string representation of the PackagePermission

actions.

Always returns present PackagePermission actions in the following order:

EXPORT, IMPORT.

Returns Canonical string representation of the PackagePermission actions.
hashCode()

4.23.15.6 public int hashCode()

� Returns the hash code value for this object.

Returns A hash code value for this object.
imp li es(Permi ssi on)

4.23.15.7 public boolean implies(Permission p)

p The target permission to interrogate.

� Determines if the specified permission is implied by this object.

This method checks that the package name of the target is implied by the

package name of this object. The list of PackagePermission actions must

either match or allow for the list of the target object to imply the target

PackagePermission action.

The permission to export a package implies the permission to import the

named package.

x.y.*,”export” -> x.y.z,”export” is true
*,”import” -> x.y, “import” is true
*,”export” -> x.y, “import” is true
x.y,”export” -> x.y.z, “export” is false

Returns true if the specified PackagePermission action is implied by this object;

false otherwise.
newPermiss ionColl ection()

4.23.15.8 public PermissionCollection newPermissionCollection()

� Returns a new PermissionCollection object suitable for storing

PackagePermission objects.

Returns A new PermissionCollection object.
ServiceEvent

4.23.16 public class ServiceEvent
extends EventObject

A service lifecycle change event.

ServiceEvent objects are delivered to a ServiceListener objects when a

change occurs in this service’s lifecycle. A type code is used to identify the

event type for future extendability.
OSGi Service-Platform Release 3 121-588

org.osgi.framework Framework Specif ication Version 1.2
OSGi reserves the right to extend the set of types.

See Also ServiceListener[p.124]
MODIFIED

4.23.16.1 public static final int MODIFIED = 2

The properties of a registered service have been modified.

This event is synchronously delivered after the service properties have been

modified.

The value of MODIFIED is 0x00000002.

See Also ServiceRegistration.setProperties[p.127]
REGISTERED

4.23.16.2 public static final int REGISTERED = 1

This service has been registered.

This event is synchronously delivered after the service has been registered

with the Framework.

The value of REGISTERED is 0x00000001.

See Also BundleContext.registerService[p.105]
UNREGISTERING

4.23.16.3 public static final int UNREGISTERING = 4

This service is in the process of being unregistered.

This event is synchronously delivered before the service has completed

unregistering.

If a bundle is using a service that is UNREGISTERING, the bundle should

release its use of the service when it receives this event. If the bundle does

not release its use of the service when it receives this event, the Framework

will automatically release the bundle’s use of the service while completing

the service unregistration operation.

The value of UNREGISTERING is 0x00000004.

See Also ServiceRegistration.unregister[p.127] ,

BundleContext.ungetService[p.107]
Serv iceEvent(int,ServiceReference)

4.23.16.4 public ServiceEvent(int type, ServiceReference reference)

type The event type.

reference A ServiceReference object to the service that had a lifecycle change.

� Creates a new service event object.

getServiceReference()

4.23.16.5 public ServiceReference getServiceReference()

� Returns a reference to the service that had a change occur in its lifecycle.

This reference is the source of the event.

Returns Reference to the service that had a lifecycle change.
getType()

4.23.16.6 public int getType()

� Returns the type of event. The event type values are:

• REGIS TER ED [p.122]

• MO DIFI ED [p.122]

• UNR EGISTER ING [p.122]
122-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
Returns Type of service lifecycle change.
ServiceFactory

4.23.17 public interface ServiceFactory

Allows services to provide customized service objects in the OSGi environ-

ment.

When registering a service, a ServiceFactory object can be used instead of
a service object, so that the bundle developer can gain control of the specific

service object granted to a bundle that is using the service.

When this happens, the BundleContext.getService(ServiceReference)

method calls the ServiceFactory.getService method to create a service

object specifically for the requesting bundle. The service object returned by
the ServiceFactory object is cached by the Framework until the bundle

releases its use of the service.

When the bundle’s use count for the service equals zero (including the bun-

dle stopping or the service being unregistered), the

ServiceFactory.ungetService method is called.

ServiceFactory objects are only used by the Framework and are not made

available to other bundles in the OSGi environment.

See Also BundleContext.getService[p.102]
getService(Bundle,ServiceRegis trati on)

4.23.17.1 public Object getService(Bundle bundle, ServiceRegistration
registration)

bundle The bundle using the service.

registration The ServiceRegistration object for the service.

� Creates a new service object.

The Framework invokes this method the first time the specified bundle

requests a service object using the

BundleContext.getService(ServiceReference) method. The service fac-
tory can then return a specific service object for each bundle.

The Framework caches the value returned (unless it is null), and will return

the same service object on any future call to BundleContext.getService

from the same bundle.

The Framework will check if the returned service object is an instance of all

the classes named when the service was registered. If not, then null is

returned to the bundle.

Returns A service object that must be an instance of all the classes named when the

service was registered.

See Also BundleContext.getService[p.102]
ungetService(Bundle,ServiceReg istration,Object)

4.23.17.2 public void ungetService(Bundle bundle, ServiceRegistration
registration, Object service)

bundle The bundle releasing the service.

registration The ServiceRegistration object for the service.

service The service object returned by a previous call to the

ServiceFactory.getService method.
OSGi Service-Platform Release 3 123-588

org.osgi.framework Framework Specif ication Version 1.2
� Releases a service object.

The Framework invokes this method when a service has been released by a

bundle. The service object may then be destroyed.

See Also BundleContext.ungetService[p.107]
Serv iceListener

4.23.18 public interface ServiceListener
extends EventListener

A ServiceEvent listener.

ServiceListener is a listener interface that may be implemented by a bun-

dle developer.

A ServiceListener object is registered with the Framework using the

BundleContext.addServiceListener method. ServiceListener objects
are called with a ServiceEvent object when a service has been registered or

modified, or is in the process of unregistering.

ServiceEvent object delivery to ServiceListener objects is filtered by the

filter specified when the listener was registered. If the Java Runtime Envi-

ronment supports permissions, then additional filtering is done.
ServiceEvent objects are only delivered to the listener if the bundle which

defines the listener object’s class has the appropriate ServicePermission to

get the service using at least one of the named classes the service was regis-

tered under.

See Also ServiceEvent[p.121] , ServicePermission[p.124]
serviceChanged (ServiceEvent)

4.23.18.1 public void serviceChanged(ServiceEvent event)

event The ServiceEvent object.

� Receives notification that a service has had a lifecycle change.

Serv icePermiss ion

4.23.19 public final class ServicePermission
extends BasicPermission

Indicates a bundle’s authority to register or get a service.

• The ServicePermission.REGISTER action allows a bundle to register a

service on the specified names.
• The ServicePermission.GET action allows a bundle to detect a service

and get it.

ServicePermission to get the specific service.

GET

4.23.19.1 public static final String GET = “get”

The action string get (Value is “get”).

REGISTER

4.23.19.2 public static final String REGISTER = “register”

The action string register (Value is “register”).

Serv icePermiss ion(String,Str ing)

4.23.19.3 public ServicePermission(String name, String actions)

name class name

actions get, register (canonical order)
124-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
� Create a new ServicePermission.

The name of the service is specified as a fully qualified class name.

ClassName ::= <class name> | <class name ending in “.*”>

Examples:

org.osgi.service.http.HttpService
org.osgi.service.http.*
org.osgi.service.snmp.*

There are two possible actions: get and register. The get permission
allows the owner of this permission to obtain a service with this name. The

register permission allows the bundle to register a service under that

name.

equal s(Ob ject)

4.23.19.4 public boolean equals(Object obj)

obj The object to test for equality.

� Determines the equalty of two ServicePermission objects. Checks that speci-

fied object has the same class name and action as this ServicePermission.

Returns true if obj is a ServicePermission, and has the same class name and actions

as this ServicePermission object; false otherwise.
getActions()

4.23.19.5 public String getActions()

� Returns the canonical string representation of the actions. Always returns

present actions in the following order: get, register.

Returns The canonical string representation of the actions.
hashCode()

4.23.19.6 public int hashCode()

� Returns the hash code value for this object.

Returns Hash code value for this object.
imp li es(Permi ssi on)

4.23.19.7 public boolean implies(Permission p)

p The target permission to check.

� Determines if a ServicePermission object “implies” the specified permis-

sion.

Returns true if the specified permission is implied by this object; false otherwise.
newPermiss ionColl ection()

4.23.19.8 public PermissionCollection newPermissionCollection()

� Returns a new PermissionCollection object for storing

ServicePermission objects.

Returns A new PermissionCollection object suitable for storing
ServicePermission objects.
ServiceReference

4.23.20 public interface ServiceReference

A reference to a service.

The Framework returns ServiceReference objects from the

BundleContext.getServiceReference and

BundleContext.getServiceReferences methods.
OSGi Service-Platform Release 3 125-588

org.osgi.framework Framework Specif ication Version 1.2
A ServiceReference may be shared between bundles and can be used to
examine the properties of the service and to get the service object.

Every service registered in the Framework has a unique

ServiceRegistration object and may have multiple, distinct

ServiceReference objects referring to it. ServiceReference objects associ-

ated with a ServiceRegistration object have the same hashCode and are
considered equal (more specifically, their equals() method will return

true when compared).

If the same service object is registered multiple times, ServiceReference

objects associated with different ServiceRegistration objects are not

equal.

See Also BundleContext.getServiceReference[p.103] ,

BundleContext.getServiceReferences[p.103] ,

BundleContext.getService[p.102]
getBund le()

4.23.20.1 public Bundle getBundle()

� Returns the bundle that registered the service referenced by this

ServiceReference object.

This method will always return null when the service has been unregis-

tered. This can be used to determine if the service has been unregistered.

Returns The bundle that registered the service referenced by this ServiceReference

object; null if that service has already been unregistered.

See Also BundleContext.registerService[p.105]
getProperty(String)

4.23.20.2 public Object getProperty(String key)

key The property key.

� Returns the property value to which the specified property key is mapped in

the properties Dictionary object of the service referenced by this

ServiceReference object.

Property keys are case-insensitive.

This method must continue to return property values after the service has

been unregistered. This is so references to unregistered services (for exam-

ple, ServiceReference objects stored in the log) can still be interrogated.

Returns The property value to which the key is mapped; null if there is no property

named after the key.
getPropertyKeys()

4.23.20.3 public String[] getPropertyKeys()

� Returns an array of the keys in the properties Dictionary object of the ser-

vice referenced by this ServiceReference object.

This method will continue to return the keys after the service has been

unregistered. This is so references to unregistered services (for example,

ServiceReference objects stored in the log) can still be interrogated.

This method is case-preserving; this means that every key in the returned

array must have the same case as the corresponding key in the properties

Dictionary that was passed to the B undle Co ntext . r egi sterS ervic e[p.105]

or Se rvice Re gistr at io n.se tP ro per t ies [p.127] methods.
126-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 org.osgi.framework
Returns An array of property keys.
getUsingBundles ()

4.23.20.4 public Bundle[] getUsingBundles()

� Returns the bundles that are using the service referenced by this

ServiceReference object. Specifically, this method returns the bundles

whose usage count for that service is greater than zero.

Returns An array of bundles whose usage count for the service referenced by this

ServiceReference object is greater than zero; null if no bundles are current-

ly using that service.

Since 1.1
ServiceRegi stration

4.23.21 public interface ServiceRegistration

A registered service.

The Framework returns a ServiceRegistration object when a

BundleContext.registerService method is successful. The
ServiceRegistration object is for the private use of the registering bundle

and should not be shared with other bundles.

The ServiceRegistration object may be used to update the properties of

the service or to unregister the service.

See Also BundleContext.registerService[p.105]
getReference()

4.23.21.1 public ServiceReference getReference()

� Returns a ServiceReference object for a service being registered.

The ServiceReference object may be shared with other bundles.

Returns ServiceReference object.

Throws IllegalStateException – If this ServiceRegistration object has already

been unregistered.
setP roperti es (Dictionary)

4.23.21.2 public void setProperties(Dictionary properties)

properties The properties for this service. See C ons ta nts [p.110] for a list of standard

service property keys. Changes should not be made to this object after calling

this method. To update the service’s properties this method should be called
again.

� Updates the properties associated with a service.

The Co nstan ts .O BJ EC TCL ASS [p.115] and C on stants. SERVIC E_ID [p.115]

keys cannot be modified by this method. These values are set by the Frame-
work when the service is registered in the OSGi environment.

The following steps are required to modify service properties:

1 The service’s properties are replaced with the provided properties.

2 A service event of type Se rvice Eve nt.MO DIF IED [p.122] is synchronously
sent.

Throws IllegalStateException – If this ServiceRegistration object has already

been unregistered.

IllegalArgumentException – If properties contains case variants of the
same key name.
unregi ster()
OSGi Service-Platform Release 3 127-588

References Framework Specif ication Version 1.2
4.23.21.3 public void unregister()

� Unregisters a service. Remove a ServiceRegistration object from the

Framework service registry. All ServiceReference objects associated with

this ServiceRegistration object can no longer be used to interact with the

service.

The following steps are required to unregister a service:

1 The service is removed from the Framework service registry so that it can

no longer be used. ServiceReference objects for the service may no

longer be used to get a service object for the service.

2 A service event of type Ser viceEvent. UNR EGIS TER ING [p.122] is synchro-
nously sent so that bundles using this service can release their use of it.

3 For each bundle whose use count for this service is greater than zero:

The bundle’s use count for this service is set to zero.

If the service was registered with a Ser vice Fac tor y [p.123] object, the

ServiceFactory.ungetService method is called to release the service

object for the bundle.

Throws IllegalStateException – If this ServiceRegistration object has already

been unregistered.

See Also BundleContext.ungetService[p.107] ,

ServiceFactory.ungetService[p.123]
SynchronousBundleLi stener

4.23.22 public interface SynchronousBundleListener
extends BundleListener

A synchronous BundleEvent listener.

SynchronousBundleListener is a listener interface that may be imple-

mented by a bundle developer.

A SynchronousBundleListener object is registered with the Framework
using the B undle Co ntext .a ddB undle Listene r [p.99] method.

SynchronousBundleListener objects are called with a BundleEvent object

when a bundle has been installed, started, stopped, updated, or uninstalled.

Unlike normal BundleListener objects, SynchronousBundleListeners are

synchronously called during bundle life cycle processing. The bundle life
cycle processing will not proceed until all SynchronousBundleListeners

have completed. SynchronousBundleListener objects will be called prior

to BundleListener objects.

AdminPermission is required to add or remove a

SynchronousBundleListener object.

See Also BundleEvent[p.108]

Since 1.1

4.24 References

[9] The Standard for the Format of ARPA Internet Text Messages

STD 11, RFC 822, UDEL, August 1982
128-588 OSGi Service-Platform Release 3

Framework Specification Version 1.2 References
http://www.ietf.org/rfc/rfc822.txt

[10] The Hypertext Transfer Protocol - HTTP/1.1

RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997

http://www.ietf.org/rfc/rfc2068.txt

[11] The Java 2 Platform API Specification

Standard Edition, Version 1.3, Sun Microsystems

http://java.sun.com/j2se/1.4

[12] The Java Language Specification

Second Edition, Sun Microsystems, 2000

http://java.sun.com/docs/books/jls/index.html

[13] A String Representation of LDAP Search Filters

RFC 1960, UMich, 1996

http://www.ietf.org/rfc/rfc1960.txt

[14] The Java Security Architecture for JDK 1.2

Version 1.0, Sun Microsystems, October 1998

http://java.sun.com/products/jdk/1.4/docs/guide/security/spec/security-
spec.doc.html

[15] The Java 2 Package Versioning Specification

http://java.sun.com/j2se/1.4/docs/guide/versioning/index.html

[16] Codes for the Representation of Names of Languages

ISO 639, International Standards Organization

http://lcweb.loc.gov/standards/iso639-2/langhome.html

[17] Manifest Format

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR%20Manifest
OSGi Service-Platform Release 3 129-588

References Framework Specif ication Version 1.2
130-588 OSGi Service-Platform Release 3

Package Admin Service Specification Version 1.1 Introduction
5 Package Admin Service

Specification

Version 1.1

5.1 Introduction

Bundles can export packages to other bundles. This exporting creates a
dependency between the bundle exporting a package and the bundle using

the package. When the exporting bundle is uninstalled or updated, a deci-

sion must be taken regarding any shared packages.

The Package Admin service provides an interface to let the Management

Agent make this decision.

5.1.1 Essentials

• Information – The Package Admin service must provide the sharing status

of all packages. This should include information about the importing

bundles and exporting bundle.
• Policy – The Package Admin service must allow a management agent to

provide a policy for package sharing when bundles are updated and

uninstalled.

• Minimal update – Only bundles that depend on the package that needs to

be resolved should have to be restarted when packages are forced to be

refreshed.

5.1.2 Entities

• Pac kag eAdmin – The interface that provides access to the internal

Framework package sharing mechanism.

• Expor tedPa cka ge – The interface provides package information and its

sharing status.
• Management Agent – A bundle that is provided by the Operator to

implement an Operator specific policy.

Figure 20 Class Diagram org.osgi.service.packageadmin

<<interface>>
PackageAdmin

<<interface>>
Exported
Package

0..n1

<<interface>>
Bundle

0..n

exported by

1

imported by

0..n

0..n

name

provides
OSGi Service-Platform Release 3 131-588

Package Admin Package Admin Service Specification Version 1.1
5.1.3 Operation

The Framework’s system bundle should provide a Package Admin service

for the Management Agent. The Package Admin service must be registered
under the or g.o sgi . ser vi ce. pac kage admin. Pac kage Admin interface by the

system bundle. It provides access to the internal structures of the Frame-

work related to package sharing. See Sharing Packages on page 46. This is an

optional singleton service, so at most one Package Admin service must be

registered at any moment in time.

The Framework must always leave the package sharing intact for packages

exported by a bundle that is uninstalled or updated. A Management Agent

can then choose to force the framework to refresh these packages using the

Package Admin service. A policy of always using the most current packages

exported by installed bundles can be implemented with a Management

Agent that watches Framework events for bundles being uninstalled or
updated, and then refreshes the packages of those bundles using the Pack-

age Admin service.

5.2 Package Admin

The Package Admin service is intended to allow a Management Agent to

define the policy for managing package sharing. It provides methods for

examining the status of the shared packages. It also allows the Management

Agent to refresh the packages and stop and restart bundles as necessary.

The P acka geAd mi n class provides the following methods:

• getExpo rtedP ack age(Str ing) – Returns an Expor tedPa cka ge object that

provides information about the requested package. This information can

be used to make the decision to refresh the package.

• getExpo rtedP ack ages (B undle) – Returns a list of Exp or tedPa cka ge
objects for each package that the given bundle exports.

• ref resh Pac kage s(B undl e[]) – The management agent may call this

method to refresh the exported packages of the specified bundles. The

actual work must happen asynchronously. The Framework must send a

Framework.PACKAG ES _REFR ESH ED when all packages have been

refreshed.

Information about the shared packages is provided by the Expo rted Pack age

objects. These objects provide detailed information about the bundles that

import and export the package. This information can be used by a Manage-

ment Agent to guide its decisions.

5.3 Security

The Package Admin service is a system service that can easily be abused

because it provides access to the internal data structures of the Framework.
Many bundles may have the Ser vi ceP ermiss ion [GET,

or g.o sgi . ser vic e. pack age admin. Pac kage Admin] because Ad minPer missio n
132-588 OSGi Service-Platform Release 3

Package Admin Service Specification Version 1.1 Changes
is required for calling any of the methods that modify the environment. No
bundle must have Se rvice Per mi ssio n [R EGISTER ,

or g.o sgi .ser vice. pac kage admin. Pac kag eAdmin] , because only the Frame-

work itself should register such a system service.

This service should only be used by a Management Agent.

5.4 Changes

• The Framework must broadcast a Framework event of type

PAC KAG ES_REF RESH ED event when the Package Admin service has fin-
ished refreshing all the packages.

• The sentences describing the use of the bundle parameter to the

ref re shPac kag es constant F ra me wo rk Even t.ERR O R were added.

5.5 org.osgi.service.packageadmin

The OSGi Package Admin service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.packageadmin; specification-
version=1.1

5.5.1 Summary

• ExportedPackage – An exported package. [p.133]

• PackageAdmin – Framework service which allows bundle programmers

to inspect the packages exported in the Framework and eagerly update

or uninstall bundles. [p.134]
Expor tedPackage

5.5.2 public interface ExportedPackage

An exported package. Instances implementing this interface are created by

the Package Admin service.

The information about an exported package provided by this object is valid

only until the next time PackageAdmin.refreshPackages() is called. If an
ExportedPackage object becomes stale (that is, the package it references has

been updated or removed as a result of calling

PackageAdmin.refreshPackages()), its getName() and

getSpecificationVersion() continue to return their old values,

isRemovalPending() returns true, and getExportingBundle() and

getImportingBundles() return null.

getExportingBund le()

5.5.2.1 public Bundle getExportingBundle()

� Returns the bundle exporting the package associated with this

ExportedPackage object.

Returns The exporting bundle, or null if this ExportedPackage object has become

stale.
getImportingBund les()
OSGi Service-Platform Release 3 133-588

org.osgi.service.packageadmin Package Admin Service Specification Version 1.1
5.5.2.2 public Bundle[] getImportingBundles()

� Returns the resolved bundles that are currently importing the package asso-

ciated with this ExportedPackage object.

The returned array always includes the bundle returned by

getExpo rt ingB undl e [p.133] since an exporter always implicitly imports its
exported packages.

Returns The array of resolved bundles currently importing the package associated

with this ExportedPackage object, or null if this ExportedPackage object

has become stale.
getName()

5.5.2.3 public String getName()

� Returns the name of the package associated with this ExportedPackage

object.

Returns The name of this ExportedPackage object.
getSpeci fi cationVersi on()

5.5.2.4 public String getSpecificationVersion()

� Returns the specification version of this ExportedPackage, as specified in

the exporting bundle’s manifest file.

Returns The specification version of this ExportedPackage object, or null if no ver-

sion information is available.
isRemovalPending()

5.5.2.5 public boolean isRemovalPending()

� Returns true if the package associated with this ExportedPackage object

has been exported by a bundle that has been updated or uninstalled.

Returns true if the associated package is being exported by a bundle that has been up-

dated or uninstalled, or if this ExportedPackage object has become stale;

false otherwise.
PackageAdmin

5.5.3 public interface PackageAdmin

Framework service which allows bundle programmers to inspect the pack-

ages exported in the Framework and eagerly update or uninstall bundles. If

present, there will only be a single instance of this service registered with

the Framework.

The term exported package (and the corresponding interface

Expo r te dPa ckag e [p.133])refers to a package that has actually been exported

(as opposed to one that is available for export).

The information about exported packages returned by this service is valid

only until the next time r efr eshP ack ages [p.135] is called. If an
ExportedPackage object becomes stale, (that is, the package it references

has been updated or removed as a result of calling

PackageAdmin.refreshPackages()), its getName() and

getSpecificationVersion() continue to return their old values,

isRemovalPending() returns true, and getExportingBundle() and

getImportingBundles() return null.

getExportedPackage(String)

5.5.3.1 public ExportedPackage getExportedPackage(String name)

name The name of the exported package to be returned.
134-588 OSGi Service-Platform Release 3

Package Admin Service Specification Version 1.1 org.osgi.service.packageadmin
� Gets the ExportedPackage object with the specified package name. All
exported packages will be checked for the specified name. In an environ-

ment where the exhaustive list of packages on the system classpath is not

known in advance, this method attempts to see if the named package is on

the system classpath. This means that this method may discover an

ExportedPackage object that was not present in the list returned by a prior

call to getExportedPackages().

Returns The exported package with the specified name, or null if no expored pack-

age with that name exists.
getExportedPackages(Bundle)

5.5.3.2 public ExportedPackage[] getExportedPackages(Bundle bundle)

bundle The bundle whose exported packages are to be returned, or null if all the

packages currently exported in the Framework are to be returned. If the spec-

ified bundle is the system bundle (that is, the bundle with id zero), this meth-

od returns all the packages on the system classpath whose name does not

start with “java.”. In an environment where the exhaustive list of packages

on the system classpath is not known in advance, this method will return all
currently known packages on the system classpath, that is, all packages on

the system classpath that contains one or more classes that have been loaded.

� Gets the packages exported by the specified bundle.

Returns The array of packages exported by the specified bundle, or null if the speci-

fied bundle has not exported any packages.
refreshPackages(Bundle[])

5.5.3.3 public void refreshPackages(Bundle[] bundles)

bundles the bundles whose exported packages are to be updated or removed, or null

for all previously updated or uninstalled bundles.

� Forces the update (replacement) or removal of packages exported by the

specified bundles.

If no bundles are specified, this method will update or remove any packages

exported by any bundles that were previously updated or uninstalled since

the last call to this method. The technique by which this is accomplished
may vary among different Framework implementations. One permissible

implementation is to stop and restart the Framework.

This method returns to the caller immediately and then performs the fol-

lowing steps in its own thread:

1 Compute a graph of bundles starting with the specified bundles. If no

bundles are specified, compute a graph of bundles starting with previ-

ously updated or uninstalled ones. Add to the graph any bundle that

imports a package that is currently exported by a bundle in the graph.

The graph is fully constructed when there is no bundle outside the graph

that imports a package from a bundle in the graph. The graph may
contain UNINSTALLED bundles that are currently still exporting packages.

2 Each bundle in the graph that is in the ACTIVE state will be stopped as

described in the Bundle.stop method.

3 Each bundle in the graph that is in the RESOLVED state is moved to the

INSTALLED state. The effect of this step is that bundles in the graph are no

longer RESOLVED.
4 Each bundle in the graph that is in the UNINSTALLED state is removed

from the graph and is now completely removed from the Framework.
OSGi Service-Platform Release 3 135-588

org.osgi.service.packageadmin Package Admin Service Specification Version 1.1
5 Each bundle in the graph that was in the ACTIVE state prior to Step 2 is
started as described in the Bundle.start method, causing all bundles

required for the restart to be resolved. It is possible that, as a result of the

previous steps, packages that were previously exported no longer are.

Therefore, some bundles may be unresolvable until another bundle

offering a compatible package for export has been installed in the

Framework.
6 A framework event of type FrameworkEvent.PACKAGES_REFRESHED is

broadcast.

For any exceptions that are thrown during any of these steps, a

FrameworkEvent of type ERROR is broadcast, containing the exception. The

source bundle for these events should be the specific bundle to which the
exception is related. If no specific bundle can be associated with the excep-

tion then the System Bundle must be used as the source bundle for the

event.

Throws SecurityException – if the caller does not have the AdminPermission and

the Java runtime environment supports permissions.
136-588 OSGi Service-Platform Release 3

Start Level Service Specif ication Version 1.0 Introduction
6 Start Level Service

Specification

Version 1.0

6.1 Introduction

This specification describes how to enable a Management Agent to control
the relative starting and stopping order of bundles in an OSGi Service Plat-

form.

The Start Level service assigns each bundle a start level. The Management

Agent can modify the start levels for bundles and set the active start level of

the Framework, which will start and stop the appropriate bundles. Only
bundles that have a start level less or equal to this active start level must be

active.

The purpose of the Start Level service is to allow the Management Agent to

control, in detail, what bundles get started and stopped and when this

occurs.

6.1.1 Essentials

• Ordering – A management agent should be able to order the startup and

shutdown sequences of bundles.

• Levels – The management agent should support a virtually unlimited
number of levels.

• Backward compatible – The model for start levels should be compatible

with the OSGi Service Platform Release 2 specifications.

6.1.2 Entities
• Start Level Service – The service that is used by a Management Agent to

order the startup and shutdown sequences of bundles.
• Management Agent – See page 32.

• Framework Event – See page 117.

• Framework Listener – See page 119.
OSGi Service-Platform Release 3 137-588

Start Level Service Start Level Service Specification Version 1.0
Figure 21 Class Diagram org.osgi.service.startlevel package

6.2 Start Level Service

The Start Level Service provides the following functions:

• Controls the beginning start level of the OSGi Framework.

• Is used to modify the active start level of the Framework.

• Can be used to assign a specific start level to a bundle.

• Can set the initial start level for newly installed bundles.

Defining the order in which bundles are started and stopped is useful for the

following:

• Safe mode – The Management Agent can implement a safe mode. In this

mode, only fully trusted bundles are started. Safe mode might be nec-

essary when a bundle causes a failure at startup that disrupts normal
operation and prevents correction of the problem.

• Splash screen – If the total startup time is long, it might be desirable to

show a splash screen during initialization. This improves the user’s per-

ception of the boot time of the device. The startup ordering can ensure

that the right bundle is started first.

• Handling erratic bundles – Problems can occur because bundles require
services to be available when they get activated (this is a programming

error). By controlling the start order, the Management Agent can prevent

these problems.

• High priority bundles – Certain tasks such as metering need to run as

quickly as possible and cannot have a long startup delay. These bundles

can be started first.

a management
bundle impl.

an event listener
impl.

<<interface>>
Framework
Listener

<<interface>>
StartLevel

0..*

0..*

Framework

Implementation

a Framework impl.

Framework
Event

gets

is notified by

start level

changed

1

0..*
138-588 OSGi Service-Platform Release 3

Start Level Service Specif ication Version 1.0 Start Level Service
6.2.1 The Concept of a Start Level

A start level is defined as a non-negative integer. A start level of 0 (zero) is the

state in which the Framework has either not been launched or has com-
pleted shutdown (these two states are considered equivalent). In this state,

no bundles are running. Progressively higher integral values represent pro-

gressively higher start levels. For example, 2 is a higher start level than 1.

The Framework must support all positive int values (I ntege r .M AX_VAL UE)

for start levels.

The Framework has an active start level that is used to decide which bundles

can be started. All bundles must be assigned a bundle start level. This is the

minimum start level for which a bundle can be started. The bundle start

level can be set with the s etBun dleSta rtLe ve l(Bund le, i nt) method. When a

bundle is installed, it is intially assigned the bundle start level returned by

getIn it ia lB undl eStar tLevel () . The initial bundle start level to be used when
bundles are installed can be set with set Ini ti a lB undle Star tLevel(int) .

Additionally, a bundle can be persistently marked as started or stopped with

the Bund le sta rt and sto p methods. A bundle cannot run unless it is marked

started, regardless of the bundle’s start level.

6.2.2 Changing the Active Start Level

A Management Agent can influence the active start level with the set-

Star tLevel(int) method. The Framework must then step-wise increase or

decrease the active start level until the requested start level is reached. The

process of starting or stopping bundles, which is initiated by the se t-

Star tLevel(int) method, must take place asynchronously.

This means that the active start level (the one that is active at a certain

moment in time) must be changed to a new start level, called the requested

start level. The active and requested levels differ during a certain period

when the Framework starts and stops the appropriate bundles. Moving

from the active start level to the requested start level must take place in
increments of one (1).

If the requested start level is higher than the active start level, the Frame-

work must increase the start level by one and then start all bundles, that

meet the following criteria:

• Bundles that are persistently marked started, and

• have a bundle start level equal to the new active start level.

The Framework continues increasing the active start level and starting the

appropriate bundles until it has started all bundles with a bundle start level

that equals the requested start level.

The Framework must not increase to the next active start level until all

started bundles have returned from their B undle Activato r . star t method

normally or with an exception. A Fr amew o rkEvent. ER R OR must be broad-

cast when the B undle Activato r . start method throws an exception.

If the requested start level is lower than the active start level, the Framework

must stop all bundles that have a bundle start level that is equal to the active

start level. The Framework must then decrease the active start level by 1. If

the active start level is still higher than the requested start level, it should
OSGi Service-Platform Release 3 139-588

Start Level Service Start Level Service Specification Version 1.0
continue stopping the appropriate bundles and decreasing the active start
level until the requested start level is reached. A Fr amew o rkEvent. ER R OR

must be broadcast when the Bund leActiva tor .sto p method throws an excep-

tion.

If the requested start level is the active start level, the Framework will not

start or stop any bundles.

When the requested start level is reached and all bundles satisfy the condi-

tion that their bundle start level <= active start level in order to be started,

then the F ramew o rkEvent. STARTLEVEL_CH ANGED event must be sent to

all registered Fr amew or kLis te ner objects. If the requested start level and

active start level are equal, then this event may arrive before the
setStar tLevel method has returned.

It must therefore always be true that:

• A bundle is started, or will be started in a short period of time, if the start

level is less or equal to the active start level.
• A bundle is stopped, or will be stopped soon, when it has a start level

more than the active start level.

These steps are depicted in the flow chart in Figure 22.

Figure 22 Move to requested start level R, active level is A, B is a bundle’s start level

If the Framework is currently involved in changing the active start level, it

must first reach the previously requested start level before it is allowed to

continue with a newly requested start level. For example, assume the active
start level is 5 and the Framework is requested to transition to start level 3.

Before start level 3 is reached, another request is made to transition to start

level 7. In this case, the OSGi Framework must first complete the transition

to start level 3 before it transitions to start level 7.

move to R

A<R

Start All

A = A+1

A==R

bundles where

B = A
A = A-1

A>R

Stop All

bundles where

B = A

A==R

A==RA==RA<R A>R

publish event
140-588 OSGi Service-Platform Release 3

Start Level Service Specif ication Version 1.0 Start Level Service
6.2.3 Startup sequence

At startup, the Framework must have an active start level of zero. It must

then move the active start level to the beginning start level. The beginning
start level is specified with an argument when starting the Framework or

through some other means, which is left undefined here. If no beginning

start level is given, the Framework must assume a beginning start level of

one (1).

The Framework must launch and then set the requested start level to the
beginning start level. It must then follow the procedure described in Chang-

ing the Active Start Level on page 139 to make the active start level equal the

beginning start level, with the exception of the

Fr amew or kEvent.S TAR T_L EVEL _C H ANGED event broadcast. During

launching, the Framework must broadcast a F ra mew or kEve nt.STAR TED

event when the initial start level is reached.

6.2.4 Shutdown Sequence

When the Framework shuts down, the requested start level must be set to

zero. The Framework must then follow the process described in Changing the

Active Start Level on page 139 to make the active start level equal to zero.

6.2.5 Changing a Bundle’s Start Level

Bundles are assigned an initial start level when they are installed. The

default value for the initial start level is set to one, but can be changed with

the se t Init ia lBu ndleS tartLe vel(int) method. A bundle’s start level will not

change when the se t Init ia lBu ndleS tartLe vel(int) method later modifies the
default initial start level.

Once installed, the start level of a bundle can be changed with setBu ndle-

Star tLevel(B undle , int) . When a bundle’s start level is changed and the bun-

dle is marked persistently to be started, then the OSGi Framework must

compare the new bundle start level to the active start level. For example,
assume that the active start level is 5 and a bundle with start level 5 is

started. If the bundle’s start level subsequently is changed to 6 then this bun-

dle must be stopped by the OSGi Framework but it must still be marked per-

sistently to be started.

6.2.6 Starting a Bundle

If a bundle is started by calling the B undle. star t() method, then the OSGi

Framework must mark the bundle as persistently started. The OSGi Frame-

work must not actually start a bundle when the active start level is less than

the bundle’s start level. In that case, the state must not change.

6.2.7 Exceptions in the Bundle Activator

If the Bund leActi va tor .sta rt or sto p method throws an Exc eptio n , then the

handling of this Exc eptio n is different depending who invoked the star t or

stop method.

If the bundle gets started/stopped due to a change in the active start level,
then the Exce ptio n must be broadcast as a F ra mewo r kEve nt.ERR O R event.

Otherwise a new B undleExc eptio n is thrown to the caller.
OSGi Service-Platform Release 3 141-588

Compatibi lity Mode Start Level Service Specification Version 1.0
6.2.8 System Bundle

The System Bundle is defined to have a start level of zero. See page 42 for

more information on the System Bundle start level. The start level of the
System Bundle cannot be changed. An I l lega lArg umentExcep ti on must be

thrown if an attempt is made to change the start level of the System Bundle.

6.3 Compatibility Mode

Compatibility mode consists of a single start level for all bundles. All bun-

dles are assigned a bundle start level of 1. In compatibility mode, the OSGi

Framework is started and launched with an argument specifying an begin-

ning start level of 1. The Framework then starts all bundles that are persis-

tently marked to be started. When start level 1 is reached, all bundles have
been started and the F ra mewo rk Eve nt.STAR TED event is published. This is

considered compatible with prior OSGi Framework versions because all

bundles are started and there is no control over the start order. Framework

implementations must support compatibility mode.

6.4 Example Applications

The Start Level service allows a Management Agent to implement many dif-

ferent startup schemes. The following sections show some examples.

6.4.1 Safe Mode Startup Scheme

A Management Agent can implement a safe mode in which it runs trusted

bundles at level 1 and runs itself on level 2. When the Management Agent

gets control, it constructs a list of all applications to be started. This list can

be constructed from Bu ndleC o ntext .ge tBundl es() . The Management Agent
checks each bundle to determine if it is not started but is marked to be

started persistently by calling the i sB undle Pers istentlySta rted (B undle)

method of the Start Level service.

Before it starts each bundle, the Management Agent persistently records the

bundle to be started and then starts the bundle. This continues until all bun-
dles are started. When all bundles are successfully started, the Management

Agent persistently records that all bundles started without problems.

If the Service Platform is restarted, the Management Agent should inspect

the persistently recorded information. If the persistently recorded informa-

tion indicates a bundle failure, the Management Agent should try to restart
the system without that application bundle since that bundle failed. Alter-

natively, it could contact its Remote Manager and ask for assistance.

6.4.2 Splash Screen Startup Scheme

A splash screen is a popup containing startup information about an applica-
tion. The popup provides feedback to the end user indicating that the sys-

tem is still initializing. The Start Level service can be used by a bundle to

pop-up a splash screen before any other bundle is started, and remove it

once all bundles have been started. The splash-screen bundle would start at

start level 1 and all other bundles would start at start level 2 or higher.
142-588 OSGi Service-Platform Release 3

Start Level Service Specif ication Version 1.0 Security
class SplashScreen implements
BundleActivator, FrameworkListener {
Screen screen;
public void start(BundleContext context) {

context.addFrameworkListener(this);
screen = createSplash();
screen.open();

}
public void stop(BundleContext context) {

screen.close();
}
public void frameworkEvent(FrameworkEvent event) {

if (event.getType() == FrameworkEvent.STARTED)
screen.close();

}
Screen createSplash() { ... }

}

6.5 Security

When the Start Level service is available, it is crucial to protect its usage

from non-trusted bundles. A malicious bundle that can control start levels

can control the whole service platform.

The Start Level service is intended to be used only by a Management Agent.

This means that bundles that use this service must have AdminPe rmissi on

to be able to modify a bundle’s start level or the Framework’s active start

level. Bundles that need only read access to this service should have

Ser viceP ermiss ion [G ET,S tartL evel] .

The Start Level service must be registered by the Framework so there is no

reason for any bundle to have Ser viceP ermiss ion [R EGISTER ,Sta rtLevel] .

6.6 org.osgi.service.startlevel

The OSGi StartLevel service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.startlevel; specification-
version=1.0
Star tLevel

6.6.1 public interface StartLevel

The StartLevel service allows management agents to manage a start level

assigned to each bundle and the active start level of the Framework. There is

at most one StartLevel service present in the OSGi environment.

A start level is defined to be a state of execution in which the Framework

exists. StartLevel values are defined as unsigned integers with 0 (zero) being
the state where the Framework is not launched. Progressively higher inte-

gral values represent progressively higher start levels. e.g. 2 is a higher start

level than 1.
OSGi Service-Platform Release 3 143-588

org.osgi.service.startlevel Start Level Service Specification Version 1.0
Access to the StartLevel service is protected by corresponding
ServicePermission. In addition the AdminPermission that is required to

actually modify start level information.

Start Level support in the Framework includes the ability to control the

beginning start level of the Framework, to modify the active start level of

the Framework and to assign a specific start level to a bundle. How the
beginning start level of a Framework is specified is implementation depen-

dent. It may be a command line argument when invoking the Framework

implementation.

When the Framework is first started it must be at start level zero. In this

state, no bundles are running. This is the initial state of the Framework
before it is launched. When the Framework is launched, the Framework

will enter start level one and all bundles which are assigned to start level

one and are persistently marked to be started are started as described in the

Bundle.start method. Within a start level, bundles are started in ascend-

ing order by Bundle.getBundleId. The Framework will continue to

increase the start level, starting bundles at each start level, until the Frame-
work has reached a beginning start level. At this point the Framework has

completed starting bundles and will then broadcast a Framework event of

type FrameworkEvent.STARTED to announce it has completed its launch.

The StartLevel service can be used by management bundles to alter the

active start level of the framework.

getBund leStar tLevel (Bund le)

6.6.1.1 public int getBundleStartLevel(Bundle bundle)

bundle The target bundle.

� Return the assigned start level value for the specified Bundle.

Returns The start level value of the specified Bundle.

Throws IllegalArgumentException – If the specified bundle has been uninstalled.
getInitial BundleStartLevel()

6.6.1.2 public int getInitialBundleStartLevel()

� Return the initial start level value that is assigned to a Bundle when it is first

installed.

Returns The initial start level value for Bundles.

See Also setInitialBundleStartLevel[p.145]
getStartLevel()

6.6.1.3 public int getStartLevel()

� Return the active start level value of the Framework. If the Framework is in

the process of changing the start level this method must return the active
start level if this differs from the requested start level.

Returns The active start level value of the Framework.
isBund lePersi stentlyStarted(Bundle)

6.6.1.4 public boolean isBundlePersistentlyStarted(Bundle bundle)

� Return the persistent state of the specified bundle.

This method returns the persistent state of a bundle. The persistent state of a

bundle indicates whether a bundle is persistently marked to be started

when it’s start level is reached.
144-588 OSGi Service-Platform Release 3

Start Level Service Specif ication Version 1.0 org.osgi.service.startlevel
Returns true if the bundle is persistently marked to be started, false if the bundle is
not persistently marked to be started.

Throws IllegalArgumentException – If the specified bundle has been uninstalled.
setBundleStartLevel(Bundle,int)

6.6.1.5 public void setBundleStartLevel(Bundle bundle, int startlevel)

bundle The target bundle.

startlevel The new start level for the specified Bundle.

� Assign a start level value to the specified Bundle.

The specified bundle will be assigned the specified start level. The start level

value assigned to the bundle will be persistently recorded by the Frame-

work. If the new start level for the bundle is lower than or equal to the active

start level of the Framework, the Framework will start the specified bundle

as described in the Bundle.start method if the bundle is persistently

marked to be started. The actual starting of this bundle must occur asyn-
chronously. If the new start level for the bundle is higher than the active

start level of the Framework, the Framework will stop the specified bundle

as described in the Bundle.stop method except that the persistently

recorded state for the bundle indicates that the bundle must be restarted in

the future. The actual stopping of this bundle must occur asynchronously.

Throws IllegalArgumentException – If the specified bundle has been uninstalled

or if the specified start level is less than or equal to zero, or the specified bun-

dle is the system bundle.

SecurityException – if the caller does not have the AdminPermission and

the Java runtime environment supports permissions.
setIniti alBundleStartLevel (int)

6.6.1.6 public void setInitialBundleStartLevel(int startlevel)

startlevel The initial start level for newly installed bundles.

� Set the initial start level value that is assigned to a Bundle when it is first

installed.

The initial bundle start level will be set to the specified start level. The ini-

tial bundle start level value will be persistently recorded by the Framework.

When a Bundle is installed via BundleContext.installBundle, it is

assigned the initial bundle start level value.

The default initial bundle start level value is 1 unless this method has been

called to assign a different initial bundle start level value.

Thie method does not change the start level values of installed bundles.

Throws IllegalArgumentException – If the specified start level is less than or equal

to zero.

SecurityException – if the caller does not have the AdminPermission and

the Java runtime environment supports permissions.
setS tartLevel (int)

6.6.1.7 public void setStartLevel(int startlevel)

startlevel The requested start level for the Framework.

� Modify the active start level of the Framework.
OSGi Service-Platform Release 3 145-588

org.osgi.service.startlevel Start Level Service Specification Version 1.0
The Framework will move to the requested start level. This method will
return immediately to the caller and the start level change will occur asyn-

chronously on another thread.

If the specified start level is higher than the active start level, the Frame-

work will continue to increase the start level until the Framework has

reached the specified start level, starting bundles at each start level which
are persistently marked to be started as described in the Bundle.start

method. At each intermediate start level value on the way to and including

the target start level, the framework must:

1 Change the active start level to the intermediate start level value.

2 Start bundles at the intermediate start level in ascending order by
Bundle.getBundleId.

FrameworkEvent.STARTLEVEL_CHANGED to announce it has moved to the

specified start level.

If the specified start level is lower than the active start level, the Framework
will continue to decrease the start level until the Framework has reached

the specified start level stopping bundles at each start level as described in

the Bundle.stop method except that their persistently recorded state indi-

cates that they must be restarted in the future. At each intermediate start

level value on the way to and including the specified start level, the frame-

work must:

1 Stop bundles at the intermediate start level in descending order by

Bundle.getBundleId.

2 Change the active start level to the intermediate start level value.

FrameworkEvent.STARTLEVEL_CHANGED to announce it has moved to the

specified start level.

If the specified start level is equal to the active start level, then no bundles

are started or stopped, however, the Framework must broadcast a Frame-

work event of type FrameworkEvent.STARTLEVEL_CHANGED to announce it

has finished moving to the specified start level. This event may arrive before

the this method return.

Throws IllegalArgumentException – If the specified start level is less than or equal

to zero.

SecurityException – If the caller does not have the AdminPermission and

the Java runtime environment supports permissions.
146-588 OSGi Service-Platform Release 3

Permission Admin Service Specif ication Version 1.1 Introduction
7 Permission Admin

Service Specification

Version 1.1

7.1 Introduction

In the Framework, a bundle can have a single set of permissions. These per-
missions are used to verify that a bundle is authorized to execute privileged

code. For example, a Fi lePe rmiss io n defines what files can be used and in

what way.

The policy of providing the permissions to the bundle should be delegated

to a Management Agent. For this reason, the Framework provides the Per-
mission Admin service so that a Management Agent can administrate the

permissions of a bundle and provide defaults for all bundles.

Related mechanisms of the Framework are discussed in Security on page 80.

7.1.1 Essentials

• Status information – The Permission Admin Service must provide status

information about the current permissions of a bundle.

• Administrative – The Permission Admin Service must allow a Man-

agement Agent to set the permissions before, during, or after a bundle is

installed.
• Defaults – The Permission Admin Service must provide control over

default permissions. These are the permissions for a bundle with no spe-

cific permissions set.

7.1.2 Entities

• Per missio nAdmin – The service that provides access to the permission
repository of the Framework.

• Per missio nInf o – An object that holds the information needed to con-

struct a Per missio n object.

• Bundle location – The string that specifies the bundle location. This is

described in Bundle Location on page 57.
OSGi Service-Platform Release 3 147-588

Permission Admin service Permission Admin Service Specification Version 1.1
Figure 23 Class Diagram org.osgi.service.permissionadmin.

7.1.3 Operation

The Framework maintains a repository of permissions. These permissions

are stored under the bundle location string. Using the bundle location

allows the permissions to be set before a bundle is downloaded. The Frame-

work must consult this repository when it needs the permissions of a bun-

dle. When no specific permissions are set, the bundle must use the default

permissions. If no default is set, the bundle must use
java. secu r ity .Al l Permi ss io n . If the default permissions are changed, a bun-

dle with no specific permissions must immediately start using the new

default permissions.

The Permission Admin service is registered by the Framework’s system bun-

dle under the or g.o sgi . ser vi ce. permis s io nadmin. Per missio nAdmin inter-
face. This is an optional singleton service, so at most one Permission Admin

service is registered at any moment in time.

The Permission Admin service provides access to the permission repository.

A Management Agent can get, set, update, and delete permissions from this

repository. A Management Agent can also use a
Synchr ono usB undle Listen er object to set the permissions during the instal-

lation or updating of a bundle.

7.2 Permission Admin service

The Permission Admin service needs to manipulate the default permissions

and the permissions associated with a specific bundle. The default permis-

sions and the bundle-specific permissions are stored persistently. It is possi-

ble to set a bundle’s permissions before the bundle is installed in the
Framework because the bundle’s location is used to set the bundle’s permis-

sions.

The manipulation of a bundle’s permissions, however, may also be done in

real time when a bundle is downloaded or just before the bundle is down-

loaded. To support this flexibility, a Sync hro no usBu ndleL istene r object may

be used by a Management Agent to detect the installation or update of a
bundle, and set the required permissions before the installation completes.

Permissions are activated before the first time a permission check for a bun-

dle is performed. This means that if a bundle has opened a file, this file must

remain usable even if the permission to open that file is removed at a later

time.

<<interface>>
Permission
Admin

Permission
Info[]0..n1

java.security.
Permission

constructs

1

1

bundle location
148-588 OSGi Service-Platform Release 3

Permission Admin Service Specif ication Version 1.1 Permission Admin service
Permission information is not specified using ja va .se cur ity. Per miss io n
objects. The reason for this approach is the relationship between the

required persistence of the information across Framework restarts and the

concept of classloaders in the Framework. Actual Pe rmissio n classes must

be subclasses of Per missio n and may be exported from any bundle. The

Framework can access these permissions as long as they are exported, but

the Management Agent would have to import all possible packages that
contain permissions. This requirement would severely limit permission

types. Therefore, the Permission Admin service uses the Per mi ssio nInf o

class to specify permission information. Objects of this class are used by the

Framework to create Pe rmissi on objects.

Per missio nInf o objects restrict the possible Pe rmissi on objects that can be
used. A Per missio n subclass can only be described by a Pe rmissi onI nfo

object when it has the following characteristics:

• It must be a subclass of j ava.s ecur ity .Pe rmiss io n .

• It must use the two-argument public constructor type(na me,a ct io ns).

• The class must be available to the Framework code from the system
classpath or from any exported package so it can be loaded by the

Framework.

• The class must be public.

If any of these conditions is not met, the Pe rmissi onI nfo object must be

ignored and an error message should be logged.

The permissions are always set as an array of Per missio nInf o objects to

make the assignment of all permissions atomic.

The Permi ssio nAdmin interface provides the following methods:

• getLo ca t io ns() – Returns a list of locations that have permissions
assigned to them. This method allows a Management Agent to examine

the current set of permissions.

• getPe rmissi ons (S tr ing) – Returns a list of Pe rmissi onI nfo objects that are

set for that location, or returns n ul l if no permissions are set.

• setPe rmiss i ons(Str ing, Per mi ss io nInf o[]) – Associates permissions with

a specific location, or returns nul l when the permissions should be
removed.

• getDef aul tP ermis s io ns() – This method returns the list of default per-

missions.

• setDef aultP ermis s ion s(P ermis s io nInfo []) – This method sets the default

permissions.

7.2.1 FilePermission for Relative Path Names

A java. io .F i lePe rmiss io n assigned to a bundle via the setP ermis s ion s

method must receive special treatment if the path argument for the

Fi l ePer miss io n is a relative path name. A relative path name is one that is

not absolute. See the j ava. i o . F i le . isAb sol ute method for more information
on absolute path names.

When a bundle is assigned a Fi le Per mi ss io n for a relative path name, the

path name is taken to be relative to the bundle’s persistent storage area. This

allows additional permissions, such as "execute", to be assigned to files in

the bundle’s persistent storage area. For example:
OSGi Service-Platform Release 3 149-588

Security Permission Admin Service Specification Version 1.1
java.io.FilePermission "-" "execute"

can be used to allow a bundle to execute any file in the bundle’s persistent

storage area.

This only applies to F i le Permi ssio n objects assigned to a bundle via the

setPer miss io n method. This does not apply to default permissions. A
Fi le Per mi ss io n for a relative path name assigned via the

setDef aultPe rmiss i on method must be ignored.

7.3 Security

The Permission Admin service is a system service that can be abused. A bun-

dle that can access and use the Permission Admin service has full control

over the OSGi Service Platform. However, many bundles can have

Servic ePe rmissi on[GET,Pe rmissi onAd mi n] because all methods that

change the state of the Framework require Ad minPer missio n .

No bundle must have Ser viceP ermis sion [R EGIS TER ,Pe rmissio nAdmin] for

this service because only the Framework should provide this service.

7.4 Changes

The following descriptions were added relative to the previous version of

this specification:

• A section was added to this specification that defines how the names of
Fi le Per mi ss io n objects should be treated.

• Nu llPo inter Excepti on and I l leg alAr gumentExce ptio n were added to

Permis sio nInfo (Str i ng, Str i ng, Str i ng) .

• Clarification to Pe rmissi onI nfo .ge tEn co ded about whitespace was

added.

• The documentation of the Pe rmissio nAdmin. getDe faul tPermis s io ns
method was updated to avoid using "not defined".

• Documentation to the Per missio nAdmin. setDef aultP ermiss ion s

method regarding a n ul l argument was added.

7.5 org.osgi.service.permissionadmin

The OSGi Permission Admin service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.permissionadmin; specifica-
tion-version=1.1

7.5.1 Summary

• PermissionAdmin – The Permission Admin service allows management

agents to manage the permissions of bundles. [p.150]

• PermissionInfo – Permission representation used by the Permission

Admin service. [p.152]
Permiss ionAdmin
150-588 OSGi Service-Platform Release 3

Permission Admin Service Specif ication Version 1.1 org.osgi.service.permissionadmin
7.5.2 public interface PermissionAdmin

The Permission Admin service allows management agents to manage the

permissions of bundles. There is at most one Permission Admin service
present in the OSGi environment.

Access to the Permission Admin service is protected by corresponding

ServicePermission. In addition AdminPermission is required to actually

set permissions.

Bundle permissions are managed using a permission table. A bundle’s loca-

tion serves as the key into this permission table. The value of a table entry is

the set of permissions (of type PermissionInfo) granted to the bundle

named by the given location. A bundle may have an entry in the permission

table prior to being installed in the Framework.

The permissions specified in setDefaultPermissions are used as the

default permissions which are granted to all bundles that do not have an

entry in the permission table.

Any changes to a bundle’s permissions in the permission table will take

effect no later than when bundle’s java.security.ProtectionDomain is
next involved in a permission check, and will be made persistent.

Only permission classes on the system classpath or from an exported pack-

age are considered during a permission check. Additionally, only permis-

sion classes that are subclasses of java.security.Permission and define a

2-argument constructor that takes a name string and an actions string can be

used.

Permissions implicitly granted by the Framework (for example, a bundle’s

permission to access its persistent storage area) cannot be changed, and are

not reflected in the permissions returned by getPermissions and

getDefaultPermissions.

getDefaul tPermissi ons()

7.5.2.1 public PermissionInfo[] getDefaultPermissions()

� Gets the default permissions.

These are the permissions granted to any bundle that does not have permis-
sions assigned to its location.

Returns The default permissions, or null if no default permissions are set.
getLocations()

7.5.2.2 public String[] getLocations()

� Returns the bundle locations that have permissions assigned to them, that

is, bundle locations for which an entry exists in the permission table.

Returns The locations of bundles that have been assigned any permissions, or null if

the permission table is empty.
getPermissi ons(String)

7.5.2.3 public PermissionInfo[] getPermissions(String location)

location The location of the bundle whose permissions are to be returned.

� Gets the permissions assigned to the bundle with the specified location.

Returns The permissions assigned to the bundle with the specified location, or null

if that bundle has not been assigned any permissions.
setDefaul tPermiss ions(Permi ssionInfo[])
OSGi Service-Platform Release 3 151-588

org.osgi.service.permissionadmin Permission Admin Service Specification Version 1.1
7.5.2.4 public void setDefaultPermissions(PermissionInfo[] permissions)

permissions The default permissions, or null if the default permissions are to be removed

from the permission table.

� Sets the default permissions.

These are the permissions granted to any bundle that does not have permis-

sions assigned to its location.

Throws SecurityException – if the caller does not have the AdminPermission.
setPermi ssi ons(Str ing,Permiss ionInfo[])

7.5.2.5 public void setPermissions(String location, PermissionInfo[] permissions
)

location The location of the bundle that will be assigned the permissions.

permissions The permissions to be assigned, or null if the specified location is to be re-

moved from the permission table.

� Assigns the specified permissions to the bundle with the specified location.

Throws SecurityException – if the caller does not have the AdminPermission.
Permiss ionInfo

7.5.3 public class PermissionInfo

Permission representation used by the Permission Admin service.

This class encapsulates three pieces of information: a Permission type (class

name), which must be a subclass of java.security.Permission, and the

name and actions arguments passed to its constructor.

In order for a permission represented by a PermissionInfo to be instanti-

ated and considered during a permission check, its Permission class must be

available from the system classpath or an exported package. This means

that the instantiation of a permission represented by a PermissionInfo

may be delayed until the package containing its Permission class has been

exported by a bundle.

Permiss ionInfo(String,String,String)

7.5.3.1 public PermissionInfo(String type, String name, String actions)

type The fully qualified class name of the permission represented by this

PermissionInfo. The class must be a subclass of
java.security.Permission and must define a 2-argument constructor that

takes a name string and an actions string.

name The permission name that will be passed as the first argument to the con-

structor of the Permission class identified by type.

actions The permission actions that will be passed as the second argument to the

constructor of the Permission class identified by type.

� Constructs a PermissionInfo from the given type, name, and actions.

Throws NullPointerException – if type is null.

IllegalArgumentException – if action is not null and name is null.
Permiss ionInfo(String)

7.5.3.2 public PermissionInfo(String encodedPermission)

encodedPermission The encoded PermissionInfo.

� Constructs a PermissionInfo object from the given encoded

PermissionInfo string.
152-588 OSGi Service-Platform Release 3

Permission Admin Service Specif ication Version 1.1 org.osgi.service.permissionadmin
Throws IllegalArgumentException – if encodedPermission is not properly for-
matted.

See Also getEncoded[p.153]
equal s(Ob ject)

7.5.3.3 public boolean equals(Object obj)

obj The object to test for equality with this PermissionInfo object.

� Determines the equality of two PermissionInfo objects. This method

checks that specified object has the same type, name and actions as this

PermissionInfo object.

Returns true if obj is a PermissionInfo, and has the same type, name and actions as

this PermissionInfo object; false otherwise.
getActions()

7.5.3.4 public final String getActions()

� Returns the actions of the permission represented by this PermissionInfo.

Returns The actions of the permission represented by this PermissionInfo, or null

if the permission does not have any actions associated with it.
getEncoded()

7.5.3.5 public final String getEncoded()

� Returns the string encoding of this PermissionInfo in a form suitable for

restoring this PermissionInfo.

The encoding format is:

(type)

or

(type “name“)

or

(type “name“ “actions“)

where name and actions are strings that are encoded for proper parsing. Spe-

cifically, the “, \, carriage return, and linefeed characters are escaped using

\”, \\, \r, and \n, respectively.

The encoded string must contain no leading or trailing whitespace charac-

ters. A single space character must be used between type and “name“ and

between “name“ and “actions“.

Returns The string encoding of this PermissionInfo.
getName()

7.5.3.6 public final String getName()

� Returns the name of the permission represented by this PermissionInfo.

Returns The name of the permission represented by this PermissionInfo, or null if

the permission does not have a name.
getType()

7.5.3.7 public final String getType()

� Returns the fully qualified class name of the permission represented by this

PermissionInfo.

Returns The fully qualified class name of the permission represented by this

PermissionInfo.
hashCode()
OSGi Service-Platform Release 3 153-588

org.osgi.service.permissionadmin Permission Admin Service Specification Version 1.1
7.5.3.8 public int hashCode()

� Returns the hash code value for this object.

Returns A hash code value for this object.
toStr ing()

7.5.3.9 public String toString()

� Returns the string representation of this PermissionInfo. The string is cre-

ated by calling the getEncoded method on this PermissionInfo.

Returns The string representation of this PermissionInfo.
154-588 OSGi Service-Platform Release 3

URL Handlers Service Specification Version 1.0 Introduction
8 URL Handlers Service

Specification

Version 1.0

8.1 Introduction

This specification defines how to register new URL schemes and how to con-
vert content-typed java. io . Inp utStre am objects to specific Java objects.

This specification standardizes the mechanism to extend the Java run-time

with new URL schemes and content handlers through bundles. Dynami-

cally extending the URL schemes that are supported in an OSGi Service Plat-

form is a powerful concept.

This specification is necessary because the standard Java mechanisms for

extending the UR L class with new schemes and different content types is not

compatible with the dynamic aspects of an OSGi Service Platform. The reg-

istration of a new scheme or content type is a one time only action in Java,

and once registered, a scheme or content type can never be revoked. This
singleton approach to registration makes the provided mechanism impossi-

ble to use by different, independent bundles. Therefore, it is necessary for

OSGi Framework implementations to hide this mechanism and provide an

alternative mechanism that can be used.

The OSGi Service Platform, Release 3 specifications has also standardized a
Connector service that has similar capabilities. See the IO Connector Service

Specification on page 277.

8.1.1 Essentials

• Multiple Access – Multiple bundles should be allowed to register
Co ntentH an dler objects and U R LStre amH andle r objects.

• Existing Schemes Availability – Existing schemes in an OSGi Service

Platform should not be overridden.

• life-cycle Monitored – The life-cycle of bundles must be supported. Scheme

handlers and content type handlers must become unavailable when the

registering bundle is stopped.
• Simplicity – Minimal effort should be required for a bundle to provide a

new URL scheme or content type handler.

8.1.2 Entities

• Scheme – An identifier for a specific protocol. For example, "h ttp " is a

scheme for the Hyper Text Transfer Protocol. A scheme is implemented
in a java. net .U R LStre amH andle r sub-class.
OSGi Service-Platform Release 3 155-588

Introduction URL Handlers Service Specification Version 1.0
• Content Type – An identifier for the type of the content. Content types are
usually referred to as MIME types. A content type handler is imple-

mented as a ja va .ne t .C onte ntHa ndler sub-class.

• Uniform Resource Locator (URL) – An instance of the java. net .U R L class

that holds the name of a scheme with enough parameters to identify a

resource for that scheme.

• Factory – An object that creates other objects. The purpose is to hide the
implementation types (that may vary) from the caller. The created

objects are a subclass/implementation of a specific type.

• Proxy – The object that is registered with Java and that forwards all calls

to the real implementation that is registered with the service registry.

• java.net.URLStreamHandler – An instance of the

java. net .U R LStre amH andle r class that can create UR LC on nectio n
objects that represent a connection for a specific protocol.

• Singleton Operation – An operation that can only be executed once.

• URLStreamHandlerService – An OSGi service interface that contains the

methods of the U RL Stre amHa ndle r class with public visibility so they

can be called from the Framework.

• AbstractURLStreamHandlerService – An implementation of the
UR LStr eamH andl erS ervic e interface that implements the interface’s

methods by calling the implementation of the super class

(ja va.ne t .ur l .U RLS trea mHa ndler). This class also handles the setting of

the ja va .ne t. UR L object via the java .net . UR LStr eamH and lerS etter

interface.

• URLStreamHandlerSetter – An interface needed to abstract the setting of

the java. net .U R L object. This interface is related to the use of a proxy and
security checking.

• java.net.URLStreamHandlerFactory – A factory, registered with the

java. net .U R L class, that is used to find ja va.ne t .U RLS trea mHa ndler

objects implementing schemes that are not implemented by the Java

environment. Only one java. net .U R LStre amH andl erF ac to ry object can

be registered with Java.
• java.net.URLConnection – A connection for a specific, scheme-based pro-

tocol. A ja va .ne t .U RLC o nnecti on object is created by a

java. net .U R LStre amH andle r object when the

java. net .U R L.o penC o nnecti on method is invoked.

• java.net.ContentHandler – An object that can convert a stream of bytes to a

Java object. The class of this Java object depends on the MIME type of the
byte stream.

• java.net.ContentHandlerFactory – A factory that can extend the set of

java. net .C o ntentH andl er objects provided by the

java. net .U R LCo nnec tio n class, by creating new ones on demand. Only

one java .net . Co ntentH and lerF ac tor y object can be registered with the

java. net .U R LCo nnec tio n class.
• MIME Type – A name-space for byte stream formats. See [20] MIME Multi-

purpose Internet Mail Extension.

The following class diagram is surprisingly complex due to the complicated

strategy that Java uses to implement extendable stream handlers and con-

tent handlers.
156-588 OSGi Service-Platform Release 3

URL Handlers Service Specification Version 1.0 Introduction
Figure 24 Class Diagram, java.net (URL and associated classes)

8.1.3 Operation

A bundle that can implement a new URL scheme should register a service

object under the U RLS trea mH a ndler Ser vi ce interface with the OSGi Frame-
work. This interface contains public versions of the

java .net . UR LStr eamH andl er class methods, so that these methods can be

called by the proxy (the object that is actually registered with the Java run-

time).

The OSGi Framework implementation must make this service object avail-
able to the underlying ja va .net implementation. This must be supported by

the OSGi Framework implementation because the

java .net . UR L .setStr eamH andl erF ac to r y method can only be called once,

making it impossible to use by bundles that come and go.

java.net.URL

java.net.URL
StreamHandler

java.net.URL
StreamHandler
Factory

java.net.URL
Connection

java.net.Content
Handler

java.net.Content
HandlerFactory

<<interface>>
URLStream
HandlerServ.

URLConnection
subclass impl.

URL Stream
Handler Proxy
impl.

Content Handler
Proxy impl.

Stream Handler
implement.

Content Handler
implement.

URL Stream
Handler Fact.
impl.

URL Content
handler Fact.
implement.

1

0,1

gets URLStreamHandlers

0..*

1

is tracked b
y

gets content via

1

0,1

1 0..*

is fo
un

d in registry by (keyed
 b

y m
im

e)

0..*

0,1

<<interface>>
URLStream
HandlerSetter

setURL

AbstractURL
Stream
HandlerServ.

creates connections of

from

is called by

0..* 1
OSGi Service-Platform Release 3 157-588

Factories in java.net URL Handlers Service Specification Version 1.0
Bundles that can convert a content-typed stream should register a service
object under the name java .net . Co ntentH and ler . These objects should be

made available by the OSGi Framework to the java. net .U R LCo nne ctio n

class.

8.2 Factories in java.net

Java provides the j ava.n et .U RL class which is used by the OSGi Framework

and many of the bundles that run on the OSGi Service Platform. A key bene-

fit of using the U R L class is the ease with which a URL string is translated

into a request for a resource.

The extensibility of the ja va .ne t .UR L class allows new schemes (protocols)

and content types to be added dynamically using

java. net .U R LStre amH andle rF acto ry objects. These new handlers allow

existing applications to use new schemes and content types in the same way

as the handlers provided by the Java run-time environment. This mechan-
sism is described in the Javadoc for the UR LStr eamH andl er and

Co ntentH and ler class, see [18] Java .net.

For example, the URL http://w ww .o sgi . or g/samp le.txt addresses a file on

the OSGi web server that is obtained with the HTTP scheme (usually a

scheme provided by the Java run-time). A URL such as r sh://
ww w. ac me .co m/age nt.z ip is addressing a ZIP file that can be obtained with

the non built-in RSH scheme. A java. net .U R LStre amH andle rF acto ry object

must be registered with the ja va.ne t .U RL class prior to the successful use of

an RSH scheme.

There are several problems with using only the existing Java facilities for
extending the handlers used by the ja va.ne t .U RL class:

• Factories Are Singleton Operations – One

java. net .U R LStre amH andle rF acto ry object can be registered once with

the ja va .ne t. UR L class. Similarly, one ja va.ne t .C onte ntHa ndler Fa cto ry

object can be registered once with the ja va.ne t .U RLC o nnec ti on class. It is
impossible to undo the registration of a factory or register a replacement

factory.

• Caching Of Schemes – When a previously unused scheme is first used by

the ja va .ne t. UR L class, the java .net . UR L class requests a

java. net .U R LStre amH andle r object for that specific scheme from the

currently registered java. net .U R LStre amHa ndle rF acto ry object. A
returned ja va.ne t .U RLS trea mHa ndler object is cached and subsequent

requests for that scheme use the same ja va .ne t. UR LStr ea mH an dler

object. This means that once a handler has been constructed for a specific

scheme, this handler can no longer be removed, nor replaced, by a new

handler for that scheme. This caching is likewise done for

java. net .C o ntentH andl er objects.

Both problems impact the OSGi operating model, which allows a bundle to

go through different life-cycle stages that involve exposing services, remov-

ing services, updating code, replacing services provided by one bundle with

services from another, etc. The existing Java mechanisms are not compati-

ble when used by bundles.
158-588 OSGi Service-Platform Release 3

URL Handlers Service Specification Version 1.0 Framework Procedures
8.3 Framework Procedures

The OSGi Framework must register a ja va .net . UR LStr eamH and ler Fac tor y
object and a j ava.n et .C on te ntHa ndle rF acto ry object with the

java .net . UR L.se tUR LStr eamH and lerF ac tor y and

java .net . UR LC onne ctio n.se tCo ntentH an dler Fac tor y methods, respec-

tively.

When these two factories are registered, the OSGi Framework service regis-
try must be tracked for the registration of U RLS trea mHa ndler Ser vice ser-

vices and java. net .C o ntentH andl er services.

A URL Stream Handler Service must be associated with a service registra-

tion property named UR L_H ANDL ER_PR OTO C OL . The value of this

url . hand ler .pro to co l property must be an array of scheme names (Str in g[]).

A Content Handler service must be associated with a service registration

property named U RL_C O NTENT_MIM ETY PE . The value of the

UR L_C ONTENT_MIM ETY PE property must be an array of MIME types

names (Str in g[]) in the form type/subtype. See [20] MIME Multipurpose Inter-

net Mail Extension.

8.3.1 Constructing a Proxy and Handler

When a URL is used with a previously unused scheme, it must query the

registered ja va.ne t .U RLS trea mH an dler Fa cto ry object (that should have

been registered by the OSGi Framework). The OSGi Framework must then

search the service registry for services that are registered under
UR LStr eamH and ler Ser vic e and that match the requested scheme.

If one or more service objects are found, a proxy object must be constructed.

A proxy object is necessary because the service object that provides the

implementation of the ja va .ne t .U RLS tr ea mH an dler object can become

unregistered and Java does not provide a mechanism to withdraw a
java .net . UR LStr eamH andl er object once it is returned from a

java .net . UR LStr eamH andl erF ac tor y object.

Once the proxy is created, it must track the service registry for registrations

and unregistrations of services matching its associated scheme. The proxy

must be associated with the service that matches the scheme and has the
highest value for the o rg .o sgi . f ra mewo r k.C ons ta nts.S ERVIC E_RANKING

service registration property (see Service Registration Properties on page 68) at

any moment in time. If a proxy is associated with a URL Stream Handler Ser-

vice, it must change the associated handler to a newly registered service

when that service has a higher value for the ranking property.

The proxy object must forward all method requests to the associated URL

Stream Handler Service until this service object becomes unregistered.

Once a proxy is created, it cannot be withdrawn because it is cached by the

Java run-time. However, service objects can be withdrawn and it is possible

for a proxy to exist without an associated U RL Stre amHa ndle rSe rvice/
java .net . Co ntentH and ler object.
OSGi Service-Platform Release 3 159-588

Framework Procedures URL Handlers Service Specification Version 1.0
In this case, the proxy must handle subsequent requests until another
appropriate service is registered. When this happens, the proxy class must

throw a j ava. net .M alf or me dU RLExce ptio n exception if the signature of a

method allows throwing this exception. Otherwise, a

java. lang . I l l egal StateExc eptio n exception is thrown. This is true for both

Content Handler services and URL Stream Handler Services.

Bundles must ensure that their U RLS tr ea mH an dler Ser vi ce or

java. net .C o ntentH andl er service objects throw these exceptions also when

they have become unregistered.

Proxies for Content Handler services operate slightly differently from URL

Stream Handler Service proxies. In the case that nu l l is returned from the
registered C onte ntHa ndler Fa cto ry object, the factory will not get another

chance to provide a Co ntentH and ler object for that content-type. Thus, if

there is no built-in handler, nor a registered handler for this content-type, a

Co ntentH and ler proxy must be constructed that returns the Inp utStre am

object from the U R LCo nne ctio n object as the content object until a handler

is registered.

8.3.2 Built-in Handlers

Implementations of Java provide a number of sub-classes of

java. net .U R LStre amH andle r classes that can handle protocols like HTTP,

FTP, NEWS etc. Most Java implementations provide a mechanism to add

new handlers that can be found on the classpath through class name con-
struction.

If a registered ja va .ne t .U RLS tr ea mH an dler Fa ctor y object returns nul l for a

built-in handler (or one that is available through the class name construc-

tion mechanism), it will never be called again for that specific scheme

because the Java implementation will use its built-in handler or uses the
class name construction.

It is thus not guaranteed that a registered U RLS trea mH a ndler Ser vi ce object

is used. Therefore, built-in handlers should take priority over handlers from

the service registry to guarantee consistency. The built-in handlers, as

defined in the OSGi Execution Environments (see OSGi Defined Execution

Environments on page 428), must never be overridden.

The Content Handler Factory is implemented using a similar technique and

has therefore the same problems.

To facilitate the discovery of built-in handlers that are available through the
name construction, the method described in the next section must be used

by the Framework before any handlers are searched for in the service regis-

try.

8.3.3 Finding Built-in Handlers

If the system properties java .pro to co l .ha ndle r .pk gs or

java. co ntent.ha ndle r .p kgs are defined, they must be used to locate built-in

handlers. Each property must be defined as a list of package names that are

separated by a vertical bar (’ | ’ , \u007C) and that are searched in the left-to-

right order (the names must not end in a period). For example:

org.osgi.impl.handlers | com.acme.url
160-588 OSGi Service-Platform Release 3

URL Handlers Service Specification Version 1.0 Framework Procedures
The package names are the prefixes that are put in front of a scheme or con-
tent type to form a class name that can handle the scheme or content-type.

A URL Stream Handler name for a scheme is formed by appending the string

".Handler" to the scheme name. Using the packages in the previous example,

the r sh scheme handler class is searched by the following names:

org.osgi.impl.handlers.rsh.Handler
com.acme.url.rsh.Handler

MIME type names contain the ’/’ character and can contain other characters

that must not be part of a Java class name. A MIME type name must be pro-

cessed as follows before it can be converted to a class name:

1. First, all slashes in the MIME name must be converted to a period (’ . ’

\u002E). All other characters that are not allowed in a Java class name

must be converted to an underscore (’ _’ or \u005F).

application/zip application.zip
text/uri-list text.uri_list
image/vnd.dwg image.vnd_dwg

2. After this conversion, the name is appended to the list of packages speci-

fied in j ava. co ntent.ha ndle r .p kgs. For example, if the content type is

app l ica t ion /z ip , and the packages are defined as in the previous example,

then the following classes are searched:

org.osgi.impl.handlers.application.zip
com.acme.url.application.zip

The Java run-time specific packages should be listed in the appropriate

properties so that implementations of the URL Stream Handler Factory and
Content Handler Factory can be made aware of these packages.

8.3.4 Protected Methods and Proxy

Implementations of ja va.ne t .U RLS trea mHa ndler class cannot be registered

in the service registry for use by the proxy because the methods of the
UR LStr eamH and ler class are protected and thus not available to the proxy

implementation. Also, the U R LStre amH andle r class checks that only the

UR LStr eamH and ler object that was returned from the

UR LStr eamH and ler Fac tor y object can invoke the setU RL method. This

means that UR LStr eamH andl er objects in the service registry would be

unable to invoke the se tU R L method. Invoking this method is necessary
when implementing the par seU RL method.

Therefore, the U RLS trea mHa ndler Ser vice and UR LStr eamH and lerS etter

interfaces were created. The U RL Strea mHa ndler Ser vice interface provides

public versions of the U RLS trea mHa ndler methods, except that the setU R L

method is missing and the p ars eUR L method has a new first argument of
type U RLS tr ea mH an dler Setter . In general, sub-classes of the

UR LStr eamH and ler class can be converted to U RL Strea mHa ndler Ser vice

classes with minimal code changes. Apart from making the relevant meth-
OSGi Service-Platform Release 3 161-588

Framework Procedures URL Handlers Service Specification Version 1.0
ods public, the par seU R L method needs to be changed to invoke the setU RL
method on the UR LStr eamH and lerS etter object that the

UR LStr eamH andl erS ervic e object was passed, rather then the setU RL

method of U R LStre amH andle r class.

Figure 25 Proxy Issues

To aid in the conversion of U RLS trea mHa ndler implementation classes, the

Ab stra ctU RLS tr ea mH an dler Ser vi ce has been provided. Apart from making
the relevant methods public, the Ab stra ctU RLS tr ea mH an dler Ser vi ce stores

the U RLS trea mHa ndler Sette r object in a private variable. To make the

setU RL method work properly, it overrides the setU RL method to invoke the

setU RL method on the saved U R LStre amH andle rSe tter object rather then

the U RLS trea mHa ndler .se tUR L method. This means that a subclass of

UR LStr eamH andl er should be changed to become a sub-class of the
Ab stra ctU RLS tr ea mH an dler Ser vi ce class and be recompiled.

Normally, the par seU RL method will have the following form:

class URLStreamHandlerImpl {
...
protected URLStreamHandlerSetter realHandler;
...
public void parseURL(

URLStreamHandlerSetter realHandler,
 URL u, String spec, int start, int limit) {

this.realHandler = realHandler;
parseURL(u, spec, start, limit);

}
protected void setURL(URL u,

String protocol, String host,
int port, String authority,
String userInfo, String path,
String query,String ref) {

realHandler.setURL(u, protocol, host,
port, authority, userInfo, path,
query, ref);

}
...

}

<<<interface>>
URLStream
HandlerServic

forward all methods
Proxy Impl, the
actual URL-
Stream Handler.

URLStream
Handler Impl.

java.net.URL
StreamHandler

<<interface>>
URLStream
HandlerSetter

setURL is called by

called by

Java
162-588 OSGi Service-Platform Release 3

URL Handlers Service Specification Version 1.0 Providing a New Scheme
The UR LStr eamH andl er . par seU RL method will call the se tUR L method
which must be invoked on the proxy rather than th is . That is why the

setU RL method is overridden to delegate to the UR LStr eamH and lerS etter

object in re alH and ler as opposed to sup er .

8.4 Providing a New Scheme

The following example provides a scheme that returns the path part of the

URL. The first class that is implemented is the U R LStre amH andle rSe rvice .

When it is started, it registers itself with the OSGi Framework. The OSGi

Framework calls the o penC on nectio n method when a new
java .net . UR LC onne ctio n must be created. In this example, a

DataC o nnec tion object is returned.

public class DataProtocol
extends AbstractURLStreamHandlerService
implements BundleActivator {
public void start(BundleContext context) {

Hashtable properties = new Hashtable();
properties.put(URLConstants.URL_HANDLER_PROTOCOL,

new String[] { "data" });
context.registerService(

URLStreamHandlerService.class.getName(),
this, properties);

}
public void stop(BundleContext context) {}

public URLConnection openConnection(URL url) {
return new DataConnection(url);

}
}

The following example Data Co nnec tion class extends

java .net . UR LC onne ctio n and overrides the constructor so that it can pro-

vide the U RL object to the super class, the c onn ect method, and the
getIn putStre am method. This last method returns the path part of the URL

as an ja va. io . I nputStr eam object.

class DataConnection extends java.net.URLConnection {
DataConnection(URL url) {super(url);}
public void connect() {}

public InputStream getInputStream() throws IOException {
String s = getURL().getPath();
byte [] buf = s.getBytes();
return new ByteArrayInputStream(buf,1,buf.length-1);

}
public String getContentType() {

return "text/plain";
}

}

OSGi Service-Platform Release 3 163-588

Providing a Content Handler URL Handlers Service Specification Version 1.0
8.5 Providing a Content Handler

A Content Handler should extend the ja va .ne t .C onte ntHa ndler class and
implement the ge tCo ntent method. This method must get the In putStre am

object from the j ava. net .U RL Co nnec tio n parameter object and convert the

bytes from this stream to the applicable type. In this example, the MIME

type is te xt/p la in and the return object is a S tr ing object.

public class TextPlainHandler extends ContentHandler
implements BundleActivator {

public void start(BundleContext context) {
Hashtableproperties = new Hashtable();
properties.put(URLConstants.URL_CONTENT_MIMETYPE,

new String[] { "text/plain" });
context.registerService(

ContentHandler.class.getName(),
this, properties);

}
public void stop(BundleContext context) {}

public Object getContent(URLConnection conn)
throws IOException {

InputStream in = conn.getInputStream();
InputStreamReader r = new InputStreamReader(in);
StringBuffer sb = new StringBuffer();
int c;
while ((c=r.read()) >= 0)

sb.append((char) c);
r.close(); in.close();
return sb.toString();

}
}

8.6 Security Considerations

The ability to specify a protocol and add content handlers makes it possible
to directly affect the behavior of a core Java VM class. The j ava. net .U RL class

is widely used by network applications and can be used by the OSGi Frame-

work itself.

Therefore, care must be taken when providing the ability to register han-

dlers. The two types of supported handlers are U RLS tr ea mH an dler Ser vi ce
and ja va.n et .C onte ntHa ndle r. Only trusted bundles should be allowed to

register these services and have S ervic ePer missio n[REG ISTER,

UR LStr eamH andl erS ervic e|C o ntentH andle r] for these classes. Since these

services are made available to other bundles through the j ava. net .U RL class

and ja va.n et .U RLC o nnec tion class, it is advisable to deny the use of these

services (S ervic ePer missio n[GET,<name>]) to all, so that only the Frame-
work can get them . This prevents the circumvention of the permission

checks done by the ja va.ne t .U RL class by using the

UR LStr eamH andl erS ervic es service objects directly.
164-588 OSGi Service-Platform Release 3

URL Handlers Service Specification Version 1.0 org.osgi.service.url
8.7 org.osgi.service.url

The OSGi URL Stream and Content Handlers API Package. Specification
Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.url; specification-ver-
sion=1.0

8.7.1 Summary

• AbstractURLStreamHandlerService – Abstract implementation of the

URLStreamHandlerService interface. [p.165]

• URLConstants – Defines standard names for property keys associated
with UR LStr eamH an dler Ser vi ce [p.167] and java.net.ContentHandler

services. [p.166]

• URLStreamHandlerService – Service interface with public versions of

the protected java.net.URLStreamHandler methods. [p.167]

• URLStreamHandlerSetter – Interface used by

URLStreamHandlerService objects to call the setURL method on the
proxy URLStreamHandler object. [p.168]

AbstractURLStreamHandlerService

8.7.2 public abstract class AbstractURLStreamHandlerService
extends URLStreamHandler
implements URLStreamHandlerService

Abstract implementation of the URLStreamHandlerService interface. All

the methods simply invoke the corresponding methods on

java.net.URLStreamHandler except for parseURL and setURL, which use

the URLStreamHandlerSetter parameter. Subclasses of this abstract class

should not need to override the setURL and

parseURL(URLStreamHandlerSetter,...) methods.

realHandler

8.7.2.1 protected URLStreamHandlerSetter realHandler

The URLStreamHandlerSetter object passed to the parseURL method.

AbstractURLStreamHandlerService()

8.7.2.2 public AbstractURLStreamHandlerService()
equal s(URL ,URL)

8.7.2.3 public boolean equals(URL u1, URL u2)

� This method calls super.equals(URL,URL).

See Also java.net.URLStreamHandler.equals(URL,URL)
getDefaul tPort()

8.7.2.4 public int getDefaultPort()

� This method calls super.getDefaultPort.

See Also java.net.URLStreamHandler.getDefaultPort
getHostAddress(URL)

8.7.2.5 public InetAddress getHostAddress(URL u)

� This method calls super.getHostAddress.

See Also java.net.URLStreamHandler.getHostAddress
hashCode(URL)
OSGi Service-Platform Release 3 165-588

org.osgi.service.url URL Handlers Service Specification Version 1.0
8.7.2.6 public int hashCode(URL u)

� This method calls super.hashCode(URL).

See Also java.net.URLStreamHandler.hashCode(URL)
hostsEqual (URL,URL)

8.7.2.7 public boolean hostsEqual(URL u1, URL u2)

� This method calls super.hostsEqual.

See Also java.net.URLStreamHandler.hostsEqual
openConnection(URL)

8.7.2.8 public abstract URLConnection openConnection(URL u) throws
IOException

See Also java.net.URLStreamHandler.openConnection
parseURL(URLStreamHand lerSetter,URL,Str ing,int,int)

8.7.2.9 public void parseURL(URLStreamHandlerSetter realHandler, URL u,
String spec, int start, int limit)

realHandler The object on which the setURL method must be invoked for the specified

URL.

� Parse a URL using the URLStreamHandlerSetter object. This method sets

the realHandler field with the specified URLStreamHandlerSetter object
and then calls parseURL(URL,String,int,int).

See Also java.net.URLStreamHandler.parseURL
sameF il e(URL,URL)

8.7.2.10 public boolean sameFile(URL u1, URL u2)

� This method calls super.sameFile.

See Also java.net.URLStreamHandler.sameFile
setURL(URL,String,String,int,S tring,String)

8.7.2.11 protected void setURL(URL u, String proto, String host, int port, String
fi le, String ref)

� This method calls realHandler.setURL(URL,String,String,int,
String,String).

See Also java.net.URLStreamHandler.setURL(URL,String,String,int,String,
String)

Deprecated This method is only for compatibility with handlers written for JDK 1.1.
setURL(URL,String,String,int,S tring,String,String ,String,String)

8.7.2.12 protected void setURL(URL u, String proto, String host, int port, String
auth, String user, String path, String query, String ref)

� This method calls realHandler.setURL(URL,String,String,int,
String,String,String,String).

See Also java.net.URLStreamHandler.setURL(URL,String,String,int,String,
String,String,String)
toExternalForm(URL)

8.7.2.13 public String toExternalForm(URL u)

� This method calls super.toExternalForm.

See Also java.net.URLStreamHandler.toExternalForm
URLConstants

8.7.3 public interface URLConstants

Defines standard names for property keys associated with

UR LStr eamH andl erS ervic e [p.167] and java.net.ContentHandler services.
166-588 OSGi Service-Platform Release 3

URL Handlers Service Specification Version 1.0 org.osgi.service.url
The values associated with these keys are of type java.lang.String[],
unless otherwise indicated.

URL_CONTENT_MIMETYPE

8.7.3.1 public static final String URL_CONTENT_MIMETYPE =
“url .content.mimetype”

Service property naming the MIME types serviced by a java.net.Con-

tentHandler. The property’s value is an array of MIME types.

URL_HANDLER_PROTOCOL

8.7.3.2 public static final String URL_HANDLER_PROTOCOL =
“url .handler.protocol”

Service property naming the protocols serviced by a URLStreamHandlerSer-

vice. The property’s value is an array of protocol names.

URLStreamHand lerService

8.7.4 public interface URLStreamHandlerService

Service interface with public versions of the protected

java.net.URLStreamHandler methods.

The important differences between this interface and the

URLStreamHandler class are that the setURL method is absent and the

parseURL method takes a UR LStr ea mH an dler Setter [p.168] object as the
first argument. Classes implementing this interface must call the setURL

method on the URLStreamHandlerSetter object received in the parseURL

method instead of URLStreamHandler.setURL to avoid a

SecurityException.

See Also AbstractURLStreamHandlerService[p.165]
equal s(URL ,URL)

8.7.4.1 public boolean equals(URL u1, URL u2)

See Also java.net.URLStreamHandler.equals(URL, URL)
getDefaul tPort()

8.7.4.2 public int getDefaultPort()

See Also java.net.URLStreamHandler.getDefaultPort
getHostAddress(URL)

8.7.4.3 public InetAddress getHostAddress(URL u)

See Also java.net.URLStreamHandler.getHostAddress
hashCode(URL)

8.7.4.4 public int hashCode(URL u)

See Also java.net.URLStreamHandler.hashCode(URL)
hostsEqual (URL ,URL)

8.7.4.5 public boolean hostsEqual(URL u1, URL u2)

See Also java.net.URLStreamHandler.hostsEqual
openConnection(URL)

8.7.4.6 public URLConnection openConnection(URL u) throws IOException

See Also java.net.URLStreamHandler.openConnection
parseURL(URLStreamHand lerSetter,URL,String,int,int)

8.7.4.7 public void parseURL(URLStreamHandlerSetter realHandler, URL u,
String spec, int start, int limit)

realHandler The object on which setURL must be invoked for this URL.

� Parse a URL. This method is called by the URLStreamHandler proxy, instead

of java.net.URLStreamHandler.parseURL, passing a

URLStreamHandlerSetter object.
OSGi Service-Platform Release 3 167-588

References URL Handlers Service Specification Version 1.0
See Also java.net.URLStreamHandler.parseURL
sameF il e(URL,URL)

8.7.4.8 public boolean sameFile(URL u1, URL u2)

See Also java.net.URLStreamHandler.sameFile
toExternalForm(URL)

8.7.4.9 public String toExternalForm(URL u)

See Also java.net.URLStreamHandler.toExternalForm
URLStreamHandlerSetter

8.7.5 public interface URLStreamHandlerSetter

Interface used by URLStreamHandlerService objects to call the setURL

method on the proxy URLStreamHandler object.

Objects of this type are passed to the

UR LStr eamH andl erS ervic e.pa rse UR L [p.167] method. Invoking the setURL

method on the URLStreamHandlerSetter object will invoke the setURL

method on the proxy URLStreamHandler object that is actually registered

with java.net.URL for the protocol.

setURL(URL,String,String,int,S tring,String)

8.7.5.1 public void setURL(URL u, String protocol, String host, int port, String
fi le, String ref)

See Also java.net.URLStreamHandler.setURL(URL,String,String,int,String,
String)

Deprecated This method is only for compatibility with handlers written for JDK 1.1.
setURL(URL,String,String,int,S tring,String,String ,String,String)

8.7.5.2 public void setURL(URL u, String protocol, String host, int port, String
authority, String userInfo, String path, String query, String ref)

See Also java.net.URLStreamHandler.setURL(URL,String,String,int,String,
String,String,String)

8.8 References

[18] Java .net

http://java.sun.com/j2se/1.4/docs/api/java/net/package-summary.html

[19] URLs

http://www.ietf.org/rfc/rfc1738.txt

[20] MIME Multipurpose Internet Mail Extension

http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html

[21] Assigned MIME Media Types

http://www.iana.org/assignments/media-types
168-588 OSGi Service-Platform Release 3

Log Service Specification Version 1.2 Introduction
9 Log Service

Specification

Version 1.2

9.1 Introduction

The Log Service provides a general purpose message logger for the OSGi Ser-
vice Platform. It consists of two services, one for logging information and

another for retrieving current or previously recorded log information.

This specification defines the methods and semantics of interfaces which

bundle developers can use to log entries and to retrieve log entries.

Bundles can use the Log Service to log information for the Operator. Other

bundles, oriented toward management of the environment, can use the Log

Reader Service to retrieve Log Entry objects that were recorded recently or to

receive Log Entry objects as they are logged by other bundles.

9.1.1 Entities

• LogService – The service interface that allows a bundle to log infor-

mation, including a message, a level, an exception, a S ervic eRe fer enc e

object, and a Bu ndle object.

• LogEntry - An interface that allows access to a log entry in the log. It

includes all the information that can be logged through the Log Service
and a time stamp.

• LogReaderService - A service interface that allows access to a list of recent

Lo gEntry objects, and allows the registration of a Lo gListe ner object that

receives L ogEntr y objects as they are created.

• LogListener - The interface for the listener to Lo gEntry objects. Must be

registered with the Log Reader Service.
OSGi Service-Platform Release 3 169-588

The Log Service Interface Log Service Specif ication Version 1.2
Figure 26 Log Service Class Diagram org.osgi.service.log package

9.2 The Log Service Interface

The Lo gSe rvice interface allows bundle developers to log messages that can

be distributed to other bundles, which in turn can forward the logged

entries to a file system, remote system, or some other destination.

The L ogS ervic e interface allows the bundle developer to:

• Specify a message and/or exception to be logged.

• Supply a log level representing the severity of the message being logged.

This should be one of the levels defined in the L ogS ervic e interface but it
may be any integer that is interpreted in a user-defined way.

• Specify the Service associated with the log requests.

By obtaining a Log Ser vi ce object from the Framework service registry, a

bundle can start logging messages to the LogService object by calling one of

the Lo gSe rvice methods. A Log Service object can log any message, but it is
primarily intended for reporting events and error conditions.

The L ogS ervic e interface defines these methods for logging messages:

• log (in t , Str ing) – This method logs a simple message at a given log level.

• log (in t , S tr ing, Thr ow abl e) – This method logs a message with an
exception at a given log level.

• log (S ervic eRe fer enc e, int , Str i ng) – This method logs a message asso-

ciated with a specific service.

• log (S ervic eRe fer enc e, int , Str i ng, Th ro wa ble) – This method logs a

message with an exception associated with a specific service.

While it is possible for a bundle to call one of the lo g methods without pro-

viding a Se rvice Ref er ence object, it is recommended that the caller supply

the Se rvice Ref er ence argument whenever appropriate, because it provides

important context information to the operator in the event of problems.

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user bundle

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

or register
listener

Bundle using
Log Service

Bundle using
Log Reader
Service

Log implementation bundle
170-588 OSGi Service-Platform Release 3

Log Service Specification Version 1.2 Log Level and Error Severity
The following example demonstrates the use of a lo g method to write a mes-
sage into the log.

logService.log(
myServiceReference,
LogService.LOG_INFO,
"myService is up and running"

);

In the example, the myS ervic eRe fer enc e parameter identifies the service

associated with the log request. The specified level, Lo gSe rvice .LO G_INF O ,

indicates that this message is informational.

The following example code records error conditions as log messages.

try {
FileInputStream fis = new FileInputStream("myFile");
int b;
while ((b = fis.read()) != -1) {

...
}
fis.close();

}
catch (IOException exception) {

logService.log(
myServiceReference,
LogService.LOG_ERROR,
"Cannot access file",
exception);

}

Notice that in addition to the error message, the exception itself is also
logged. Providing this information can significantly simplify problem deter-

mination by the Operator.

9.3 Log Level and Error Severity

The log methods expect a log level indicating error severity, which can be

used to filter log messages when they are retrieved. The severity levels are

defined in the Lo gSer vice interface.

Callers must supply the log levels that they deem appropriate when making

log requests. The following table lists the log levels.

Level Descriptions

LO G_DEBU G Used for problem determination and may be irrelevant to anyone but the

bundle developer.

LO G_ERR O R Indicates the bundle or service may not be functional. Action should be
taken to correct this situation.

Table 6 Log Levels
OSGi Service-Platform Release 3 171-588

Log Reader Service Log Service Specif ication Version 1.2
9.4 Log Reader Service

The Log Reader Service maintains a list of Lo gEntr y objects called the log.

The Log Reader Service is a service that bundle developers can use to

retrieve information contained in this log, and receive notifications about

Log En try objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far

into the past the log entries go. Additionally, some log entries may not be

recorded in the log in order to save space. In particular, LO G_DEBU G log

entries may not be recorded. Note that this rule is implementation-depen-

dent. Some implementations may allow a configurable policy to ignore cer-

tain Lo gEntr y object types.

The L ogR ea der Servic e interface defines these methods for retrieving log

entries.

• getLo g() – This method retrieves past log entries as an enumeration with

the most recent entry first.

• addLo gL istene r(Log Listen er) – This method is used to subscribe to the
Log Reader Service in order to receive log messages as they occur. Unlike

the previously recorded log entries, all log messages must be sent to sub-

scribers of the Log Reader Service as they are recorded.

A subscriber to the Log Reader Service must implement the Lo gLi stener

interface.

After a subscription to the Log Reader Service has been started, the sub-
scriber's Lo gLi stener . lo gge d method must be called with a Lo g Entry

object for the message each time a message is logged.

The L ogL istene r interface defines the following method:

• log ged(Lo gEntry) – This method is called for each Lo g Entry object
created. A Log Reader Service implementation must not filter entries to

the Lo gLis tener interface as it is allowed to do for its log. A L og Listene r

object should see all Lo gEntry objects that are created.

The delivery of Lo gEntr y objects to the Lo gLi stener object should be done

asynchronously.

LO G_INFO May be the result of any change in the bundle or service and does not indi-

cate a problem.

LO G_WAR NING Indicates a bundle or service is still functioning but may experience prob-

lems in the future because of the warning condition.

Level Descriptions

Tab le 6 Log Levels
172-588 OSGi Service-Platform Release 3

Log Service Specification Version 1.2 Log Entry Interface
9.5 Log Entry Interface

The Lo gEntr y interface abstracts a log entry. It is a record of the information
that was passed when an event was logged, and consists of a superset of

information which can be passed through the Log Ser vi ce methods. The

Lo gEntry interface defines these methods to retrieve information related to

Lo g Entry objects:

• getB undle () – This method returns the Bundle object related to a L og-
Entry object.

• getExce ptio n() – This method returns the exception related to a Log -

Entry object. In some implementations, the returned exception may not

be the original exception. To avoid references to a bundle defined

exception class, thus preventing an uninstalled bundle from being

garbage collected, the Log Service may return an exception object of an
implementation defined Throwable subclass. This object will attempt to

return as much information as possible, such as the message and stack

trace, from the original exception object .

• getLe ve l() – This method returns the severity level related to a L og Entr y

object.

• getM essa ge() – This method returns the message related to a Lo g Entry
object.

• getSe rvic eRe fer enc e() –This method returns the S ervic eRe fer enc e

object of the service related to a Lo g Entry object.

• getTime() – This method returns the time that the log entry was created.

9.6 Mapping of Events

Implementations of a Log Service must log Framework-generated events

and map the information to Lo gEntry objects in a consistent way. Frame-

work events must be treated exactly the same as other logged events and dis-
tributed to all Log Listene r objects that are associated with the Log Reader

Service. The following sections define the mapping for the three different

event types: Bundle, Service, and Framework.

9.6.1 Bundle Events Mapping

A Bundle Event is mapped to a Lo gEntry object according to Table 7, “Map-

ping of Bundle Events to Log Entries,” on page 173.

Log Entry method Information about Bundle Event

getLe ve l() LO G_INF O

getB undle () Identifies the bundle to which the event happened. In other words,

it identifies the bundle that was installed, started, stopped, updated,
or uninstalled. This identification is obtained by calling

getB undle () on the B undle Eve nt object.

getExce ptio n() nul l

Table 7 Mapping of Bundle Events to Log Entries
OSGi Service-Platform Release 3 173-588

Mapping of Events Log Service Specif ication Version 1.2
9.6.2 Service Events Mapping

A Service Event is mapped to a Lo gEntry object according to Table 8, “Map-

ping of Service Events to Log Entries,” on page 174.

9.6.3 Framework Events Mapping

A Framework Event is mapped to a LogEntry object according to Table 9,

“Mapping of Framework Event to Log Entries,” on page 175.

getSe rvice Ref ere nce () nul l

getMe ssag e() The message depends on the event type:

• INSTALLED – "BundleEvent INSTALLED"

• STARTED – "BundleEvent STARTED"

• STOP PED – "BundleEvent STOPPED"

• UPDATED – "BundleEvent UPDATED"
• UNINS TALL ED – "BundleEvent UNINSTALLED"

Log Entry method Information about Bundle Event

Tab le 7 Mapping of Bundle Events to Log Entries

Log Entry method Information about Service Event

getLeve l() LO G_INFO , except for the Ser vi ceEvent. MO DIFI ED event. This
event can happen frequently and contains relatively little infor-

mation. It must be logged with a level of L OG _DEB U G.

getBu ndle() Identifies the bundle that registered the service associated with

this event. It is obtained by calling
getSe rvice Ref ere nce () .g etBun dle() on the Ser vice Eve nt object.

getExcep tion() nul l

getSe rvice Ref ere nce () Identifies a reference to the service associated with the event. It is
obtained by calling getSe rvice Re fer ence () on the S ervic eEvent

object.

getMe ssag e() This message depends on the actual event type. The messages are

mapped as follows:

• REGIS TER ED – "ServiceEvent REGISTERED"

• MO DIFI ED – "ServiceEvent MODIFIED"

• UNR EGISTER ING – "ServiceEvent UNREGISTERING"

Tab le 8 Mapping of Service Events to Log Entries
174-588 OSGi Service-Platform Release 3

Log Service Specification Version 1.2 Security
9.7 Security

The Log Service should only be implemented by trusted bundles. This bun-

dle requires Se rvic ePer missio n[REGI STER,L ogS ervic e|L og Rea der Ser vi ce].

Virtually all bundles should get Ser viceP ermis sio n[G ET, Log Ser vi ce] . The

Ser viceP ermiss ion [G ET,L og Rea der Ser vi ce] should only be assigned to
trusted bundles.

9.8 Changes

 The following clarifications were made.

• The interpretation of the log level has been clarified to allow arbitrary

integers.

• New Framework Event type strings are defined.

• Lo gEntry.g etExc eptio n is allowed to return a different exception object
than the original exception object in order to allow garbage collection of

the original object.

• The a ddLo gLi stener method in the Log Reader Service no longer adds the

same listener object twice.

• Delivery of Log Event objects to Log Listener objects must happen asyn-

chronously. This delivery mode was undefined in previous releases.

Log Entry method Information about Framework Event

getLe ve l() LO G_INF O , except for the FrameworkEvent.ERR O R event. This

event represents an error and is logged with a level of LO G_ER RO R.

getB undle () Identifies the bundle associated with the event. This may be the sys-

tem bundle. It is obtained by calling getB undle () on the

Fr amew or kEvent object.

getExce ptio n() Identifies the exception associated with the error. This will be null

for event types other than ERROR. It is obtained by calling

getThro w abl e() on the Fr amew or kEvent object.

getSe rvic eRe fer enc e() nul l

getM essa ge() This message depends on the actual event type. The messages are

mapped as follows:

• STARTED – "FrameworkEvent STARTED"

• ERR O R – "FrameworkEvent ERROR"
• PAC KAG ES_REF RESH ED – "FrameworkEvent PACKAGES

REFRESHED"

• STARTLEVEL_C HANGED – "FrameworkEvent STARTLEVEL

CHANGED"

Table 9 Mapping of Framework Event to Log Entries
OSGi Service-Platform Release 3 175-588

org.osgi.service. log Log Service Specif ication Version 1.2
9.9 org.osgi.service.log

The OSGi Log Service Package. Specification Version 1.2.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.log; specification-ver-
sion=1.2

9.9.1 Summary

• LogEntry – Provides methods to access the information contained in an

individual Log Service log entry. [p.169]

• LogListener – Subscribes to LogEntry objects from the

LogReaderService. [p.169]
• LogReaderService – Provides methods to retrieve LogEntry objects from

the log. [p.169]

• LogService – Provides methods for bundles to write messages to the log.

[p.169]
LogEntry

9.9.2 public interface LogEntry

Provides methods to access the information contained in an individual Log

Service log entry.

A LogEntry object may be acquired from the LogReaderService.getLog

method or by registering a LogListener object.

See Also LogReaderService.getLog[p.178] , LogListener[p.169]
getBund le()

9.9.2.1 public Bundle getBundle()

� Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; null if no bundle is associated

with this LogEntry object.
getException()

9.9.2.2 public Throwable getException()

� Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original

exception. To avoid references to a bundle defined exception class, thus pre-

venting an uninstalled bundle from being garbage collected, the Log Service

may return an exception object of an implementation defined Throwable
subclass. The returned object will attempt to provide as much information

as possible from the original exception object such as the message and stack

trace.

Returns Throwable object of the exception associated with this LogEntry; null if no

exception is associated with this LogEntry objcet.
getLevel ()

9.9.2.3 public int getLevel()

� Returns the severity level of this LogEntry object.

This is one of the severity levels defined by the LogService interface.

Returns Severity level of this LogEntry object.
176-588 OSGi Service-Platform Release 3

Log Service Specification Version 1.2 org.osgi.service.log
See Also LogService.LOG_ERROR[p.179] , LogService.LOG_WARNING[p.179] ,
LogService.LOG_INFO[p.179] , LogService.LOG_DEBUG[p.178]
getMessage()

9.9.2.4 public String getMessage()

� Returns the human readable message associated with this LogEntry object.

Returns String containing the message associated with this LogEntry object.
getServiceReference()

9.9.2.5 public ServiceReference getServiceReference()

� Returns the ServiceReference object for the service associated with this

LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry ob-

ject; null if no ServiceReference object was provided.
getTime()

9.9.2.6 public long getTime()

� Returns the value of currentTimeMillis() at the time this LogEntry object

was created.

Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMillis()
LogL istener

9.9.3 public interface LogListener
extends EventListener

Subscribes to LogEntry objects from the LogReaderService.

A LogListener object may be registered with the Log Reader Service using

the LogReaderService.addLogListener method. After the listener is regis-

tered, the logged method will be called for each LogEntry object created.

The LogListener object may be unregistered by calling the
LogReaderService.removeLogListener method.

See Also LogReaderService[p.169] , LogEntry[p.169] ,

LogReaderService.addLogListener(LogListener)[p.178] ,

LogReaderService.removeLogListener(LogListener)[p.178]
logged (LogEntry)

9.9.3.1 public void logged(LogEntry entry)

entry A LogEntry object containing log information.

� Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as

possible.

See Also LogEntry[p.169]
LogReaderService

9.9.4 public interface LogReaderService

Provides methods to retrieve LogEntry objects from the log.

There are two ways to retrieve LogEntry objects:

• The primary way to retrieve LogEntry objects is to register a
LogListener object whose LogListener.logged method will be called

for each entry added to the log.

• To retrieve past LogEntry objects, the getLog method can be called

which will return an Enumeration of all LogEntry objects in the log.
OSGi Service-Platform Release 3 177-588

org.osgi.service. log Log Service Specif ication Version 1.2
See Also LogEntry[p.169] , LogListener[p.169] ,
LogListener.logged(LogEntry)[p.177]
addLogLi stener(LogLi stener)

9.9.4.1 public void addLogListener(LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive

LogEntry objects.

� Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service.

The LogListener.logged(LogEntry) method will be called for each

LogEntry object placed into the log.

When a bundle which registers a LogListener object is stopped or other-

wise releases the Log Reader Service, the Log Reader Service must remove all

of the bundle’s listeners.

If this Log Reader Service’s list of listeners already contains a listener l such
that (l==listener), this method does nothing.

See Also LogListener[p.169] , LogEntry[p.169] ,

LogListener.logged(LogEntry)[p.177]
getLog()

9.9.4.2 public Enumeration getLog()

� Returns an Enumeration of all LogEntry objects in the log.

Each element of the enumeration is a LogEntry object, ordered with the

most recent entry first. Whether the enumeration is of all LogEntry objects

since the Log Service was started or some recent past is implementation-spe-

cific. Also implementation-specific is whether informational and debug
LogEntry objects are included in the enumeration.

removeLogL istener (LogLi stener)

9.9.4.3 public void removeLogListener(LogListener listener)

listener A LogListener object to unregister.

� Unsubscribes to LogEntry objects.

This method unregisters a LogListener object from the Log Reader Service.

If listener is not contained in this Log Reader Service’s list of listeners, this
method does nothing.

See Also LogListener[p.169]
LogService

9.9.5 public interface LogService

Provides methods for bundles to write messages to the log.

LogService methods are provided to log messages; optionally with a

ServiceReference object or an exception.

Bundles must log messages in the OSGi environment with a severity level
according to the following hierarchy:

1 LO G_ER R OR [p.179]

2 LO G_WAR NING [p.179]

3 LO G_INFO [p.179]

4 LO G_DEB U G [p.178]
LOG_DEBUG
178-588 OSGi Service-Platform Release 3

Log Service Specification Version 1.2 org.osgi.service.log
9.9.5.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to

anyone but the bundle developer.

LOG_ERROR

9.9.5.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.

LOG_INFO

9.9.5.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and

does not indicate a problem.

LOG_WARNING

9.9.5.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may expe-

rience problems in the future because of the warning condition.

log(int,String)

9.9.5.5 public void log(int level, String message)

level The severity of the message. This should be one of the defined log levels but

may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

� Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object

will be set to null.

See Also LOG_ERROR[p.179] , LOG_WARNING[p.179] , LOG_INFO[p.179] , LOG_DEBUG[p.178]
log(int,String,Throwable)

9.9.5.6 public void log(int level, String message, Throwable exception)

level The severity of the message. This should be one of the defined log levels but

may be any integer that is interpreted in a user defined way.

message The human readable string describing the condition or null.

exception The exception that reflects the condition or null.

� Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to null.

See Also LOG_ERROR[p.179] , LOG_WARNING[p.179] , LOG_INFO[p.179] , LOG_DEBUG[p.178]
log(ServiceReference,int,Str ing)

9.9.5.7 public void log(ServiceReference sr, int level, String message)

sr The ServiceReference object of the service that this message is associated

with or null.

level The severity of the message. This should be one of the defined log levels but

may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.
OSGi Service-Platform Release 3 179-588

org.osgi.service. log Log Service Specif ication Version 1.2
� Logs a message associated with a specific ServiceReference object.

The Throwable field of the LogEntry will be set to null.

See Also LOG_ERROR[p.179] , LOG_WARNING[p.179] , LOG_INFO[p.179] , LOG_DEBUG[p.178]
log(ServiceReference,int,String,Throwab le)

9.9.5.8 public void log(ServiceReference sr, int level , String message,
Throwable exception)

sr The ServiceReference object of the service that this message is associated

with.

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

exception The exception that reflects the condition or null.

� Logs a message with an exception associated and a ServiceReference

object.

See Also LOG_ERROR[p.179] , LOG_WARNING[p.179] , LOG_INFO[p.179] , LOG_DEBUG[p.178]
180-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Introduction
10 Configuration Admin

Service Specification

Version 1.1

10.1 Introduction

The Configuration Admin service is an important aspect of the deployment
of an OSGi Service Platform. It allows an Operator to set the configuration

information of deployed bundles.

Configuration is the process of defining the configuration data of bundles

and assuring that those bundles receive that data when they are active in the

OSGi Service Platform.

Figure 27 Configuration Admin Service Overview

10.1.1 Essentials

The following requirements and patterns are associated with the Configura-

tion Admin service specification:

• Local Configuration – The Configuration Admin service must support

bundles that have their own user interface to change their configura-

tions.

• Reflection – The Configuration Admin service must be able to deduce the

names and types of the needed configuration data.
• Legacy – The Configuration Admin service must support configuration

data of existing entities (such as devices).

• Object Oriented – The Configuration Admin service must support the cre-

ation and deletion of instances of configuration information so that a

bundle can create the appropriate number of services under the control

of the Configuration Admin service.

port=?
secure=?

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration

Configuration
Admin

data
OSGi Service-Platform Release 3 181-588

Introduction Configuration Admin Service Specification Version 1.1
• Embedded Devices – The Configuration Admin service must be deployable
on a wide range of platforms. This requirement means that the interface

should not assume file storage on the platform. The choice to use file

storage should be left to the implementation of the Configuration

Admin service.

• Remote versus Local Management – The Configuration Admin service must

allow for a remotely managed OSGi Service Platform, and must not
assume that configuration information is stored locally. Nor should it

assume that the Configuration Admin service is always done remotely.

Both implementation approaches should be viable.

• Availability – The OSGi environment is a dynamic environment that

must run continuously (24/7/365). Configuration updates must happen

dynamically and should not require restarting of the system or bundles.
• Immediate Response – Changes in configuration should be reflected imme-

diately.

• Execution Environment – The Configuration Admin service will not

require more than an environment that fulfills the minimal execution

requirements.

• Communications – The Configuration Admin service should not assume
“always-on” connectivity, so the API is also applicable for mobile applica-

tions in cars, phones, or boats.

• Extendability – The Configuration Admin service should expose the

process of configuration to other bundles. This exposure should at a

minimum encompass initiating an update, removing certain configu-

ration properties, adding properties, and modifying the value of prop-

erties potentially based on existing property or service values.
• Complexity Trade-offs – Bundles in need of configuration data should

have a simple way of obtaining it. Most bundles have this need and the

code to accept this data. Additionally, updates should be simple from the

perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle

implementing the Configuration Admin service and in favor of bundles
that need configuration information. The reason for this choice is that

normal bundles will outnumber Configuration Admin bundles.

10.1.2 Operation

This specification is based on the concept of a Configuration Admin service
that manages the configuration of an OSGi Service Platform. It maintains a

database of C on figur at io n objects, locally or remote. This service monitors

the service registry and provides configuration information to services that

are registered with a ser vice. pid property, the Persistent IDentity (PID), and

implement one of the following interfaces:

• Managed Service – A service registered with this interface receives its con-

figuration dictionary from the database or receives null when no such con-

figuration exists or when an existing configuration has never been

updated.

• Managed Service Factory – Services registered with this interface receive

several configuration dictionaries when registered. The database con-
tains zero or more configuration dictionaries for this service. Each con-

figuration dictionary is given sequentially to the service.
182-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Introduction
The database can be manipulated either by the Management Agent or bun-
dles that configure themselves.

Other parties can provide Configuration Plugin services. Such services par-

ticipate in the configuration process. They can inspect the configuration

dictionary and modify it before it reaches the target service.

10.1.3 Entities

• Configuration information – The information needed by a bundle before it

can provide its intended functionality.

• Configuration dictionary – The configuration information when it is

passed to the target service. It consists of a Dict io na ry object with a

number of properties and identifiers.
• Configuring Bundle – A bundle that modifies the configuration infor-

mation through the Configuration Admin service. This bundle is either a

management bundle or the bundle for which the configuration infor-

mation is intended.

• Configuration Target – The target (bundle or service) that will receive the

configuration information. For services, there are two types of targets:
Ma nage dSer vi ceF ac tor y or Mana gedS ervic e objects.

• Configuration Admin Service – This service is responsible for supplying

configuration target bundles with their configuration information. It

maintains a database with configuration information, keyed on the

ser vi ce. pid of configuration target services. These services receive their

configuration dictionary or dictionaries when they are registered with
the Framework. Configurations can be modified or extended using Con-

figuration Plugin services before they reach the target bundle.

• Managed Service – A Managed Service represents a client of the Configu-

ration Admin service, and is thus a configuration target. Bundles should

register a Managed Service to receive the configuration data from the

Configuration Admin service. A Managed Service adds a unique
ser vi ce. pid service registration property as a primary key for the config-

uration information.

• Managed Service Factory – A Managed Service Factory can receive a

number of configuration dictionaries from the Configuration Admin

service, and is thus also a configuration target service. It should register

with a servic e.p id and receives zero or more configuration dictionaries.
Each dictionary has its own PID.

• Configuration Object – Implements the Co nfi gura t ion interface and con-

tains the configuration dictionary for a Managed Service or one of the

configuration dictionaries for a Managed Service Factory. These objects

are manipulated by configuring bundles.

• Configuration Plugin Services – Configuration Plugin services are called
before the configuration dictionary is given to the configuration targets.

The plug-in can modify the configuration dictionary, which is passed to

the Configuration Target.
OSGi Service-Platform Release 3 183-588

Configuration Targets Configuration Admin Service Specification Version 1.1
Figure 28 Configuration Admin Class Diagram org.osgi.service.cm

10.2 Configuration Targets

One of the more complicated aspects of this specification is the subtle dis-

tinction between the Ma nage dSer vice and Man aged Ser vi ceF acto ry classes.

Both receive configuration information from the Configuration Admin ser-
vice and are treated similarly in most respects. Therefore, this specification

refers to configuration targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the config-

uration dictionary. A Managed Service is used when an existing entity needs

a configuration dictionary. Thus, a one-to-one relationship always exists
between the configuration dictionary and the entity.

<<interface>>
Configuration
Admin

<<interface>>
Configuration

<<interface>>
Managed
Service

<<interface>>
Man. Service
Factory

<<interface>>
Configuration
Plugin

Configuration
Adm. Impl.

config. objects

a Managed
Service Factory
Impl

a Managed
Service Impl

a configured
instance of some
type

Plugin Impl

Factory
configuration
impl

Managed Service
configuration
impl

a cnfg application
(e.g. remote
management)

config information

send

set configuration
properties via

1

0..n

Modify

1

configuration

1

0..n

1

0..n

0..n

1

10..n

0..n

1

send
configuration

for some object

config
information

information

bundle using
ManagedService

bundle
configuring

bundle using
ManagedService

Factory

Configuration Admin implementation
bundle

plugin bundle

Config.
Exception

properties
184-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 The Persistent Identity
A Managed Service Factory is used when part of the configuration is to
define how many instances are required. A management bundle can create,

modify, and delete any number of instances for a Managed Service Factory

through the Configuration Admin service. Each instance is configured by a

single C o nfig urat i on object. Therefore, a Managed Service Factory can have

multiple associated C onf igur at io n objects.

Figure 29 Differentiation of ManagedService and ManagedServiceFactory Classes

To summarize:

• A Managed Service must receive a single configuration dictionary when it

is registered or when its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dic-

tionaries when it registers, depending on the current configuration. The

Managed Service Factory is informed of configuration dictionary

changes: modifications, creations, and deletions.

10.3 The Persistent Identity

A crucial concept in the Configuration Admin service specification is the

Persistent IDentity (PID). Its purpose is to act as a primary key for objects

that need a configuration dictionary. The name of the service property for

PID is defined in the Framework in

or g.o sgi . f r amew or k.C o nstants. SERVI CE_PID .

A PID is a unique identifier for a service that persists over multiple invoca-

tions of the Framework.

When a bundle registers a service with a PID, it should set property

ser vi ce. pid to a unique value. For that service, the same PID should always

be used. If the bundle is stopped and later started, the same PID should be
used.

PIDs can be useful for all services, but the Configuration Admin service

requires their use with Managed Service and Managed Service Factory regis-

trations because it associates its configuration data with PIDs.

PIDs must be unique for each service. A bundle must not register multiple
configuration target services with the same PID. If that should occur, the

Configuration Admin service must:

• Send the appropriate configuration data to all services registered under

that PID from that bundle only.

• Report an error in the log.
• Ignore duplicate PIDs from other bundles and report them to the log.

Framework Service

ManagedService ManagedServiceFactory

Management layer

Service layer

Registry
OSGi Service-Platform Release 3 185-588

The Persistent Identity Configuration Admin Service Specification Version 1.1
10.3.1 PID Syntax

PIDs are intended for use by other bundles, not by people, but sometimes

the user is confronted with a PID. For example, when installing an alarm
system, the user needs to identify the different components to a wiring

application. This type of application exposes the PID to end users.

The schemes for PIDs that are defined in this specification should be fol-

lowed.

Any globally unique string can be used as a PID. The following sections,

however, define schemes for common cases. These schemes are not

required, but bundle developers are urged to use them to achieve consis-

tency.

10.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a dot (.)

are reserved for a bundle. As an example, a PID of "65.536" would belong to

the bundle with a bundle identity of 65.

10.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package

name they own as the PID (the reverse domain name scheme). As an exam-

ple, the PID named c om. acme. wa tchdo g would represent a Watchdog ser-

vice from the ACME company.

10.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device,

such as a unique serial number or an address, is a good component of a PID.

The format of the serial number should be the same as that printed on the

housing or box, to aid in recognition..

Bus Example Format Description

USB USB - 0123 -0 002-
990 98 73

idVendo r (hex 4)
idPr oduc t (hex 4)

iSer ia lNu mb er (deci -

ma l)

Uni ve rsa l Se r ia l B us.
Use the stan dar d

device de scr ipto r .

IP IP- 172. 16 .28 .21 IP nr (do tted dec imal) Inter net P ro toc ol

802 802-

00:6 0: 97: 00: 9A:56

MAC ad dres s w ith :

sepa rato rs

IEEE 80 2 M AC

addr ess (To ken R ing,

Ethe rne t, . . .)

ONE ONE- 06-

0000 0021E46 1

Famil y (hex 2) and

ser i a l number inc lud-

ing CR C (hex 6)

1- wi re bus of Da l las

Semic ondu cto r

CO M CO M- kru ps-b rew er -
12323

ser i a l number o r typ e
name of de vi ce

Ser ia l po rts

Tab le 10 Schemes for Device-Oriented PID Names
186-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 The Configuration Object
10.4 The Configuration Object

A C on figur at io n object contains the configuration dictionary, which is a set
of properties that configure an aspect of a bundle. A bundle can receive

Co nf igura t io n objects by registering a configuration target service with a

PID service property. See The Persistent Identity on page 185 for more infor-

mation about PIDs.

During registration, the Configuration Admin service must detect these
configuration target services and hand over their configuration dictionary

via a callback. If this configuration dictionary is subsequently modified, the

modified dictionary is handed over to the configuration target again with

the same callback.

The C onf igur at io n object is primarily a set of properties that can be updated
by a Management Agent, user interfaces on the OSGi Service Platform, or

other applications. Configuration changes are first made persistent, and

then passed to the target service via a call to the upda ted method in the

Ma nage dSer vi ceF ac tor y or Mana gedS ervic e class.

A Configuration object must be uniquely bound to a Managed Service or
Managed Service Factory. This implies that a bundle must not register a

Managed Service Factory with a PID that is the same as the PID given to a

Managed Service.

10.4.1 Location Binding

When a Co nfi gura t ion object is created by either getC o nf ig urat i on or
cr eateF ac tor yCo nf ig ura t ion , it becomes bound to the location of the calling

bundle. This location is obtained with the associated bundle’s getLo ca t ion

method.

Location binding is a security feature that assures that only management

bundles can modify configuration data, and other bundles can only modify
their own configuration data. A Sec ur ityExce ptio n is thrown if a bundle

other than a Management Agent bundle attempts to modify the configura-

tion information of another bundle.

If a Managed Service is registered with a PID that is already bound to

another location, the normal callback to Ma nage dSer vi ce. upda te d must
not take place.

The two argument versions of g etC onf igur at io n and

cr eateF ac tor yCo nf ig ura t ion take a location Str ing as their second argu-

ment. These methods require AdminPer missio n , and they create

Co nf igura t io n objects bound to the specified location, instead of the loca-
tion of the calling bundle. These methods are intended for management

bundles.

The creation of a C on figur at io n object does not in itself initiate a callback to

the target.
OSGi Service-Platform Release 3 187-588

The Configuration Object Configuration Admin Service Specification Version 1.1
A nu l l location parameter may be used to create C o nfigu rat i on objects that
are not bound. In this case, the objects become bound to a specific location

the first time that they are used by a bundle. When this dynamically bound

bundle is subsequently uninstalled, the Co nfi gura t ion object’s bundle loca-

tion must be set to nul l again so it can be bound again later.

A management bundle may create a Co nf igura t io n object before the associ-
ated Managed Service is registered. It may use a nul l location to avoid any

dependency on the actual location of the bundle which registers this ser-

vice. When the Managed Service is registered later, the C onf igur at io n object

must be bound to the location of the registering bundle, and its configura-

tion dictionary must then be passed to M ana gedS ervic e.up dated .

10.4.2 Configuration Properties

A configuration dictionary contains a set of properties in a Dic t io nar y

object. The value types that must be used are the same types as the types

supported in the Framework service registry, which are defined as:

type ::=
 String | Integer | Long | Float
| Double | Byte | Short | Character
| Boolean
| vector
| arrays

primitive ::=
 long | int | short | char
| byte | boolean | double | float

arrays ::=
primitive ‘[]’ | type ‘[]’

vector = <Vector of type>

The name or key of a property must always be a Str ing object, and is not case

sensitive during look up, but must preserve the original case.

Bundles should not use nested vectors or arrays, nor should they use mixed

types. Using mixed types or nesting makes it impossible to use the meta typ-

ing specification. See Metatype Specification on page 377.

10.4.3 Property Propagation

An implementation of a Managed Service should copy all the properties of

the Dic t iona ry object argument in upda ted(Dict io na ry) , known or

unknown, into its service registration properties using

Servic eR egis tr at io n.s etPro pe rt ies .

This propagation allows the development of applications that leverage the
Framework service registry more extensively, so compliance with this

mechanism is advised.
188-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Managed Service
A configuration target service may ignore any configuration properties it
does not recognize, or it may change the values of the configuration proper-

ties before these properties are registered. Configuration properties in the

Framework service registry are not strictly related to the configuration

information.

Bundles that cooperate with the propagation of configuration properties
can participate in horizontal applications. For example, an application that

maintains physical location information in the Framework service registry

could find out where a particular device is located in the house or car. This

service could use a property dedicated to the physical location and provide

functions that leverage this property, such as a graphic user interface that

displays these locations.

10.4.4 Automatic Properties

The Configuration Admin service must automatically add a number of

properties to the configuration dictionary. If these properties are also set by

a configuring bundle or a plug-in, they must always be overridden before

they are given to the target service. See Configuration Plugin on page 201,
Therefore, the receiving bundle or plug-in can assume that the following

properties are defined by the Configuration Admin service and not by the

configuring bundle:

• ser vi ce. pid – Set to the PID of the associated Co nfi gura t ion object.

• ser vi ce. fac tor yPid – Only set for a Managed Service Factory. It is then set
to the PID of the associated Managed Service Factory.

• ser vi ce. bundle Lo cat io n – Set to the location of the bundle that can use

this Co nf igura t io n object. This property can only be used for searching,

it may not appear in the configuration dictionary returned from the

getPr op ert ie s method due to security reasons, nor may it be used when

the target is updated.

Constants for some of these properties can be found in

or g.o sgi . f r amew or k.C o nstants . These system properties are all of type

Str i ng .

10.4.5 Equality

Two different Co nfi gura t io n objects can actually represent the same under-

lying configuration. This means that a C onf igur at io n object must imple-

ment the equa ls and ha shCo de methods in such a way that two

Co nf igura t io n objects are equal when their PID is equal.

10.5 Managed Service

A Managed Service is used by a bundle that needs one configuration dictio-

nary and is thus associated with one C o nfig ura ti on object in the Configura-
tion Admin service.

A bundle can register any number of Ma nag edSe rvice objects, but each

must be identified with its own PID.

A bundle should use a Managed Service when it needs configuration infor-
mation for the following:
OSGi Service-Platform Release 3 189-588

Managed Service Configuration Admin Service Specification Version 1.1
• A Singleton – A single entity in the bundle that needs to be configured.
• Externally Detected Devices – Each device that is detected causes a regis-

tration of an associated Ma nag edSe rvice object. The PID of this object is

related to the identity of the device, such as the address or serial number.

10.5.1 Networks

When a device in the external world needs to be represented in the OSGi
Environment, it must be detected in some manner. The Configuration

Admin service cannot know the identity and the number of instances of the

device without assistance. When a device is detected, it still needs configu-

ration information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are
attached and removed. When it detects a temperature sensor, it could regis-

ter a Sensor service with the Framework service registry. This Sensor service

needs configuration information specifically for that sensor, such as which

lamps should be turned on, at what temperature the sensor is triggered,

what timer should be started, in what zone it resides, and so on. One bundle

could potentially have hundreds of these sensors and actuators, and each
needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with

a PID related to the physical sensor (such as the address) to receive configu-

ration information.

Other examples are services discovered on networks with protocols like Jini,

UPnP, and Salutation. They can usually be represented in the Framework

service registry. A network printer, for example, could be detected via UPnP.

Once in the service registry, these services usually require local configura-

tion information. A Printer service needs to be configured for its local role:

location, access list, and so on.

This information needs to be available in the Framework service registry

whenever that particular Printer service is registered. Therefore, the Config-

uration Admin service must remember the configuration information for

this Printer service.

This type of service should register with the Framework as a Managed Ser-

vice in order to receive appropriate configuration information.

10.5.2 Singletons

When an object must be instantiated only once, it is called a singleton. A
singleton requires a single configuration dictionary. Bundles may imple-

ment several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and

presence of services in the Framework service registry. Only one instance of

a Watchdog service is needed, so only a single configuration dictionary is
required that contains the polling time and the list of services to watch.
190-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Managed Service
10.5.3 Configuring Managed Services

A bundle that needs configuration information should register one or more

Ma nage dSer vi ce objects with a PID service property. If it has a default set of
properties for its configuration, it may include them as service properties of

the Managed Service. These properties may be used as a configuration tem-

plate when a C onf igur at io n object is created for the first time. A Managed

Service optionally implements the Me taTypePr ovide r interface to provide

information about the property types. See Meta Typing on page 204.

When this registration is detected by the Configuration Admin service, the

following steps must occur:

• The configuration stored for the registered PID must be retrieved. If there

is a C o nfig ura ti on object for this PID, it is sent to the Managed Service

with upda ted(Dict i ona ry) .
• If a Managed Service is registered and no configuration information is

available, the Configuration Admin service must call

upda ted(Dict io na ry) with a nul l parameter.

• If the Configuration Admin service starts after a Managed Service is regis-

tered, it must call up dated (Di ct io nar y) on this service as soon as pos-

sible. For this reason, a Managed Service must always get a callback
when it registers and the Configuration Admin service is started.

The update d(Dict io nar y) callback from the Configuration Admin service to

the Managed Service must take place asynchronously. This requirement

allows the Managed Service to finish its initialization in a synchronized

method without interference from the Configuration Admin service call-

back.

Care should be taken not to cause deadlocks by calling the Framework

within a synchronized method.

Figure 30 Managed Service Configuration Action Diagram

The update d method may throw a C on figur at io nExce ptio n. This object

must describe the problem and what property caused the exception.

Client Bundle Framework Admin

new

registerService()

send registered event

updated()

Configuration

get for PID

Implementor of

Managed Service

set the

configuration

get pid from props
Must be on another thread
OSGi Service-Platform Release 3 191-588

Managed Service Configuration Admin Service Specification Version 1.1
10.5.4 Race Conditions

When a Managed Service is registered, the default properties may be visible

in the service registry for a short period before they are replaced by the prop-
erties of the actual configuration dictionary. Care should be taken that this

visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must

be split into two pieces: an object performing the actual service and a Man-

aged Service. First, the Managed Service is registered, the configuration is
received, and the actual service object is registered. In such cases, the use of a

Managed Service Factory that performs this function should be considered.

10.5.5 Examples of Managed Service

Figure 31 shows a Managed Service configuration example. Two services are

registered under the Ma nage dSe rvice interface, each with a different PID.

Figure 31 PIDs and External Associations

The Configuration Admin service has a database containing a configuration

record for each PID. When the Managed Service with s ervic e.pi d =

co m. ac me .fud d is registered, the Configuration Admin service will retrieve

the properties name =Elme r and s i ze=42 from its database. The properties

are stored in a Dict i ona ry object and then given to the Managed Service with
the upd ated(Dic t iona ry) method.

10.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet

connection. It is a singleton, so it uses a Ma nage dSer vice object to get its
configuration information: the port and the network name on which it

should register.

class SampleManagedService implements ManagedService {
Dictionary properties;
ServiceRegistration registration;
Console console;

public synchronized void start(

Configuration
Admin Impl

16.1

com.

name=Erica

name=Elmer

database com.acme.fudd

4.102 name=Christer
size=2

Managed Service

size=8

acme.fudd size=42

PID configuration

= service

pid=4.102

OSGi
Service
Registry

no associated PID registered

events
192-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Managed Service Factory
BundleContext context) throws Exception {
properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

"com.acme.console");
properties.put("port", new Integer(2011));

registration = context.registerService(
ManagedService.class.getName(),
this,
properties

);
}

public synchronized void updated(Dictionary np) {
if (np != null) {

properties = np;
properties.put(

Constants.SERVICE_PID, "com.acme.console");
}

if (console == null)
console = new Console();

int port = ((Integer)properties.get("port"))
.intValue();

String network = (String) properties.get("network");
console.setPort(port, network);
registration.setProperties(properties);

}
... further methods

}

10.5.6 Deletion

When a Co nfi gura t ion object for a Managed Service is deleted, the Configu-

ration Admin service must call up dated (Dic t io nary) with a nul l argument

on a thread that is different from that on which the C on figur at io n. delete
was executed.

10.6 Managed Service Factory

A Managed Service Factory is used when configuration information is

needed for a service that can be instantiated multiple times. When a Man-

aged Service Factory is registered with the Framework, the Configuration

Admin service consults its database and calls upda ted(Str i ng,Dic t io nary)

for each associated C o nfigu rat i on object. It passes the identifier of the

instance, which can be used as a PID, as well as a Dic ti ona ry object with the
configuration properties.
OSGi Service-Platform Release 3 193-588

Managed Service Factory Configuration Admin Service Specification Version 1.1
A Managed Service Factory is useful when the bundle can provide function-
ality a number of times, each time with different configuration dictionaries.

In this situation, the Managed Service Factory acts like a class and the Con-

figuration Admin service can use this Managed Service Factory to instantiate

instances for that class.

In the next section, the word factory refers to this concept of creating
instances of a function defined by a bundle that registers a Managed Service

Factory.

10.6.1 When to Use a Managed Service Factory

A Managed Service Factory should be used when a bundle does not have an

internal or external entity associated with the configuration information
but can potentially be instantiated multiple times.

10.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has – a

function likely to be required for different users. This function could be
viewed as a class that needs to be instantiated for each user. Each instance

requires different parameters, including password, host, protocol, user id,

and so on.

An implementation of the Email Fetcher service should register a

Mana gedS ervic eF acto ry object. In this way, the Configuration Admin ser-
vice can define the configuration information for each user separately. The

Email Fetcher service will only receive a configuration dictionary for each

required instance (user).

10.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that

receives a temperature and, depending on settings, can turn an actuator on

and off. This service would need to be instantiated many times depending

on where it is needed. Each instance would require its own configuration

information for the following:

• Upper value

• Lower value

• Switch Identification

• ...

Such a conversion service should register a service object under a
Mana gedS ervic eF acto ry interface. A configuration program can then use

this Managed Service Factory to create instances as needed. For example,

this program could use a Graphic User Interface (GUI) to create such a com-

ponent and configure it.

10.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification

implementations. Some environments have no means to identify available

serial ports, and a device on a serial port cannot always provide information

about its type.
194-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Managed Service Factory
Therefore, each serial port requires a description of the device that is con-
nected. The bundle managing the serial ports would need to instantiate a

number of serial ports under the control of the Configuration Admin ser-

vice, with the appropriate DEVIC E_CATEGO RY property to allow it to partic-

ipate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should
register a Managed Service Factory. The Configuration Admin service can

then, with the help of a configuration program, define configuration infor-

mation for each available serial port.

10.6.2 Registration

Similar to the Managed Service configuration dictionary, the configuration
dictionary for a Managed Service Factory is identified by a PID. The Man-

aged Service Factory, however, also has a factory PID, which is the PID of the

associated Managed Service Factory. It is used to group all Managed Service

Factory configuration dictionaries together.

When a Co nfi gura t ion object for a Managed Service Factory is created
(C o nfig urat i onAdmi n.cr eate Fa ctor yCo nf i gura t io n), a new unique PID is

created for this object by the Configuration Admin service. The scheme used

for this PID is defined by the Configuration Admin service and is unrelated

to the factory PID.

When the Configuration Admin service detects the registration of a Man-
aged Service Factory, it must find all configuration dictionaries for this fac-

tory and must then sequentially call

Ma nage dSer vi ceF ac tor y. upda ted(Str i ng,Dic t io nary) for each configura-

tion dictionary. The first argument is the PID of the C on figur at io n object

(the one created by the Configuration Admin service) and the second argu-

ment contains the configuration properties.

The Managed Service Factory should then create instances of the associated

factory class. Using the PID given in the C o nfigu rat i on object, the bundle

may register new services (other than a Managed Service) with the Frame-

work, but this is not required. This may be necessary when the PID is useful

in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this

would force two Configuration objects to have the same PID. If a bundle

attempts to do this, the Configuration Admin service should log an error

and must ignore the registration of the Managed Service. The configuration

dictionary may be used only internally.

The Configuration Admin service must guarantee that the C onf igur at io n

objects are not deleted before their properties are given to the Managed Ser-

vice Factory, and must assure that no race conditions exist between initial-

ization and updates.
OSGi Service-Platform Release 3 195-588

Managed Service Factory Configuration Admin Service Specification Version 1.1
Figure 32 Managed Service Factory Action Diagram

A Managed Service Factory has only one update method: update d(Str ing ,

Dict io nar y) . This method can be called any number of times as Configura-

tion objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for
the first time, in which case it should create a new instance, or a subsequent

time, in which case it should update an existing instance.

The Configuration Admin service must call upd ated(Str ing, Dict io nar y) on

a thread that is different from the one that executed the registration. This

requirement allows an implementation of a Managed Service Factory to use
a synchronized method to assure that the callbacks do not interfere with the

Managed Service Factory registration.

The up dated (S tr ing, Dict i ona ry) method may throw a C onf igur at io nExcep-

ti on object. This object describes the problem and what property caused the

problem. These exceptions should be logged by a Configuration Admin ser-
vice.

10.6.3 Deletion

If a configuring bundle deletes an instance of a Managed Service Factory, the

delete d(Str in g) method is called. The argument is the PID for this instance.
The implementation of the Managed Service Factory must remove all infor-

mation and stop any behavior associated with that PID. If a service was reg-

istered for this PID, it should be unregistered.

10.6.4 Managed Service Factory Example

Figure 33 highlights the differences between a Managed Service and a Man-
aged Service Factory. It shows how a Managed Service Factory implementa-

tion receives configuration information that was created before it was

registered.

• A bundle implements an EMail Fetcher service. It registers a

Mana ged Servic eF acto ry object with PID=c om.a cme. emai l .
• The Configuration Admin service notices the registration and consults

its database. It finds three Co nfig ura t ion objects for which the factory

PID is equal to c om. acme .emai l. It must call upda ted(Str i ng,Dic t io nary)

for each of these C onf igur at io n objects on the newly registered

Mana ged Servic eF acto ry object.

Client bundle Framework Admin

new

registerService()

send registered event

updated()

Configuration

get all for factory

implementor of

ManagedServiceFactory

set the
configuration

get pid

for each found pid
for a new
instance

MUST be on another thread
196-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Managed Service Factory
• For each configuration dictionary received, the factory should create a
new instance of a EM ai lF etche r object, one for er ica (PID=16.1), one for

anna (PID=16.3), and one for el me r (PID=16.2).

• The EM ai l Fetc her objects are registered under the To pic interface so

their results can be viewed by an online display.

If the EM ail Fetc her object is registered, it may safely use the PID of the

Co nf igura t io n object because the Configuration Admin service must
guarantee its suitability for this purpose.

Figure 33 Managed Service Factory Example

10.6.5 Multiple Consoles Example

This example illustrates how multiple consoles, each of which has its own

port and interface can run simultaneously. This approach is very similar to

the example for the Managed Service, but highlights the difference by

allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory {
Hashtable consoles = new Hashtable();
BundleContext context;
public void start(BundleContext context)

throws Exception {
this.context = context;
Hashtable local = new Hashtable();
local.put(Constants.SERVICE_PID,"com.acme.console");
context.registerService(

ManagedServiceFactory.class.getName(),
this,
local);

}

public void updated(String pid, Dictionary config){
Console console = (Console) consoles.get(pid);
if (console == null) {

Configuration
Admin

MailFetchFactory
pid=
com.acme.email

pid=16.1
name=erica

OSGi Service
registration
events

pid=16.1

pid=16.2

name=erica

name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service

factory pid
= com.acme

Registry

Factory

factory pid
= eric.mf

.email
OSGi Service-Platform Release 3 197-588

Configuration Admin Service Configuration Admin Service Specification Version 1.1
console = new Console(context);
consoles.put(pid, console);

}

int port = getInt(config, "port", 2011);
String network = getString(

config,
"network",
null /*all*/

);
console.setPort(port, network);

}

public void deleted(String pid) {
Console console = (Console) consoles.get(pid);
if (console != null) {

consoles.remove(pid);
console.close();

}
}

}

10.7 Configuration Admin Service

The C o nfig urat i onAdmin interface provides methods to maintain configu-

ration data in an OSGi environment. This configuration information is

defined by a number of C onf igur at io n objects associated with specific con-

figuration targets. C o nfig urat i on objects can be created, listed, modified,

and deleted through this interface. Either a remote management system or
the bundles configuring their own configuration information may perform

these operations.

The C o nfig urat i onAdmin interface has methods for creating and accessing

Co nfig ura t ion objects for a Managed Service, as well as methods for manag-

ing new C onf igur at io n objects for a Managed Service Factory.

10.7.1 Creating a Managed Service Configuration Object

A bundle can create a new Managed Service Co nf igura t io n object with

Co nfig ura t ionAd mi n.ge tCo nf ig ura t ion . No create method is offered

because doing so could introduce race conditions between different bundles
creating the same C on figur at io n object. The ge tCo nf ig ura t ion method

must atomically create and persistently store an object if it does not yet

exist.

Two variants of this method are:

• getC onf igur at io n(Str in g) – This method is used by a bundle with a given
location to configure its own Ma nage dSer vice objects. The argument

specifies the PID of the targeted service.

• getC onf igur at io n(Str in g,Str ing) – This method is used by a man-

agement bundle to configure another bundle. Therefore, this man-

agement bundle needs Ad mi nPer mi ssio n. The first argument is the PID
198-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Configuration Admin Service
and the second argument is the location identifier of the targeted
Ma nage dSer vi ce object.

All Co nfi gura t io n objects have a method, g etFa cto ryPid (), which in this

case must return nul l because the C on figur at io n object is associated with a

Managed Service.

Creating a new Configuration object must not initiate a callback to the Man-

aged Service upd ated method.

10.7.2 Creating a Managed Service Factory Configuration
Object

The Co nfi gura t ion Ad min class provides two methods to create a new

instance of a Managed Service Factory:

• cr eateF ac tor yCo nf ig ura t ion(Str ing) – This method is used by a bundle
with a given location to configure its own Ma nage dSer viceF ac tor y

objects. The argument specifies the PID of the targeted

Ma nage dSer vi ceF ac tor y object. This factory PID can be obtained from

the returned C onf igur at io n object with the ge tF ac tor yP id() method.

• cr eateF ac tor yCo nf ig ura t ion(Str ing, Str in g)– This method is used by a

management bundle to configure another bundle’s
Ma nage dSer vi ceF ac tor y object. This management bundle needs

AdminPe rmissio n . The first argument is the location identifier and the

second is the PID of the targeted Ma nage dSer vice Fac tor y object. The

factory PID can be obtained from the returned C o nfigu rat io n object with

getF acto ryPi d method.

Creating a new factory configuration must not initiate a callback to the Man-

aged Service Factory u pdate d method.

10.7.3 Accessing Existing Configurations

The existing set of C o nfig urat i on objects can be listed with l i stC o nf igu ra-
t io ns(Str ing) . The argument is a Str ing object with a filter expression. This

filter expression has the same syntax as the Framework F i l ter class. For

example:

(&(size=42)(service.factoryPid=*osgi*))

The filter function must use the properties of the C onf igur at io n objects and

only return the ones that match the filter expression.

A single C on figur at io n object is identified with a PID and can be obtained

with getC o nf igu rat io n(Str ing) .

If the caller has Ad mi nPer missio n, then all C on figur at io n objects are eligible

for search. In other cases, only C on figur at io n objects bound to the calling

bundle’s location must be returned.

nul l is returned in both cases when an appropriate C onf igur at io n object can-

not be found.
OSGi Service-Platform Release 3 199-588

Configuration Admin Service Configuration Admin Service Specification Version 1.1
10.7.3.1 Updating a Configuration

The process of updating a C onf igur at io n object is the same for Managed Ser-

vices and Managed Service Factories. First, l i stC onf igur at io ns(Str i ng) or

getC onf igur at io n(Str in g) should be used to get a Co nfi gura t io n object. The

properties can be obtained with C o nfigu rat i on. getPr ope rt ie s. When no

update has occurred since this object was created, getPr ope rt ie s returns
nul l .

New properties can be set by calling C o nfigu rat io n. update . The Configura-

tion Admin service must first store the configuration information and then

call a configuration target’s upda ted method: either the

Mana gedS ervic e.u pdate d or Ma nage dSer viceF ac tor y. upda ted method. If
this target service is not registered, the fresh configuration information

must be set when the configuration target service registers.

The upda te method calls in Co nfi gura t ion objects are not executed synchro-

nously with the related target service upda ted method. This method must

be called asynchronously. The Configuration Admin service, however, must
have updated the persistent storage before the upda te method returns.

10.7.4 Deletion

A C o nfigu rat i on object that is no longer needed can be deleted with

Co nfig ura t ion. dele te , which removes the C onf igur at io n object from the

database. The database must be updated before the target service u pdate d
method is called.

If the target service is a Managed Service Factory, the factory is informed of

the deleted Co nfi gura t io n object by a call to

Mana gedS ervic eF acto ry.d elete d . It should then remove the associated

instance. The Ma nage dSer viceF ac tor y. dele ted call must be done asynchro-
nously with respect to Co nfi gura t ion .del ete .

When a C o nfig urat i on object of a Managed Service is deleted,

Mana gedS ervic e.u pdate d is called with nul l for the pro pe rt ies argument.

This method may be used for clean-up, to revert to default values, or to

unregister a service.

10.7.5 Updating a Bundle’s Own Configuration

The Configuration Admin service specification does not distinguish

between updates via a Management Agent and a bundle updating its own

configuration information (as defined by its location). Even if a bundle
updates its own configuration information, the Configuration Admin ser-

vice must callback the associated target service upd ated method.

As a rule, to update its own configuration, a bundle’s user interface should

only update the configuration information and never its internal structures

directly. This rule has the advantage that the events, from the bundle imple-
mentation’s perspective, appear similar for internal updates, remote man-

agement updates, and initialization.
200-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Configuration Plugin
10.8 Configuration Plugin

The Configuration Admin service allows third-party applications to partici-
pate in the configuration process. Bundles that register a service object

under a Co nfi gura t ion Plugin interface can process the configuration dictio-

nary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dic-

tionaries just before they must be passed to the intended Managed Service or
Managed Service Factory but after the properties are stored. The changes the

plug-in makes are dynamic and must not be stored. The plug-in must only

be called when an update takes place while it is registered.

The Co nfi gura t ion Plugin interface has only one method: modi fyCo nf i gura -

t io n(S ervic eR efer enc e,Dic t io nar y) . This method inspects or modifies con-
figuration data.

All plug-ins in the service registry must be traversed and called before the

properties are passed to the configuration target service. Each Configuration

Plugin object gets a chance to inspect the existing data, look at the target

object, which can be a Ma nage dSer vice object or a Ma nage dSer viceF ac tor y
object, and modify the properties of the configuration dictionary. The

changes made by a plug-in must be visible to plugins that are called later.

Co nf igura t io nPlugi n objects should not modify properties that belong to

the configuration properties of the target service unless the implications are

understood. This functionality is mainly intended to provide functions that

leverage the Framework service registry. The changes made by the plugin
should normally not be validated. However, the Configuration Admin must

ignore changes to the automatic properties as described in Automatic Proper-

ties on page 189.

For example, a Configuration Plugin service may add a physical location

property to a service. This property can be leveraged by applications that
want to know where a service is physically located. This scenario could be

carried out without any further support of the service itself, except for the

general requirement that the service should propagate the properties it

receives from the Configuration Admin service to the service registry.

Figure 34 Order of Configuration Plugin Services

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

update() modifyConfiguration()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object
OSGi Service-Platform Release 3 201-588

Configuration Plugin Configuration Admin Service Specification Version 1.1
10.8.1 Limiting The Targets

A C o nfigu rat i onPl ugin object may optionally specify a c m. tar get registra-

tion property. This value is the PID of the configuration target whose config-
uration updates the C on figur at io nPlu gin object wants to intercept.

The C o nfig urat i onP lugin object must then only be called with updates for

the configuration target service with the specified PID. Omitting the

cm.tar get registration property means that it is called for all configuration

updates.

10.8.2 Example of Property Expansion

Consider a Managed Service that has a configuration property se rvice .to

with the value (ob jectc lass =c om. acme .Alar m). When the Configuration

Admin service sets this property on the target service, a

Co nfig ura t ionP lugin object may replace the
(o bje ctcla ss=co m.a cme.Al arm) filter with an array of existing alarm sys-

tems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with s ervic e.pi d=343 is registered, requiring that the
list of the target service be updated. The bundle which registered the Config-

uration Plugin service, therefore, wants to set the to registration property on

the target service. It does not do this by calling M ana gedS ervic e.up dated

directly for several reasons:

• In a securely configured system, it should not have the permission to
make this call or even obtain the target service.

• It could get into race conditions with the Configuration Admin service if

it had the permissions in the previous bullet. Both services would

compete for access simultaneously.

Instead, it must get the C onf igur at io n object from the Configuration Admin
service and call the upda te method on it.

The Configuration Admin service must schedule a new update cycle on

another thread, and sometime in the future must call

Co nfig ura t ionP lugin .mod ifyPro pe rt ies . The C o nfig ura ti onP lugin object

could then set the s ervic e.to property to [3243 4,23 2,12421,1212, 34 3] .
After that, the Configuration Admin service must call up dated on the target

service with the new se rvice .to list.

10.8.3 Configuration Data Modifications

Modifications to the configuration dictionary are still under the control of
the Configuration Admin service, which must determine whether to accept

the changes, hide critical variables, or deny the changes for other reasons.

The C o nfig urat i onP lugin interface must also allow plugins to detect config-

uration updates to the service via the callback. This ability allows them to

synchronize the configuration updates with transient information.
202-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Remote Management
10.8.4 Forcing a Callback

If a bundle needs to force a Configuration Plugin service to be called again, it

must fetch the appropriate C o nfigu rat io n object from the Configuration
Admin service and call the upda te() method (the no parameter version) on

this object. This call forces an update with the current configuration dictio-

nary so that all applicable plug-ins get called again.

10.8.5 Calling Order

The order in which the Co nfi gura t ion Plugi n objects are called must depend
on the servic e.c mRa nking configuration property of the

Co nf igura t io nPlugi n object. Table 11 shows the usage of the

ser vi ce. cmRa nking property for the order of calling the Configuration Plu-

gin services..

10.9 Remote Management

This specification does not attempt to define a remote management inter-

face for the Framework. The purpose of this specification is to define a mini-

mal interface for bundles that is complete enough for testing.

The Configuration Admin service is a primary aspect of remote manage-
ment, however, and this specification must be compatible with common

remote management standards. This section discusses some of the issues of

using this specification with [22] DMTF Common Information Model (CIM)

and [23] Simple Network Management Protocol (SNMP), the most likely candi-

dates for remote management today.

These discussions are not complete, comprehensive, or normative. They are

intended to point the bundle developer in relevant directions. Further speci-

fications are needed to make a more concrete mapping.

10.9.1 Common Information Model

Common Information Model (CIM) defines the managed objects in [25]
Interface Definition Language (IDL) language, which was developed for the

Common Object Request Broker Architecture (CORBA).

service.cmRanking value Description

< 0 The Configuration Plugin service should not modify

properties and must be called before any modifica-
tions are made.

> 0 && <= 10 00 The Configuration Plugin service modifies the con-

figuration data. The calling order should be based on

the value of the se rvice .cmR ank ing property.

> 1000 The Configuration Plugin service should not modify

data and is called after all modifications are made.

Table 11 ser vi ce. cmRa nking Usage For Ordering
OSGi Service-Platform Release 3 203-588

Meta Typing Configuration Admin Service Specification Version 1.1
The data types and the data values have a syntax. Additionally, these syn-
taxes can be mapped to XML. Unfortunately, this XML mapping is very dif-

ferent from the very applicable [24] XSchema XML data type definition

language. The Framework service registry property types are a proper subset

of the CIM data types.

In this specification, a Managed Service Factory maps to a CIM class defini-
tion. The primitives c rea te , del ete , and set are supported in this specifica-

tion via the M ana gedS ervic eF acto ry interface. The possible data types in

CIM are richer than those the Framework supports and should thus be lim-

ited to cases when CIM classes for bundles are defined.

An important conceptual difference between this specification and CIM is
the naming of properties. CIM properties are defined within the scope of a

class. In this specification, properties are primarily defined within the scope

of the Managed Service Factory, but are then placed in the registry, where

they have global scope. This mechanism is similar to [26] Lightweight Direc-

tory Access Protocol, in which the semantics of the properties are defined glo-

bally and a class is a collection of globally defined properties.

This specification does not address the non-Configuration Admin service

primitives such as notifications and method calls.

10.9.2 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) defines the data model
in ASN.1. SNMP is a rich data typing language that supports many types

that are difficult to map to the data types supported in this specification. A

large overlap exists, however, and it should be possible to design a data type

that is applicable in this context.

The PID of a Managed Service should map to the SNMP Object IDentifier
(OID). Managed Service Factories are mapped to tables in SNMP, although

this mapping creates an obvious restriction in data types because tables can

only contain scalar values. Therefore, the property values of the

Co nfig ura t ion object would have to be limited to scalar values.

Similar scope issues as seen in CIM arise for SNMP because properties have
a global scope in the service registry.

SNMP does not support the concept of method calls or function calls. All

information is conveyed as the setting of values. The SNMP paradigm maps

closely to this specification.

This specification does not address non-Configuration Admin primitives

such as traps.

10.10 Meta Typing

This section discusses how the Metatype specification is used in the context

of a Configuration Admin service.

When a Managed Service or Managed Service Factory is registered, the ser-

vice object may also implement the Meta Type Pro vider interface.
204-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Security
If the Managed Service or Managed Service Factory object implements the
Meta Type Pro vider interface, a management bundle may assume that the

associated O bje ctC lass Def ini t ion object can be used to configure the ser-

vice.

The Ob jectC la ssDef init io n and Attr i buteDef init io n objects contain suffi-

cient information to automatically build simple user interfaces. They can
also be used to augment dedicated interfaces with accurate validations.

When the Metatype specification is used, care should be taken to match the

capabilities of the metatype package to the capabilities of the Configuration

Admin service specification. Specifically:

• The metatype specification must describe nested arrays and vectors or

arrays/vectors of mixed type.

This specification does not address how the metatype is made available to a

management system due to the many open issues regarding remote man-

agement.

10.11 Security

10.11.1 Permissions

Configuration Admin service security is implemented using S ervic ePer -

missio n and Admin Permi ssio n. The following table summarizes the permis-

sions needed by the Configuration Admin bundle itself, as well as those

needed by the bundles with which it interacts.

Bundle Registering ServicePermisson Action AdminPermission

Co nf igura t io nAdmin REGI STER Co nf i gura t ion Admin Ye s

GET Man aged Ser vi ce

GET Man aged Ser vi ceF acto ry

GET Co nf i gura t ion Plugin

Ma nage dSer vi ce REGI STER Man aged Ser vi ce No

GET C on f igur at io nAdmin

Ma nage dSer vi ceF ac tor y REGI STER Man aged Ser vi ceF acto ry No

GET Co nf i gura t ion Admin

Co nf igura t io nPlugi n REGI STER Co nf i gura t ion Plugi n No

GET C on f igur at io nAdmin

Table 12 Permission Overview Configuration Admin
OSGi Service-Platform Release 3 205-588

Security Configuration Admin Service Specification Version 1.1
The Configuration Admin service must have Ser vice Permi ssio n[R EGIS TER ,
Co nf ig ura t ionAd mi n] . It will also be the only bundle that needs the

Servic ePe rmissi on [GET,M ana gedS ervic e | Ma nag edSe rvice Fa cto ry

|C onf igur at io nPlug in]. No other bundle should be allowed to have GET

permission for these interfaces. The Configuration Admin bundle must also

hold AdminPer missio n .

Bundles that can be configured must have the

Servic ePe rmissi on[R EG ISTER, Ma nage dSer vi ce | Ma nag edSe rvice Fa ctor y] .

Bundles registering C onf igur at io nPlug in objects must have the

Servic ePe rmissi on [R EGISTER , Co nfi gura t ion Plugin]. The Configuration

Admin service must trust all services registered with the
Co nfig ura t ionP lugin interface. Only the Configuration Admin service

should have Ser vi cePe rmissi on[GET , C onf igur at io nPlu gin .

If a Managed Service or Managed Service Factory is implemented by an

object that is also registered under another interface, it is possible, although

inappropriate, for a bundle other than the C o nfig urat i on Admin service
implementation to call the upda ted method. Security-aware bundles can

avoid this problem by having their upd ated methods check that the caller

has AdminP ermiss ion (such bundles need AdminP ermiss ion to perform this

check).

Bundles that want to change their own configuration need

Servic ePe rmissi on[GET, Co nf i gura t io nAdmin]. A bundle with
Ad minPer missio n is allowed to access and modify any Co nfi gura t io n object.

Pre-configuration of bundles requires AdminP ermiss ion because the meth-

ods that specify a location require this permission.

10.11.2 Forging PIDs

A risk exists of an unauthorized bundle forging a PID in order to obtain and

possibly modify the configuration information of another bundle. To miti-

gate this risk, Co nf igura t io n objects are generally bound to a specific bundle

location, and are not passed to any Managed Service or Managed Service

Factory registered by a different bundle.

Bundles with the required Ad mi nPer mi ssio n can create C on figur at io n

objects that are not bound. In other words, they have their location set to

nul l . This can be useful for preconfiguring bundles before they are installed

without having to know their actual locations.

In this scenario, the C onf igur at io n object must become bound to the first

bundle that registers a Managed Service (or Managed Service Factory) with

the right PID.

A bundle could still possibly obtain another bundle’s configuration by regis-

tering a Managed Service with the right PID before the victim bundle does
so. This situation can be regarded as a denial-of-service attack, because the

victim bundle would never receive its configuration information. Such an

attack can be avoided by always binding C o nfigu rat io n objects to the right

locations. It can also be detected by the Configuration Admin service when

the victim bundle registers the correct PID and two equal PIDs are then reg-

istered. This violation of this specification should be logged.
206-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 Configurable Service
10.11.3 Configuration and Permission Administration

Configuration information has a direct influence on the permissions

needed by a bundle. For example, when the Configuration Admin Bundle
orders a bundle to use port 2011 for a console, that bundle also needs per-

mission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of per-
missions that do not define specific values but allow a range of values. For

example, a bundle could listen to ports above 1024 freely. All these ports

could then be used for configuration.

The other solution is more complicated. In an environment where there is

very strong security, the bundle would only be allowed access to a specific
port. This situation requires an atomic update of both the configuration

data and the permissions. If this update was not atomic, a potential security

hole would exist during the period of time that the set of permissions did

not match the configuration.

The following scenario can be used to update a configuration and the secu-
rity permissions:

1. Stop the bundle.

2. Update the appropriate Co nfi gura t ion object via the Configuration

Admin service.

3. Update the permissions in the Framework.

4. Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

10.12 Configurable Service

Both the Configuration Admin service and the
or g.o sgi . f r amew or k.C o nf ig urab le interface address configuration manage-

ment issues. It is the intention of this specification to replace the Frame-

work interface for configuration management.

The Framework Configurable mechanism works as follows. A registered ser-

vice object implements the C on figur abl e interface to allow a management
bundle to configure that service. The C onf igur able interface has only one

method: g etC onf igur at io nO bjec t(). This method returns a Java Bean. Beans

can be examined and modified with the java .re f le ct or ja va .be an packages.

This scheme has the following disadvantages:

• No factory – Only registered services can be configured, unlike the

Managed Service Factory that configures any number of services.

• Atomicity – The beans or reflection API can only modify one property at a

time and there is no way to tell the bean that no more modifications to

the properties will follow. This limitation complicates updates of config-

urations that have dependencies between properties.
This specification passes a Dict io nar y object that sets all the configura-

tion properties atomically.
OSGi Service-Platform Release 3 207-588

Changes Configuration Admin Service Specification Version 1.1
• Profile – The Java beans API is linked to many packages that are not likely
to be present in OSGi environments. The reflection API may be present

but is not simple to use.

This specification has no required libraries.

• User Interface support – UI support in beans is very rudimentary when no

AWT is present.

The associated Metatyping specification does not require any external
libraries, and has extensive support for UIs including localization.

10.13 Changes

10.13.1 Clarifications

• It was not clear from the description that a PID received through a

Managed Service Factory must not be used to register a Managed Service.

This has been highlighted in the appropriate sections.

• It was not clearly specified that a call-back to a target only happens when

the data is updated or the target is registered. The creation of a Configu-

ration object does not initiate a call-back. This has been highlighted in

the appropriate sections.

• In this release, when a bundle is uninstalled, all C onf igur at io n objects
that are dynamically bound to that bundle must be unbound again. See

Location Binding on page 187.

• It was not clearly specified that the data types of a C on figur at io n object

allow arrays and vectors that contain elements of mixed types and also

nul l .

10.13.2 Removal of Bundle Location Property

The bundle location property that was required to be set in the

Co nfig ura t ion object’s properties has been removed because it leaked secu-

rity sensitive information to all bundles using the C onf igur at io n object.

10.13.3 Plug-in Usage

It was not completely clear when a plug-in must be called and how the prop-

erties dictionary should behave. This has been clearly specified in Configura-

tion Plugin on page 201.

10.13.4 BigInteger/BigDecimal

The classes Big Intege r and B igDe cimal are not part of the minimal execu-

tion requirements and are therefore no longer part of the supported Object

types in the Configuration dictionary.

10.13.5 Equals

The behavior of the e quals and has hCo de methods is now defined. See

Equality on page 189.
208-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 org.osgi.service.cm
10.13.6 Constant for service.factoryPid

Added a new constant in the C o nfigu rat i onAdmin class. See

SERVICE_FACTORYPID on page 213. This caused this specification to step
from version 1.0 to version 1.1.

10.14 org.osgi.service.cm

The OSGi Configuration Admin service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.cm; specification-version=1.1

10.14.1 Summary

• Configuration – The configuration information for a ManagedService or

ManagedServiceFactory object. [p.209]

• ConfigurationAdmin – Service for administering configuration data.
[p.212]

• ConfigurationException – An Exception class to inform the Configuration

Admin service of problems with configuration data. [p.215]

• ConfigurationPlugin – A service interface for processing configuration dic-

tionary before the update. [p.216]

• ManagedService – A service that can receive configuration data from a
Configuration Admin service. [p.217]

• ManagedServiceFactory – Manage multiple service instances. [p.219]
Conf iguration

10.14.2 public interface Configuration

The configuration information for a ManagedService or

ManagedServiceFactory object. The Configuration Admin service uses this
interface to represent the configuration information for a ManagedService

or for a service instance of a ManagedServiceFactory.

A Configuration object contains a configuration dictionary and allows the

properties to be updated via this object. Bundles wishing to receive configu-

ration dictionaries do not need to use this class - they register a
ManagedService or ManagedServiceFactory. Only administrative bundles,

and bundles wishing to update their own configurations need to use this

class.

The properties handled in this configuration have case insensitive String

objects as keys. However, case is preserved from the last set key/value. The
value of the property may be of the following types:

type ::=
String | Integer | Long

| Float | Double | Byte
| Short | Character | Boolean
| vector | arrays
primitive ::= long | int | short | char | byte | double |
float
OSGi Service-Platform Release 3 209-588

org.osgi.service.cm Configuration Admin Service Specification Version 1.1
arrays ::= primitive ‘[]’ | type ‘[]’ | null
vector ::= Vector of type or null

This explicitly allows vectors and arrays of mixed types and containing

null.

A configuration can be bound to a bundle location (Bundle.getLocation()).
The purpose of binding a Configuration object to a location is to make it

impossible for another bundle to forge a PID that would match this configu-

ration. When a configuration is bound to a specific location, and a bundle

with a different location registers a corresponding ManagedService object

or ManagedServiceFactory object, then the configuration is not passed to

the updated method of that object.

If a configuration’s location is null, it is not yet bound to a location. It will

become bound to the location of the first bundle that registers a

ManagedService or ManagedServiceFactory object with the corresponding

PID.

The same Configuration object is used for configuring both a Managed Ser-

vice Factory and a Managed Service. When it is important to differentiate

between these two the term “factory configuration” is used.

delete()

10.14.2.1 public void delete() throws IOException

� Delete this Configuration object. Removes this configuration object from

the persistent store. Notify asynchronously the corresponding Managed Ser-

vice or Managed Service Factory. A ManagedService object is notified by a

call to its updated method with a null properties argument. A

ManagedServiceFactory object is notified by a call to its deleted method.

Throws IOException – If delete fails

IllegalStateException – if this configuration has been deleted
equal s(Ob ject)

10.14.2.2 public boolean equals(Object other)

other Configuration object to compare against

� Equality is defined to have equal PIDs Two Configuration objects are equal

when their PIDs are equal.

Returns true if equal, false if not a Configuration object or one with a different
PID.
getBund leLocation()

10.14.2.3 public String getBundleLocation()

� Get the bundle location. Returns the bundle location to which this configu-

ration is bound, or null if it is not yet bound to a bundle location.

This call requires AdminPermission.

Returns location to which this configuration is bound, or null.

Throws SecurityException – if the caller does not have AdminPermission.

IllegalStateException – if this Configuration object has been deleted.
getFactoryPid()

10.14.2.4 public String getFactoryPid()

� For a factory configuration return the PID of the corresponding Managed
Service Factory, else return null.
210-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 org.osgi.service.cm
Returns factory PID or null

Throws IllegalStateException – if this configuration has been deleted
getP id()

10.14.2.5 public String getPid()

� Get the PID for this Configuration object.

Returns the PID for this Configuration object.

Throws IllegalStateException – if this configuration has been deleted
getProperti es()

10.14.2.6 public Dictionary getProperties()

� Return the properties of this Configuration object. The Dictionary object

returned is a private copy for the caller and may be changed without influ-

encing the stored configuration. The keys in the returned dictionary are case

insensitive and are always of type String.

If called just after the configuration is created and before update has been

called, this method returns null.

Returns A private copy of the properties for the caller or null. These properties must

not contain the “service.bundleLocation” property. The value of this proper-

ty may be obtained from the getBundleLocation method.

Throws IllegalStateException – if this configuration has been deleted
hashCode()

10.14.2.7 public int hashCode()

� Hash code is based on PID. The hashcode for two Configuration objects

must be the same when the Configuration PID’s are the same.

Returns hash code for this Configuration object
setBundleLocation(String)

10.14.2.8 public void setBundleLocation(String bundleLocation)

bundleLocation a bundle location or null

� Bind this Configuration object to the specified bundle location. If the

bundleLocation parameter is null then the Configuration object will not

be bound to a location. It will be set to the bundle’s location before the first

time a Managed Service/Managed Service Factory receives this

Configuration object via the updated method and before any plugins are
called. The bundle location will be set persistently.

This method requires AdminPermission.

Throws SecurityException – if the caller does not have AdminPermission

IllegalStateException – if this configuration has been deleted
update(Dicti onary)

10.14.2.9 public void update(Dictionary properties) throws IOException

properties the new set of properties for this configuration

� Update the properties of this Configuration object. Stores the properties in

persistent storage after adding or overwriting the following properties:

• “service.pid” : is set to be the PID of this configuration.

• “service.factoryPid” : if this is a factory configuration it is set to the

factory PID else it is not set.

These system properties are all of type String.
OSGi Service-Platform Release 3 211-588

org.osgi.service.cm Configuration Admin Service Specification Version 1.1
If the corresponding Managed Service/Managed Service Factory is regis-
tered, its updated method must be called asynchronously. Else, this callback

is delayed until aforementioned registration occurs.

Throws IOException – if update cannot be made persistent

IllegalArgumentException – if the Dictionary object contains invalid
configuration types

IllegalStateException – if this configuration has been deleted
update()

10.14.2.10 public void update() throws IOException

� Update the Configuration object with the current properties. Initiate the

updated callback to the Managed Service or Managed Service Factory with

the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to

initate a callback. For example, when that bundle detects a change that
requires an update of the Managed Service or Managed Service Factory via

its ConfigurationPlugin object.

Throws IOException – if update cannot access the properties in persistent storage

IllegalStateException – if this configuration has been deleted

See Also ConfigurationPlugin[p.216]
Conf igurationAdmin

10.14.3 public interface ConfigurationAdmin

Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data per-

sistently. This information is represented in Configuration objects. The

actual configuration data is a Dictionary of properties inside a

Configuration object.

There are two principally different ways to manage configurations. First
there is the concept of a Managed Service, where configuration data is

uniquely associated with an object registered with the service registry.

Next, there is the concept of a factory where the Configuration Admin ser-

vice will maintain 0 or more Configuration objects for a Managed Service

Factory that is registered with the Framework.

The first concept is intended for configuration data about “things/services”

whose existence is defined externally, e.g. a specific printer. Factories are

intended for “things/services” that can be created any number of times, e.g. a

configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a

Managed Service Factory in the service registry. A registration property

named service.pid (persistent identifier or PID) must be used to identify

this Managed Service or Managed Service Factory to the Configuration

Admin service.
212-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 org.osgi.service.cm
When the ConfigurationAdmin detects the registration of a Managed Ser-
vice, it checks its persistent storage for a configuration object whose PID

matches the PID registration property (service.pid) of the Managed Ser-

vice. If found, it calls Man aged Ser vi ce. upda te d [p.219] method with the

new properties. The implementation of a Configuration Admin service

must run these call-backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory

registration, it checks its storage for configuration objects whose

factoryPid matches the PID of the Managed Service Factory. For each such

Configuration objects, it calls the ManagedServiceFactory.updated

method asynchronously with the new properties. The calls to the updated

method of a ManagedServiceFactory must be executed sequentially and
not overlap in time.

In general, bundles having permission to use the Configuration Admin ser-

vice can only access and modify their own configuration information.

Accessing or modifying the configuration of another bundle requires

AdminPermission.

Configuration objects can be bound to a specified bundle location. In this

case, if a matching Managed Service or Managed Service Factory is regis-

tered by a bundle with a different location, then the Configuration Admin

service must not do the normal callback, and it should log an error. In the

case where a Configuration object is not bound, its location field is null,

the Configuration Admin service will bind it to the location of the bundle
that registers the first Managed Service or Managed Service Factory that has

a corresponding PID property. When a Configuration object is bound to a

bundle location in this manner, the Confguration Admin service must

detect if the bundle corresponding to the location is uninstalled. If this

occurs, the Configuration object is unbound, that is its location field is set

back to null.

The method descriptions of this class refer to a concept of “the calling bun-

dle”. This is a loose way of referring to the bundle which obtained the Con-

figuration Admin service from the service registry. Implementations of

ConfigurationAdmin must use a o rg. osg i . f r amew o rk. Ser vi ceF acto ry to

support this concept.

SERVICE_BUNDLELOCATION

10.14.3.1 public static final String SERVICE_BUNDLELOCATION =
“service.bundleLocation”

Service property naming the location of the bundle that is associated with a
a Configuration object. This property can be searched for but must not

appear in the configuration dictionary for security reason. The property’s

value is of type String.

Since 1.1
SERVICE_FACTORYPID

10.14.3.2 public static final String SERVICE_FACTORYPID = “service.factoryPid”

Service property naming the Factory PID in the configuration dictionary.

The property’s value is of type String.

Since 1.1
createFactoryConf iguration(String)

10.14.3.3 public Configuration createFactoryConfiguration(String factoryPid)
OSGi Service-Platform Release 3 213-588

org.osgi.service.cm Configuration Admin Service Specification Version 1.1
throws IOException

factoryPid PID of factory (not null).

� Create a new factory Configuration object with a new PID. The properties

of the new Configuration object are null until the first time that its

Co nfig ura t ion. upda te [p.211] method is called.

It is not required that the factoryPid maps to a registered Managed Service

Factory.

The Configuration object is bound to the location of the calling bundle.

Returns a new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have AdminPermission and

factoryPid is bound to another bundle.
createFactoryConfi guration(S tring,S tring)

10.14.3.4 public Configuration createFactoryConfiguration(String factoryPid,
String location) throws IOException

factoryPid PID of factory (not null).

location a bundle location string, or null.

� Create a new factory Configuration object with a new PID. The properties

of the new Configuration object are null until the first time that its

Co nfig ura t ion. upda te [p.211] method is called.

It is not required that the factoryPid maps to a registered Managed Service
Factory.

The Configuration is bound to the location specified. If this location is

null it will be bound to the location of the first bundle that registers a Man-

aged Service Factory with a corresponding PID.

This method requires AdminPermission.

Returns a new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have AdminPermission.
getConfi guration(String,String)

10.14.3.5 public Configuration getConfiguration(String pid, String location)
throws IOException

pid persistent identifier.

location the bundle location string, or null.

� Get an existing Configuration object from the persistent store, or create a

new Configuration object.

If a Configuration with this PID already exists in Configuration Admin ser-

vice return it. The location parameter is ignored in this case.

Else, return a new Configuration object. This new object is bound to the

location and the properties are set to null. If the location parameter is null,

it will be set when a Managed Service with the corresponding PID is regis-
tered for the first time.

This method requires AdminPermission.
214-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 org.osgi.service.cm
Returns an existing or new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if the caller does not have AdminPermission.
getConfi guration(S tring)

10.14.3.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

� Get an existing or new Configuration object from the persistent store. If

the Configuration object for this PID does not exist, create a new

Configuration object for that PID, where properties are null. Bind its loca-
tion to the calling bundle’s location.

Else, if the location of the existing Configuration object is null, set it to the

calling bundle’s location.

If the location of the Configuration object does not match the calling bun-
dle, throw a SecurityException.

Returns an existing or new Configuration matching the PID.

Throws IOException – if access to persistent storage fails.

SecurityException – if the Configuration object is bound to a location dif-

ferent from that of the calling bundle and it has no AdminPermission.
li stConf igurations(String)

10.14.3.7 public Configuration[] listConfigurations(String filter) throws
IOException, InvalidSyntaxException

filter a Filter object, or null to retrieve all Configuration objects.

� List the current Configuration objects which match the filter.

Only Configuration objects with non-null properties are considered cur-

rent. That is, Configuration.getProperties() is guaranteed not to return

null for each of the returned Configuration objects.

Normally only Configuration objects that are bound to the location of the

calling bundle are returned. If the caller has AdminPermission, then all

matching Configuration objects are returned.

The syntax of the filter string is as defined in the Filter class. The filter can
test any configuration parameters including the following system proper-

ties:

• service.pid - String - the PID under which this is registered

• service.factoryPid - String - the factory if applicable

• service.bundleLocation - String - the bundle location

The filter can also be null, meaning that all Configuration objects should

be returned.

Returns all matching Configuration objects, or null if there aren’t any

Throws IOException – if access to persistent storage fails

InvalidSyntaxException – if the filter string is invalid
Conf igurationException
OSGi Service-Platform Release 3 215-588

org.osgi.service.cm Configuration Admin Service Specification Version 1.1
10.14.4 public class ConfigurationException
extends Exception

An Exception class to inform the Configuration Admin service of problems

with configuration data.

Conf igurationException(String,String)

10.14.4.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, null if no specific property

was the cause

reason reason for failure

� Create a ConfigurationException object.

getProperty()

10.14.4.2 public String getProperty()

� Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem
getReason()

10.14.4.3 public String getReason()

� Return the reason for this exception.

Returns reason of the failure
Conf igurationPlug in

10.14.5 public interface ConfigurationPlugin

A service interface for processing configuration dictionary before the
update.

A bundle registers a ConfigurationPlugin object in order to process config-

uration updates before they reach the Managed Service or Managed Service

Factory. The Configuration Admin service will detect registrations of Con-

figuration Plugin services and must call these services every time before it
calls the ManagedService or ManagedServiceFactoryupdated method. The

Configuration Plugin service thus has the opportunity to view and modify

the properties before they are passed to the ManagedS ervice or Managed

Service Factory.

Configuration Plugin (plugin) services have full read/write access to all con-
figuration information. Therefore, bundles using this facility should be

trusted. Access to this facility should be limited with

ServicePermission[REGISTER, ConfigurationPlugin]. Implementa-

tions of a Configuration Plugin service should assure that they only act on

appropriate configurations.

The Integerservice.cmRanking registration property may be specified.

Not specifying this registration property, or setting it to something other

than an Integer, is the same as setting it to the Integer zero. The

service.cmRanking property determines the order in which plugins are

invoked. Lower ranked plugins are called before higher ranked ones. In the

event of more than one plugin having the same value of
service.cmRanking, then the Configuration Admin service arbitrarily

chooses the order in which they are called.
216-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 org.osgi.service.cm
By convention, plugins with service.cmRanking< 0 or
service.cmRanking >1000 should not make modifications to the proper-

ties.

The Configuration Admin service has the right to hide properties from plu-

gins, or to ignore some or all the changes that they make. This might be

done for security reasons. Any such behavior is entirely implementation
defined.

A plugin may optionally specify a cm.target registration property whose

value is the PID of the Managed Service or Managed Service Factory whose

configuration updates the plugin is intended to intercept. The plugin will

then only be called with configuration updates that are targetted at the
Managed Service or Managed Service Factory with the specified PID. Omit-

ting the cm.target registration property means that the plugin is called for

all configuration updates.

CM_TARGET

10.14.5.1 public static final String CM_TARGET = “cm.target”

A service property to limit the Managed Service or Managed Service Factory

configuration dictionaries a Configuration Plugin service receives. This

property contains a String[] of PIDs. A Configuration Admin service must

call a Configuration Plugin service only when this property is not set, or the

target service’s PID is listed in this property.

modifyConf iguration(ServiceReference,Dicti onary)

10.14.5.2 public void modifyConfiguration(ServiceReference reference,
Dictionary properties)

reference reference to the Managed Service or Managed Service Factory

configuration The configuration properties. This argument must not contain the “serv-

ice.bundleLocation” property. The value of this property may be obtained

from the Configuration.getBundleLocation method.

� View and possibly modify the a set of configuration properties before they

are sent to the Managed Service or the Managed Service Factory. The Config-
uration Plugin services are called in increasing order of their

service.cmRanking property. If this property is undefined or is a non-

Integer type, 0 is used.

This method should not modify the properties unless the

service.cmRanking of this plugin is in the range 0 <= service.cmRanking
<= 1000.

If this method throws any Exception, the Configuration Admin service

must catch it and should log it.

ManagedService

10.14.6 public interface ManagedService

A service that can receive configuration data from a Configuration Admin

service.

A Managed Service is a service that needs configuration data. Such an object
should be registered with the Framework registry with the service.pid

property set to some unique identitifier called a PID.
OSGi Service-Platform Release 3 217-588

org.osgi.service.cm Configuration Admin Service Specification Version 1.1
If the Configuration Admin service has a Configuration object correspond-
ing to this PID, it will callback the updated() method of the

ManagedService object, passing the properties of that Configuration

object.

If it has no such Configuration object, then it calls back with a null proper-

ties argument. Registering a Managed Service will always result in a call-
back to the updated() method provided the Configuration Admin service

is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that

Configuration object, the ManagedService.updated() method with the

new properties is called. If the delete() method is called on that
Configuration object, ManagedService.updated() is called with a null

for the properties parameter. All these callbacks must be done asynchro-

nously.

The following example shows the code of a serial port that will create a port

depending on configuration information.

class SerialPort implements ManagedService {

ServiceRegistration registration;
Hashtable configuration;
CommPortIdentifier id;

synchronized void open(CommPortIdentifier id,
BundleContext context) {
this.id = id;
registration = context.registerService(
ManagedService.class.getName(),
this,
null // Properties will come from CM in updated

);
}

Hashtable getDefaults() {
Hashtable defaults = new Hashtable();
defaults.put(“port”, id.getName());
defaults.put(“product”, “unknown”);
defaults.put(“baud”, “9600”);
defaults.put(Constants.SERVICE_PID,
“com.acme.serialport.” + id.getName());

return defaults;
}

public synchronized void updated(
Dictionary configuration) {
if (configuration == null)
registration.setProperties(getDefaults());

else {
setSpeed(configuration.get(”baud”));
registration.setProperties(configuration);

}

218-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 org.osgi.service.cm
}
...

}

As a convention, it is recommended that when a Managed Service is

updated, it should copy all the properties it does not recognize into the ser-

vice registration properties. This will allow the Configuration Admin ser-
vice to set properties on services which can then be used by other

applications.

updated(Dicti onary)

10.14.6.1 public void updated(Dictionary properties) throws
ConfigurationException

properties A copy of the Configuration properties, or null. This argument must not

contain the “service.bundleLocation” property. The value of this property

may be obtained from the Configuration.getBundleLocation method.

� Update the configuration for a Managed Service.

When the implementation of updated(Dictionary) detects any kind of

error in the configuration properties, it should create a new

ConfigurationException which describes the problem. This can allow a

management system to provide useful information to a human administra-

tor.

If this method throws any other Exception, the Configuration Admin ser-

vice must catch it and should log it.

The Configuration Admin service must call this method asynchronously

which initiated the callback. This implies that implementors of Managed

Service can be assured that the callback will not take place during registra-
tion when they execute the registration in a synchronized method.

Throws ConfigurationException – when the update fails
ManagedServiceFactory

10.14.7 public interface ManagedServiceFactory

Manage multiple service instances. Bundles registering this interface are

giving the Configuration Admin service the ability to create and configure a

number of instances of a service that the implementing bundle can provide.

For example, a bundle implementing a DHCP server could be instantiated

multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the

Configuration Admin service, by a factory Configuration object that has a

PID. When such a Configuration is updated, the Configuration Admin ser-

vice calls the ManagedServiceFactory updated method with the new prop-

erties. When updated is called with a new PID, the Managed Service Factory

should create a new factory instance based on these configuration proper-
ties. When called with a PID that it has seen before, it should update that

existing service instance with the new configuration information.
OSGi Service-Platform Release 3 219-588

org.osgi.service.cm Configuration Admin Service Specification Version 1.1
In general it is expected that the implementation of this interface will main-
tain a data structure that maps PIDs to the factory instances that it has cre-

ated. The semantics of a factory instance are defined by the Managed Service

Factory. However, if the factory instance is registered as a service object with

the service registry, its PID should match the PID of the corresponding

Configuration object (but it should not be registered as a Managed Ser-

vice!).

An example that demonstrates the use of a factory. It will create serial ports

under command of the Configuration Admin service.

class SerialPortFactory
implements ManagedServiceFactory {
ServiceRegistration registration;
Hashtable ports;
void start(BundleContext context) {
Hashtable properties = new Hashtable();
properties.put(Constants.SERVICE_PID,
“com.acme.serialportfactory”);

registration = context.registerService(
ManagedServiceFactory.class.getName(),
this,
properties

);
}
public void updated(String pid,
Dictionary properties) {
String portName = (String) properties.get(”port”);
SerialPortService port =
(SerialPort) ports.get(pid);

if (port == null) {
port = new SerialPortService();
ports.put(pid, port);
port.open();

}
if (port.getPortName().equals(portName))
return;

port.setPortName(portName);
}
public void deleted(String pid) {
SerialPortService port =
(SerialPort) ports.get(pid);

port.close();
ports.remove(pid);

}
...

}
deleted (String)

10.14.7.1 public void deleted(String pid)

pid the PID of the service to be removed

� Remove a factory instance. Remove the factory instance associated with the

PID. If the instance was registered with the service registry, it should be

unregistered.
220-588 OSGi Service-Platform Release 3

Configuration Admin Service Specif ication Version 1.1 References
If this method throws any Exception, the Configuration Admin service
must catch it and should log it.

The Configuration Admin service must call this method asynchronously.

getName()

10.14.7.2 public String getName()

� Return a descriptive name of this factory.

Returns the name for the factory, which might be localized
updated(String,Dicti onary)

10.14.7.3 public void updated(String pid, Dictionary properties) throws
ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the

service.bundleLocation” property. The value of this property may be ob-
tained from the Configuration.getBundleLocation method.

� Create a new instance, or update the configuration of an existing instance. If

the PID of the Configuration object is new for the Managed Service Fac-

tory, then create a new factory instance, using the configuration

properties provided. Else, update the service instance with the provided
properties.

If the factory instance is registered with the Framework, then the configura-

tion properties should be copied to its registry properties. This is not man-

datory and security sensitive properties should obviously not be copied.

If this method throws any Exception, the Configuration Admin service
must catch it and should log it.

When the implementation of updated detects any kind of error in the con-

figuration properties, it should create a new Co nfi gura t ion Exc eptio n [p.215]

which describes the problem.

The Configuration Admin service must call this method asynchronously.

This implies that implementors of the ManagedServiceFactory class can be

assured that the callback will not take place during registration when they

execute the registration in a synchronized method.

Throws ConfigurationException – when the configuration properties are invalid.

10.15 References

[22] DMTF Common Information Model

http://www.dmtf.org

[23] Simple Network Management Protocol

RFCs http://directory.google.com/Top/Computers/Internet/Protocols/

SNMP/RFCs

[24] XSchema

http://www.w3.org/TR/xmlschema-0/

[25] Interface Definition Language

http://www.omg.org
OSGi Service-Platform Release 3 221-588

References Configuration Admin Service Specification Version 1.1
[26] Lightweight Directory Access Protocol

http://directory.google.com/Top/Computers/Software/Internet/Servers/

Directory/LDAP

[27] Understanding and Deploying LDAP Directory services

Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical

publishing.
222-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Introduction
11 Device Access

Specification

Version 1.1

11.1 Introduction

A Service Platform is a meeting point for services and devices from many
different vendors: a meeting point where users add and cancel service sub-

scriptions, newly installed services find their corresponding input and out-

put devices, and device drivers connect to their hardware.

In an OSGi Service Platform, these activities will dynamically take place

while the Framework is running. Technologies such as USB and IEEE 1394
explicitly support plugging and unplugging devices at any time, and wire-

less technologies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi Service Plat-

form, particularly those relating to devices. When all of the possible services

and device requirements are factored in, each OSGi Service Platform will be
unique. Therefore, automated mechanisms are needed that can be extended

and customized, in order to minimize the configuration needs of the OSGi

environment.

The Device Access specification supports the coordination of automatic

detection and attachment of existing devices on an OSGi Service Platform,
facilitates hot-plugging and -unplugging of new devices, and downloads and

installs device drivers on demand.

This specification, however, deliberately does not prescribe any particular

device or network technology, and mentioned technologies are used as

examples only. Nor does it specify a particular device discovery method.
Rather, this specification focuses on the attachment of devices supplied by

different vendors. It emphasizes the development of standardized device

interfaces to be defined in device categories, although no such device cate-

gories are defined in this specification.

11.1.1 Essentials

• Embedded Devices – OSGi bundles will likely run in embedded devices.

This environment implies limited possibility for user interaction, and

low-end devices will probably have resource limitations.

• Remote Administration – OSGi environments must support adminis-

tration by a remote service provider.

• Vendor Neutrality – OSGi-compliant driver bundles will be supplied by
different vendors; each driver bundle must be well-defined, documented,

and replaceable.
OSGi Service-Platform Release 3 223-588

Introduction Device Access Specif ication Version 1.1
• Continuous Operation – OSGi environments will be running for extended
periods without being restarted, possibly continuously, requiring stable

operation and stable resource consumption.

• Dynamic Updates – As much as possible, driver bundles must be individ-

ually replaceable without affecting unrelated bundles. In particular, the

process of updating a bundle should not require a restart of the whole

OSGi Service Platform or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementa-

tions in order for them to be OSGi-compliant. Implementations must sup-

port the following capabilities:

• Hot-Plugging – Plugging and unplugging of devices at any time if the
underlying hardware and drivers allow it.

• Legacy Systems – Device technologies which do not implement the auto-

matic detection of plugged and unplugged devices.

• Dynamic Device Driver Loading – Loading new driver bundles on demand

with no prior device-specific knowledge of the Device service.

• Multiple Device Representations – Devices to be accessed from multiple
levels of abstraction.

• Deep Trees – Connections of devices in a tree of mixed network technol-

ogies of arbitrary depth.

• Topology Independence – Separation of the interfaces of a device from

where and how it is attached.

• Complex Devices – Multifunction devices and devices that have multiple

configurations.

11.1.2 Operation

This specification defines the behavior of a device manager (which is not a

service as might be expected). This device manager detects registration of

Device services and is responsible for associating these devices with an
appropriate Driver service. These tasks are done with the help of Driver

Locator services and the Driver Selector service that allow a device manager

to find a Driver bundle and install it.

11.1.3 Entities

The main entities of the Device Access specification are:

• Device Manager – The bundle that controls the initiation of the

attachment process behind the scenes.

• Device Category – Defines how a Driver service and a Device service can

cooperate.
• Driver – Competes for attaching Device services of its recognized device

category. See Driver Services on page 230.

• Device – A representation of a physical device or other entity that can be

attached by a Driver service. See Device Services on page 225.

• DriverLocator – Assists in locating bundles that provide a Driver service.

See Driver Locator Service on page 237.
• DriverSelector – Assists in selecting which Driver service is best suited to

a Device service. See The Driver Selector Service on page 239.

Figure 35 show the classes and their relationships.
224-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Device Services
Figure 35 Device Access Class Overview

11.2 Device Services

A Device service represents some form of a device. It can represent a hard-

ware device, but that is not a requirement. Device services differ widely:

some represent individual physical devices and others represent complete
networks. Several Device services can even simultaneously represent the

same physical device at different levels of abstraction. For example:

• A USB network.

• A device attached on the USB network.

• The same device recognized as a USB to Ethernet bridge.
• A device discovered on the Ethernet using Salutation.

• The same device recognized as a simple printer.

• The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB

mouse can be considered as:

• A USB device which delivers information over the USB bus.

• A mouse device which delivers x and y coordinates and information

about the state of its buttons.

Device Manager
impl

Device
or Device_
Category set

<<interface>>
Driver
Locator

<<interface>>
Driver
Selector

a Driver impl

<<interface>>
Driver

a Driver
Locator impl

<<interface>>
Match

a Driver
Selector impl

a Device impl
0..n1

1

1

1

0..n

listens to all
device registrations

collects all drivers
and matches them
to devices

0..n

1

attaches device and
possible refines 0..n

0,1

0..n

1 1

0,1

 driver located by

associates
driver with

match value
for device

refines or uses external

best driver

device driver
bundle

Driver Selector
bundle

Driver Locator
bundle

device manager

downloads
a bundle1

1

(provided by application or
vendor specific)

(provided by vendor)

(provided by operator)

selected by
OSGi Service-Platform Release 3 225-588

Device Services Device Access Specif ication Version 1.1
Each representation has specific implications:

• That a particular device is a mouse is irrelevant to an application which

provides management of USB devices.

• That a mouse is attached to a USB bus or a serial port would be inconse-

quential to applications that respond to mouse-like input.

Device services must belong to a defined device category, or else they can

implement a generic service which models a particular device, independent

of its underlying technology. Examples of this type of implementation

could be Sensor or Actuator services.

A device category specifies the methods for communicating with a Device
service, and enables interoperability between bundles that are based on the

same underlying technology. Generic Device services will allow interopera-

bility between bundles that are not coupled to specific device technologies.

For example, a device category is required for the USB, so that Driver bun-

dles can be written that communicate to the devices that are attached to the
USB. If a printer is attached, it should also be available as a generic Printer

service defined in a Printer service specification, indistinguishable from a

Printer service attached to a parallel port. Generic categories, such as a

Printer service, should also be described in a Device Category.

It is expected that most Device service objects will actually represent a phys-

ical device in some form, but that is not a requirement of this specification.
A Device service is represented as a normal service in the OSGi Framework

and all coordination and activities are performed upon Framework services.

This specification does not limit a bundle developer from using Framework

mechanisms for services that are not related to physical devices.

11.2.1 Device Service Registration

A Device service is defined as a normal service registered with the Frame-

work that either:

• Registers a service object under the interface o rg. os gi .se rvic e.Devic e

with the Framework, or
• Sets the DEVICE_C ATEG OR Y property in the registration. The value of

DEVI CE_C ATEGO R Y is an array of Str ing objects of all the device cate-

gories that the device belongs to. These strings are defined in the asso-

ciated device category.

If this document mentions a Device service, it is meant to refer to services
registered with the name or g.o sgi . ser vi ce. device .Devic e or services regis-

tered with the DEVIC E_C ATEGO RY property set.

When a Device service is registered, additional properties may be set that

describe the device to the device manager and potentially to the end users.

The following properties have their semantics defined in this specification:

• DEVI CE_C ATEGO R Y – A marker property indicating that this service

must be regarded as a Device service by the device manager. Its value is

of type Str ing[] , and its meaning is defined in the associated device cat-

egory specification.

• DEVI CE_DESC RI PTIO N – Describes the device to an end user. Its value is
of type Str ing .
226-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Device Services
• DEVICE_SER IAL – A unique serial number for this device. If the device
hardware contains a serial number, the driver bundle is encouraged to

specify it as this property. Different Device services representing the

same physical hardware at different abstraction levels should set the

same DEVIC E_S ERIAL , thus simplifying identification. Its value is of type

Str i ng .

• ser vi ce. pid – Service Persistent ID (PID), defined in
or g.o sgi . f r amew or k.C o nstants . Device services should set this property.

It must be unique among all registered services. Even different

abstraction levels of the same device must use different PIDs. The service

PIDs must be reproducible, so that every time the same hardware is

plugged in, the same PIDs are used.

11.2.2 Device Service Attachment

When a Device service is registered with the Framework, the device man-

ager is responsible for finding a suitable Driver service and instructing it to

attach to the newly registered Device service. The Device service itself is pas-

sive: it only registers a Device service with the Framework and then waits

until it is called.

The actual communication with the underlying physical device is not

defined in the Device interface because it differs significantly between dif-

ferent types of devices. The Driver service is responsible for attaching the

device in a device type-specific manner. The rules and interfaces for this pro-

cess must be defined in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device

service remains unattached. In that case, if the service object implements

the De vi ce interface, it must receive a call to the n oDr iverF ou nd() method.

The Device service can wait until a new driver is installed, or it can unregis-

ter and attempt to register again with different properties that describe a
more generic device or try a different configuration.

11.2.2.1 Idle Device Service

The main purpose of the device manager is to try to attach drivers to idle

devices. For this purpose, a Device service is considered idle if no bundle that
itself has registered a Driver service is using the Device service.

11.2.2.2 Device Service Unregistration

When a Device service is unregistered, no immediate action is required by

the device manager. The normal service of unregistering events, provided by
the Framework, takes care of propagating the unregistration information to

affected drivers. Drivers must take the appropriate action to release this

Device service and perform any necessary cleanup, as described in their

device category specification.

The device manager may, however, take a device unregistration as an indi-
cation that driver bundles may have become idle and are thus eligible for

removal. It is therefore important for Device services to unregister their ser-

vice object when the underlying entity becomes unavailable.
OSGi Service-Platform Release 3 227-588

Device Category Specif ications Device Access Specif ication Version 1.1
11.3 Device Category Specifications

A device category specifies the rules and interfaces needed for the communi-
cation between a Device service and a Driver service. Only Device services

and Driver services of the same device category can communicate and coop-

erate.

The Device Access service specification is limited to the attachment of

Device services by Driver services, and does not enumerate different device
categories.

Other specifications must specify a number of device categories before this

specification can be made operational. Without a set of defined device cate-

gories, no interoperability can be achieved.

Device categories are related to a specific device technology, such as USB,

IEEE 1394, JINI, UPnP, Salutation, CEBus, Lonworks, and others. The pur-

pose of a device category specification is to make all Device services of that

category conform to an agreed interface, so that, for example, a USB Driver

service of vendor A can control Device services from vendor B attached to a

USB bus.

This specification is limited to defining the guidelines for device category

definitions only. Device categories may be defined by the OSGi organization

or by external specification bodies – for example, when these bodies are

associated with a specific device technology.

11.3.1 Device Category Guidelines

A device category definition comprises the following elements:

• An interface that all devices belonging to this category must implement.

This interface should lay out the rules of how to communicate with the

underlying device. The specification body may define its own device
interfaces (or classes) or leverage existing ones. For example, a serial port

device category could use the j avax.c omm.S er i a lPo rt interface which is

defined in [28] Java Communications API.

When registering a device belonging to this category with the Frame-

work, the interface or class name for this category must be included in

the registration.
• A set of service registration properties, their data types, and semantics,

each of which must be declared as either MANDATO RY or O PTIO NAL for

this device category.

• A range of match values specific to this device category. Matching is

explained later in The Device Attachment Algorithm on page 241.

11.3.2 Sample Device Category Specification

The following is a partial example of a fictitious device category:

public interface /* com.acme.widget.*/ WidgetDevice {
int MATCH_SERIAL = 10;
int MATCH_VERSION = 8;
int MATCH_MODEL = 6;
int MATCH_MAKE = 4;
int MATCH_CLASS = 2;
228-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Device Category Specifications
void sendPacket(byte [] data);
byte [] receivePacket(long timeout);

}

Devices in this category must implement the interface

co m.ac me.w idge t.W idgetDe vi ce to receive attachments from Driver ser-

vices in this category.

Device properties for this fictitious category are defined in table Table 13.

11.3.3 Match Example

Driver services and Device services are connected via a matching process

that is explained in The Device Attachment Algorithm on page 241. The Driver

service plays a pivotal role in this matching process. It must inspect the

Device service (from its Ser viceR ef ere nce object) that has just been regis-

tered and decide if it potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The

scale of this match value must be defined in the device category so as to

allow Driver services to match on a fair basis. The scale must start at least at

1 and go upwards.

Driver services for this sample device category must return one of the match

codes defined in the co m.ac me.w idg et.W idge tDevice interface or

Device .MATC H_NO NE if the Device service is not recognized. The device

category must define the exact rules for the match codes in the device cate-

gory specification. In this example, a small range from 2 to 10

(M ATC H _NONE is 0) is defined for W idge tDevice devices. They are named
in the W idge tDevice interface for convenience and have the following

semantics.

Property name M/O Type Value

DEVICE_C ATEG OR Y M Str i ng[] {"W idge t"}

co m.ac me.c lass M Str i ng A class description of this device. For

example "audio ", "vid eo", "ser ia l ", etc. An
actual device category specification

should contain an exhaustive list and

define a process to add new classes.

co m.ac me.mo del M Str i ng A definition of the model. This is usually

vendor specific. For example "Mo use ".

co m.ac me.man ufac ture r M Str i ng Manufacturer of this device, for example

"ACME Widget Division".

co m.ac me.r evis io n O Str i ng Revision number. For example, "42".

co m.ac me.se r ia l O Str i ng A serial number. For example

"S N6751293 -12-2112/A".

Table 13 Example Device Category Properties , M=Mandatory, O=Optional
OSGi Service-Platform Release 3 229-588

Driver Services Device Access Specif ication Version 1.1
A Driver service should use the constants to return when it decides how

closely the Device service matches its suitability. For example, if it matches

the exact serial number, it should return MATC H_SER IAL .

11.4 Driver Services

A Driver service is responsible for attaching to suitable Device services

under control of the device manager. Before it can attach a Device service,

however, it must compete with other Driver services for control.

If a Driver service wins the competition, it must attach the device in a device

category-specific way. After that, it can perform its intended functionality.

This functionality is not defined here nor in the device category; this specifi-

cation only describes the behavior of the Device service, not how the Driver

service uses it to implement its intended functionality. A Driver service may
register one or more new Device services of another device category or a

generic service which models a more refined form of the device.

Both refined Device services as well as generic services should be defined in

a Device Category. See Device Category Specifications on page 228.

11.4.1 Driver Bundles

A Driver service is, like all services, implemented in a bundle, and is recog-

nized by the device manager by registering one or more Dr iver service

objects with the Framework.

Such bundles containing one or more Driver services are called driver bun-

dles. The device manager must be aware of the fact that the cardinality of the

relationship between bundles and Driver services is 1:1...*.

A driver bundle must register at least one Driver service in its

Bundl eActiva tor .star t implementation.

11.4.2 Driver Taxonomy

Device Drivers may belong to one of the following categories:

• Base Drivers (Discovery, Pure Discovery and Normal)

• Refining Drivers
• Network Drivers

• Composite Drivers

Match name Value Description

MATCH _SERI AL 10 An exact match, including the serial number.

MATCH _VERSI ON 8 Matches the right class, make model, and version.

MATCH _MO DEL 6 Matches the right class and make model.

MATCH _MAKE 4 Matches the make.

MATCH _CL AS S 2 Only matches the class.

Tab le 14 Sample Device Category Match Scale
230-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Driver Services
• Referring Drivers
• Bridging Drivers

• Multiplexing Drivers

• Pure Consuming Drivers

This list is not definitive, and a Driver service is not required to fit into one

of these categories. The purpose of this taxonomy is to show the different
topologies that have been considered for the Device Access service specifica-

tion.

Figure 36 Legend for Device Driver Services Taxonomy

11.4.2.1 Base Drivers

The first category of device drivers are called base drivers because they pro-

vide the lowest-level representation of a physical device. The distinguishing

factor is that they are not registered as Driver services because they do not

have to compete for access to their underlying technology.

Figure 37 Base Driver Types

Base drivers discover physical devices using code not specified here (for

example, through notifications from a device driver in native code) and
then register corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical

device, a Device service is then registered. Drivers supporting a discovery

mechanism are called discovery base drivers.

An example of a discovery base driver is a USB driver. Discovered USB

devices are registered with the Framework as a generic USB Device service.

The USB specification (see [29] USB Specification) defines a tightly integrated

discovery method. Further, devices are individually addressed; no provision

exists for broadcasting a message to all devices attached to the USB bus.

Therefore, there is no reason to expose the USB network itself; instead, a dis-
covery base driver can register the individual devices as they are discovered.

bold

plain

Device service

Hardware

Driver

Association

Key part

Illustrative

Network

Parallel port service

Physical

Base driver

Printer service

JINI, Salutation,

Pure Discovery

hardware SLP, UPnP

Printer service

Hardware with

 Discovery

 Base driver

discovery: USB,

IEEE 1394,

Base driver
OSGi Service-Platform Release 3 231-588

Driver Services Device Access Specif ication Version 1.1
Not all technologies support a discovery mechanism. For example, most
serial ports do not support detection, and it is often not even possible to

detect whether a device is attached to a serial port.

Although each driver bundle should perform discovery on its own, a driver

for a non-discoverable serial port requires external help – either through a

user interface or by allowing the Configuration Admin service to configure
it.

It is possible for the driver bundle to combine automatic discovery of Plug

and Play-compliant devices with manual configuration when non-compli-

ant devices are plugged in.

11.4.2.2 Refining Drivers

The second category of device drivers are called refining drivers. Refining

drivers provide a refined view of a physical device that is already repre-

sented by another Device service registered with the Framework. Refining

drivers register a Driver service with the Framework. This Driver service is
used by the device manager to attach the refining driver to a less refined

Device service that is registered as a result of events within the Framework

itself.

Figure 38 Refining Driver Diagram

An example of a refining driver is a mouse driver, which is attached to the

generic USB Device service representing a physical mouse. It then registers a

new Device service which represents it as a Mouse service, defined else-
where.

The majority of drivers fall into the refining driver type.

11.4.2.3 Network Drivers

An Internet Protocol (IP) capable network such as Ethernet supports indi-

vidually addressable devices and allows broadcasts, but does not define an

intrinsic discovery protocol. In this case, the entire network should be

exposed as a single Device service.

Mouse service

USB Device

Base driver

Refining driver
232-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Driver Services
Figure 39 Network Driver diagram

11.4.2.4 Composite Drivers

Complex devices can often be broken down into several parts. Drivers that

attach to a single service and then register multiple Device services are

called composite drivers. For example, a USB speaker containing software-
accessible buttons can be registered by its driver as two separate Device ser-

vices: an Audio Device service and a Button Device service.

Figure 40 Composite Driver structure

This approach can greatly reduce the number of interfaces needed, as well as

enhance reusability.

11.4.2.5 Referring Drivers

A referring driver is actually not a driver in the sense that it controls Device
services. Instead, it acts as an intermediary to help locate the correct driver

bundle. This process is explained in detail in The Device Attachment Algorithm

on page 241.

A referring driver implements the call to the attac h method to inspect the

Device service, and decides which Driver bundle would be able to attach to
the device. This process can actually involve connecting to the physical

device and communicating with it. The attac h method then returns a S tr ing

object that indicates the DR IVER_ID of another driver bundle. This process is

called a referral.

IP Network driver

drivers and other services

that use the network service

network

Associated with

to discover devices

(also for other

devices)

Audio Device

USB Device

Physical USB bus

Base driver

Composite driver

Button Device
OSGi Service-Platform Release 3 233-588

Driver Services Device Access Specif ication Version 1.1
For example, a vendor ACME can implement one driver bundle that special-
izes in recognizing all of the devices the vendor produces. The referring

driver bundle does not contain code to control the device – it contains only

sufficient logic to recognize the assortment of devices. This referring driver

can be small, yet can still identify a large product line. This approach can

drastically reduce the amount of downloading and matching needed to find

the correct driver bundle.

11.4.2.6 Bridging Drivers

A bridging driver registers a Device service from one device category but

attaches it to a Device service from another device category.

Figure 41 Bridging Driver Structure

For example, USB to Ethernet bridges exist that allow connection to an Eth-

ernet network through a USB device. In this case, the top level of the USB

part of the Device service stack would be an Ethernet Device service. But the
same Ethernet Device service can also be the bottom layer of an Ethernet

layer of the Device service stack. A few layers up, a bridge could connect into

yet another network.

The stacking depth of Device services has no limit, and the same drivers

could in fact appear at different levels in the same Device service stack. The
graph of drivers-to-Device services roughly mirrors the hardware connec-

tions.

11.4.2.7 Multiplexing Drivers

A multiplexing driver attaches a number of Device services and aggregates
them in a new Device service.

Figure 42 Multiplexing Driver Structure

Ethernet Device

USB device

Bridging driver

Ethernet device drivers

 USB Mouse

Multiplexing Driver

Cursor Position

 Remote

Control

Graphic Tablet

USB Network Serial Port
234-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Driver Services
For example, assume that a system has a mouse on USB, a graphic tablet on a
serial port, and a remote control facility. Each of these would be registered as

a service with the Framework. A multiplexing driver can attach all three,

and can merge the different positions in a central Cursor Position service.

11.4.2.8 Pure Consuming Drivers

A pure consuming driver bundle will attach to devices without registering a

refined version.

Figure 43 Pure Consuming Driver Structure

For example, one driver bundle could decide to handle all serial ports

through java x.co mm instead of registering them as services. When a USB

serial port is plugged in, one or more Driver services are attached, resulting
in a Device service stack with a Serial Port Device service. A pure consuming

driver may then attach to the Serial Port Device service and register a new

serial port with the ja va x.co mm.* registry instead of the Framework service

registry. This registration effectively transfers the device from the OSGi

environment into another environment.

11.4.2.9 Other Driver Types

It should be noted that any bundle installed in the OSGi environment may

get and use a Device service without having to register a Driver service.

The following functionality is offered to those bundles that do register a
Driver service and conform to the this specification:

• The bundles can be installed and uninstalled on demand.

• Attachment to the Device service is only initiated after the winning the

competition with other drivers.

11.4.3 Driver Service Registration

Drivers are recognized by registering a Driver service with the Framework.

This event makes the device manager aware of the existence of the Driver

service. A Driver service registration must have a DR IVER_I D property

whose value is a Str ing object, uniquely identifying the driver to the device
manager. The device manager must use the DR IVER_I D to prevent the instal-

lation of duplicate copies of the same driver bundle.

Therefore, this DRIVER _ID must:

• Depend only on the specific behavior of the driver, and thus be inde-
pendent of unrelated aspects like its location or mechanism of down-

loading.

• Start with the reversed form of the domain name of the company that

implements it: for example, c om. acme .wi dget. 1. 1.

Pure Consuming Driver

USB Serial Port

USB Base Driver

USB Network
OSGi Service-Platform Release 3 235-588

Driver Services Device Access Specif ication Version 1.1
• Differ from the DR IVER _I D of drivers with different behavior. Thus, it
must also be different for each revision of the same driver bundle so they

may be distinguished.

When a new Driver service is registered, the Device Attachment Algorithm

must be applied to each idle Device service. This requirement gives the new

Driver service a chance to compete with other Driver services for attaching
to idle devices. The techniques outlined in Optimizations on page 244 can

provide significant shortcuts for this situation.

As a result, the Driver service object can receive matc h and atta ch requests

before the method which registered the service has returned.

This specification does not define any method for new Driver services to

steal already attached devices. Once a Device service has been attached by a

Driver service, it can only be released by the Driver service itself.

11.4.4 Driver Service Unregistration

When a Driver service is unregistered, it must release all Device services to
which it is attached. Thus, all its attached Device services become idle. The

device manager must gather all of these idle Device services and try to re-

attach them. This condition gives other Driver services a chance to take over

the refinement of devices after the unregistering driver. The techniques out-

lined in Optimizations on page 244 can provide significant shortcuts for this

situation.

A Driver service that is installed by the device manager must remain regis-

tered as long as the driver bundle is active. Therefore, a Driver service

should only be unregistered if the driver bundle is stopping, an occurrence

which may precede its being uninstalled or updated. Driver services should

thus not unregister in an attempt to minimize resource consumption. Such
optimizations can easily introduce race conditions with the device man-

ager.

11.4.5 Driver Service Methods

The Dr iver interface consists of the following methods:

• ma tch(Ser vice Ref ere nce) – This method is called by the device manager

to find out how well this Driver service matches the Device service as

indicated by the Se rvice Ref er ence argument. The value returned here is

specific for a device category. If this Device service is of another device

category, the value De vi ce. MATCH _NO NE must be returned. Higher
values indicate a better match. For the exact matching algorithm, see The

Device Attachment Algorithm on page 241.

Driver match values and referrals must be deterministic, in that repeated

calls for the same Device service must return the same results so that

results can be cached by the device manager.

• attac h(S ervic eR efe renc e) – If the device manager decides that a Driver
service should be attached to a Device service, it must call this method

on the Driver service object. Once this method is called, the Device

service is regarded as attached to that Driver service, and no other Driver

service must be called to attach to the Device service. The Device service

must remain owned by the Driver service until the Driver bundle is

stopped. No una ttach method exists.
236-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Driver Locator Service
The attac h method should return nul l when the Device service is cor-
rectly attached. A referring driver (see Referring Drivers on page 233) can

return a Str i ng object that specifies the DR IVER_ID of a driver that can

handle this Device service. In this case, the Device service is not attached

and the device manager must attempt to install a Driver service with the

same DRI VER _ID via a Driver Locator service. The attach method must be

deterministic as described in the previous method.

11.4.6 Idle Driver Bundles

An idle Driver bundle is a bundle with a registered Driver service, and is not

attached to any Device service. Idle Driver bundles are consuming resources

in the OSGi Service Platform. The device manager should uninstall bundles

that it has installed and which are idle.

11.5 Driver Locator Service

The device manager must automatically install Driver bundles, which are

obtained from Driver Locator services, when new Device services are regis-

tered.

A Driver Locator service encapsulates the knowledge of how to fetch the

Driver bundles needed for a specific Device service. This selection is made
on the properties that are registered with a device: for example,

DEVICE_C ATEG OR Y and any other properties registered with the Device

service registration.

The purpose of the Driver Locator service is to separate the mechanism from

the policy. The decision to install a new bundle is made by the device man-
ager (the mechanism), but a Driver Locator service decides which bundle to

install and from where the bundle is downloaded (the policy).

Installing bundles has many consequences for the security of the system,

and this process is also sensitive to network setup and other configuration

details. Using Driver Locator services allows the Operator to choose a strat-
egy that best fits its needs.

Driver services are identified by the DR IVER_ID property. Driver Locator ser-

vices use this particular ID to identify the bundles that can be installed.

Driver ID properties have uniqueness requirements as specified in Device

Service Registration on page 226. This uniqueness allows the device manager
to maintain a list of Driver services and prevent unnecessary installs.

An OSGi Service Platform can have several different Driver Locator services

installed. The device manager must consult all of them and use the com-

bined result set, after pruning duplicates based on the DR IVER _I D values.

11.5.1 The DriverLocator Interface

The Driver Lo cato r interface allows suitable driver bundles to be located,

downloaded, and installed on demand, even when completely unknown

devices are detected.

It has the following methods:
OSGi Service-Platform Release 3 237-588

Driver Locator Service Device Access Specif ication Version 1.1
• f indDr ivers (Di ct io nar y) – This method returns an array of driver IDs
that potentially match a service described by the properties in the

Dict io nar y object. A driver ID is the Str ing object that is registered by a

Driver service under the DRIVER _ID property.

• loa dDri ve r(Str i ng) – This method returns an Inpu tStrea m object that

can be used to download the bundle containing the Driver service as

specified by the driver ID argument. If the Driver Locator service cannot
download such a bundle, it should return nul l . Once this bundle is down-

loaded and installed in the Framework, it must register a Driver service

with the DR IVER_ID property set to the value of the S tr ing argument.

11.5.2 A Driver Example

The following example shows a very minimal Driver service implementa-
tion. It consists of two classes. The first class is Se ria lWi dget . This class

tracks a single Wi dgetDe vi ce from Sample Device Category Specification on

page 228. It registers a j avax.c omm.S er i a lPo rt service, which is a general

serial port specification that could also be implemented from other device

categories like USB, a COM port, etc. It is created when the

Seri a lW idge tDriver object is requested to attach a Wi dgetDevic e by the
device manager. It registers a new ja vax.c omm.S er ia lPo rt service in its con-

structor.

The o rg .o sgi .u t i l . t r ack er . Ser vi ceTra cke r is extended to handle the Frame-

work events that are needed to simplify tracking this service. The

remo vedSe rvice method of this class is overridden to unregister the
Seri a lPo r t when the underlying Wid getDevic e is unregistered.

package com.acme.widget;
import org.osgi.service.device.*;
import org.osgi.framework.*;
import org.osgi.util.tracker.*;

class SerialWidget extends ServiceTracker
implements javax.comm.SerialPort,

org.osgi.service.device.Constants {
ServiceRegistration registration;

SerialWidget(BundleContext c, ServiceReference r) {
super(c, r, null);
open();

}

public Object addingService(ServiceReference ref) {
WidgetDevice dev = (WidgetDevice)

context.getService(ref);
registration = context.registerService(

javax.comm.SerialPort.class.getName(),
this,
null);

return dev;
}

public void removedService(ServiceReference ref,
238-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 The Driver Selector Service
Object service) {
registration.unregister();
context.ungetService(ref);

}
... methods for javax.comm.SerialPort that are
... converted to underlying WidgetDevice

}

A Se ria lWi dgetDr iver object is registered with the Framework in the Bundle

Activator start method under the Dr iver interface. The device manager must

call the match method for each idle Device service that is registered. If it is

chosen by the device manager to control this Device service, a new

Ser ia l Widg et is created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implements Driver {
BundleContext context;

String spec =
 "(&"

+" (objectclass=com.acme.widget.WidgetDevice)"
+" (DEVICE_CATEGORY=WidgetDevice)"
+" (com.acme.class=Serial)"
+ ")";

Filter filter;

SerialWidgetDriver(BundleContext context)
throws Exception {
this.context = context;
filter = context.createFilter(spec);

}
public int match(ServiceReference d) {

if (filter.match(d))
return WidgetDevice.MATCH_CLASS;

else
return Device.MATCH_NONE;

}
public synchronized String attach(ServiceReference r){

new SerialWidget(context, r);
}

}

11.6 The Driver Selector Service

The purpose of the Driver Selector service is to customize the selection of

the best Driver service from a set of suitable Driver bundles. The device

manager has a default algorithm as described in The Device Attachment Algo-

rithm on page 241. When this algorithm is not sufficient and requires cus-

tomizing by the operator, a bundle providing a Driver Selector service can

be installed in the Framework. This service must be used by the device man-

ager as the final arbiter when selecting the best match for a Device service.
OSGi Service-Platform Release 3 239-588

Device Manager Device Access Specif ication Version 1.1
The Driver Selector service is a singleton; only one such service is recog-
nized by the device manager. The Framework method

Bundl eC onte xt . getSe rvice Re fer ence must be used to obtain a Driver Selec-

tor service. In the erroneous case that multiple Driver Selector services are

registered, the ser vice. ra nking property will thus define which service is

actually used.

A device manager implementation must invoke the method se lect(Se r-

vi ceR efe renc e, Matc h[]) . This method receives a Service Reference to the

Device service and an array of M atch objects. Each Matc h object contains a

link to the Ser vi ceR efe ren ce object of a Driver service and the result of the

match value returned from a previous call to Driver .matc h . The Driver

Selector service should inspect the array of Ma tch objects and use some
means to decide which Driver service is best suited. The index of the best

match should be returned. If none of the M atch objects describe a possible

Driver service, the implementation must return

Driver Sele cto r .S EL ECT_NO NE (-1) .

11.7 Device Manager

Device Access is controlled by the device manager in the background. The

device manager is responsible for initiating all actions in response to the

registration, modification, and unregistration of Device services and Driver
services, using Driver Locator services and a Driver Selector service as help-

ers.

The device manager detects the registration of Device services and coordi-

nates their attachment with a suitable Driver service. Potential Driver ser-

vices do not have to be active in the Framework to be eligible. The device
manager must use Driver Locator services to find bundles that might be

suitable for the detected Device service and that are not currently installed.

This selection is done via a DR IVER _I D property that is unique for each

Driver service.

The device manager must install and start these bundles with the help of a
Driver Locator service. This activity must result in the registration of one or

more Driver services. All available Driver services, installed by the device

manager and also others, then participate in a bidding process. The Driver

service can inspect the Device service through its S ervic eR efe renc e object

to find out how well this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it

is used to decide which of the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with

tie breaks defined on the s ervic e.r anki ng and se rvice . id properties. The

selected Driver service is then asked to attac h the Device service.

If no Driver service is suitable, the Device service remains idle. When new

Driver bundles are installed, these idle Device services must be reattached.
240-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Device Manager
The device manager must reattach a Device service if, at a later time, a
Driver service is unregistered due to an uninstallation or update. At the

same time, however, it should prevent superfluous and non-optimal reat-

tachments. The device manager should also garbage-collect driver bundles

it installed which are no longer used.

The device manager is a singleton. Only one device manager may exist, and
it must have no public interface.

11.7.1 Device Manager Startup

To prevent race conditions during Framework startup, the device manager

must monitor the state of Device services and Driver services immediately

when it is started. The device manager must not, however, begin attaching
Device services until the Framework has been fully started, to prevent

superfluous or non-optimal attachments.

The Framework has completed starting when the

Fr amew or kEvent.S TAR TED event has been published. Publication of that

event indicates that Framework has finished all its initialization and all
bundles are started. If the device manager is started after the Framework has

been initialized, it should detect the state of the Framework by examining

the state of the system bundle.

11.7.2 The Device Attachment Algorithm

A key responsibility of the device manager is to attach refining drivers to

idle devices. The following diagram illustrates the device attachment algo-

rithm.
OSGi Service-Platform Release 3 241-588

Device Manager Device Access Specif ication Version 1.1
Figure 44 Device Attachment Algorithm

Idle Device

For each DriverLocator

findDriversA

For each DRIVER ID

Try to loadBFor each Driver not excluded

C match

Nothing?

Selector?

Try selector
D

Attach completed Nothing attached

Default selection

Attach

Cleanup

Try to load

Add the driver to

the exclusion list

Device?

noDriverFound

Cleanup

E

F

K

I

K

G

H

242-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Device Manager
11.7.3 Legend

Step Description

A Driver Lo cato r . f ind Driver s is called for each registered Driver Locator ser-

vice, passing the properties of the newly detected Device service. Each

method call returns zero or more DR IVER _I D values (identifiers of particular
driver bundles).

If the f indDri ve rs method throws an exception, it is ignored, and processing

continues with the next Driver Locator service. See Optimizations on page

244 for further guidance on handling exceptions.

B For each found DRI VER _ID that does not correspond to an already registered

Driver service, the device manager calls Dr iverLo ca tor . lo ad Driver to return

an Inp utStre am containing the driver bundle. Each call to lo ad Driver is

directed to one of the Driver Locator services that mentioned the DRI VER_ID

in step A. If the l oa dDriver method fails, the other Driver Locator objects are
tried. If they all fail, the driver bundle is ignored.

If this method succeeds, the device manager installs and starts the driver

bundle. Driver bundles must register their Driver services synchronously

during bundle activation.

C For each Driver service, except those on the exclusion list, call its

Driver .matc h method, passing the Ser vi ceR efe ren ce object to the Device

service.

Collect all successful matches – that is, those whose return values are

greater than Devic e.M ATC H _NO NE – in a list of active matches. A match
call that throws an exception is considered unsuccessful and is not added to

the list.

D If there is a Driver Selector service, the device manager calls the

Driver Sel ecto r . sele ct method, passing the array of active Ma tch objects.

If the Driver Selector service returns the index of one of the Ma tch objects

from the array, its associated Driver service is selected for attaching the

Device service. If the Driver Selector service returns

Driver Sel ecto r . SELECT_NO NE , no Driver service must be considered for

attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid

result, the default selection algorithm is used.

Only one Driver Selector service is used, even if there is more than one regis-

tered in the Framework. See The Driver Selector Service on page 239.

E The winner is the one with the highest match value. Tie breakers are respec-

tively:

• Highest servic e.r anki ng property.
• Lowest se rvice . id property.

Table 15 Driver attachment algorithm
OSGi Service-Platform Release 3 243-588

Device Manager Device Access Specif ication Version 1.1
11.7.4 Optimizations

Optimizations are explicitly allowed and even recommended for an imple-

mentation of a device manager. Implementations may use the following

assumptions:

• Driver match values and referrals must be deterministic, in that repeated
calls for the same Device service must return the same results.

• The device manager may cache match values and referrals. Therefore,

optimizations in the device attachment algorithm based on this

assumption are allowed.

• The device manager may delay loading a driver bundle until it is needed.

For example, a delay could occur when that DRI VER _ID ’s match values

are cached.

F The selected Driver service’s a ttach method is called. If the a ttac h method

returns nul l, the Device service has been successfully attached. If the attach

method returns a S tr ing object, it is interpreted as a referral to another
Driver service and processing continues at G. See Referring Drivers on page

233.

If an exception is thrown, the Driver service has failed, and the algorithm

proceeds to try another Driver service after excluding this one from further

consideration at Step H.

G The device manager attempts to load the referred driver bundle in a manner

similar to Step B, except that it is unknown which Driver Locator service to

use. Therefore, the loa dDri ve r method must be called on each Driver Loca-

tor service until one succeeds (or they all fail). If one succeeds, the device
manager installs and starts the driver bundle. The driver bundle must regis-

ter a Driver service during its activation which must be added to the list of

Driver services in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new

referral adds an entry to the exclusion list, which in turn disqualifies
another driver from further matching, the algorithm cannot loop indefi-

nitely. This list is maintained for the duration of this algorithm. The next

time a new Device service is processed, the exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is
checked to see whether it implements the Device interface. If so, the

noDr iverF o und method is called. Note that this action may cause the Device

service to unregister and possibly a new Device service (or services) to be

registered in its place. Each new Device service registration must restart the

algorithm from the beginning.

K Whether an attachment was successful or not, the algorithm may have

installed a number of driver bundles. The device manager should remove

any idle driver bundles that it installed.

Step Description

Tab le 15 Driver attachment algorithm
244-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Device Manager
• The results of calls to Driver Lo cato r and Dr iver Sele ctor methods are not
required to be deterministic, and must not be cached by the device

manager.

• Thrown exceptions must not be cached. Exceptions are considered tran-

sient failures, and the device manager must always retry a method call

even if it has thrown an exception on a previous invocation with the

same arguments.

11.7.5 Driver Bundle Reclamation

The device manager may remove driver bundles it has installed at any time,

provided that all the Driver services in that bundle are idle. This recom-

mended practice prevents unused driver bundles from accumulating over

time. Removing driver bundles too soon, however, may cause unnecessary
installs and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified

matching algorithm is not guaranteed to terminate unless the device man-

ager takes reclamation into account.

For example, assume that a new Device service triggers the attachment algo-

rithm. A driver bundle recommended by a Driver Locator service is loaded.

It does not match, so the Device service remains idle. The device manager is

eager to reclaim space, and unloads the driver bundle. The disappearance of

the Driver service causes the device manager to reattach idle devices.

Because it has not kept a record of its previous activities, it tries to reattach
the same device, which closes the loop.

On systems where the device manager implements driver bundle reclama-

tion, all refining drivers should be loaded through Driver Locator services.

This recommendation is intended to prevent the device manager from erro-

neously uninstalling pre-installed driver bundles that cannot later be rein-
stalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on

previously stored information to determine which driver bundles were pre-

installed and which were dynamically installed and thus are eligible for

removal. The device manager may persistently store cachable information
for optimization, but must be able to cold start without any persistent infor-

mation and still be able to manage an existing connection state, satisfying

all of the requirements in this specification.

11.7.6 Handling Driver Bundle Updates

It is not straightforward to determine whether a driver bundle is being

updated when the U NREGI STER event for a Driver service is received. In

order to facilitate this distinction, the device manager should wait for a

period of time after the unregistration for one of the following events to

occur:

• A Bund leEvent.U NINSTALLED event for the driver bundle.

• A Ser vi ceEvent. REGIS TER ED event for another Driver service registered

by the driver bundle.
OSGi Service-Platform Release 3 245-588

Security Device Access Specif ication Version 1.1
If the driver bundle is uninstalled, or if neither of the above events are
received within the allotted time period, the driver is assumed to be inac-

tive. The appropriate waiting period is implementation-dependent and will

vary for different installations. As a general rule, this period should be long

enough to allow a driver to be stopped, updated, and restarted under normal

conditions, and short enough not to cause unnecessary delays in reattaching

devices. The actual time should be configurable.

11.7.7 Simultaneous Device Service and Driver Service
Registration

The device attachment algorithm may cause driver bundles to be installed,

which requires executing the device attachment algorithm recursively. In

this case, the appearance of the new driver bundles should be queued until

completion of the device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment
in time.

The following example sequence illustrates this process when a Driver ser-

vice is registered:

• Collect the set of all idle devices.
• Apply the device attachment algorithm to each device in the set.

• If no Driver services were registered during the execution of the device

attachment algorithm, processing terminates.

• Otherwise, restart this process.

11.8 Security

The device manager is the only privileged bundle in the Device Access spec-

ification and requires the o rg .o sgi .Ad mi nPer mi ssio n to install and uninstall
driver bundles.

The device manager itself should be free from any knowledge of policies and

should not actively set bundle permissions. Rather, if permissions must be

set, it is up to the Management Agent to listen to synchronous bundle

events and set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because

they deliver the content of a bundle to the privileged device manager and

could potentially insert a Trojan horse into the environment. Therefore,

Driver Locator bundles need the Se rvice Per mi ssio n[REGIS TER ,

Driver Loc ato r] to register Driver Locator services, and the operator should
exercise prudence in assigning this Se rvice Permi ssio n .

Bundles with Driver Selector services only require

Servic ePe rmissi on[R EG ISTER, Driver Sel ecto r] to register the

Driver Sele cto r service. The Driver Selector service can play a crucial role in

the selection of a suitable Driver service, but it has no means to define a spe-

cific bundle itself.
246-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 Changes
11.9 Changes

The Device Access specification has not increased its version number
because no API change has been necessary. The only change to this specifi-

cation has been a clarification of the concept of an idle device.

11.10 org.osgi.service.device

The OSGi Device Access Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.device; specification-ver-
sion=1.1

11.10.1 Summary

• Constants – This interface defines standard names for property keys
associated with De vi ce [p.248] and Driver [p.248] services. [p.247]

• Device – Interface for identifying device services.[p.248]

• Driver – A Driver service object must be registered by each Driver

bundle wishing to attach to Device services provided by other drivers.

[p.248]

• DriverLocator – A Driver Locator service can find and load device driver
bundles given a property set. [p.250]

• DriverSelector – When the device manager detects a new Device service,

it calls all registered Driver services to determine if anyone matches the

Device service. [p.250]

• Match – Instances of Match are used in the Dr iverSe lec tor .sel ect [p.250]

method to identify Driver services matching a Device service. [p.251]
Constants

11.10.2 public interface Constants

This interface defines standard names for property keys associated with

Device [p.248] and Dr iver [p.248] services.

The values associated with these keys are of type java.lang.String, unless
otherwise stated.

See Also Device[p.248] , Driver[p.248]

Since 1.1
DEVICE_CATEGORY

11.10.2.1 public static final String DEVICE_CATEGORY = “DEVICE_CATEGORY”

Property (named “DEVICE_CATEGORY”) containing a human readable

description of the device categories implemented by a device. This property

is of type String[]

Services registered with this property will be treated as devices and discov-

ered by the device manager

DEVICE_DESCRIPTION

11.10.2.2 public static final String DEVICE_DESCRIPTION =
OSGi Service-Platform Release 3 247-588

org.osgi.service.device Device Access Specif ication Version 1.1
“DEVICE_DESCRIPTION”

Property (named “DEVICE_DESCRIPTION”) containing a human readable

string describing the actual hardware device.

DEVICE_SERIAL

11.10.2.3 public static final String DEVICE_SERIAL = “DEVICE_SERIAL”

Property (named “DEVICE_SERIAL”) specifying a device’s serial number.

DRIVER_ID

11.10.2.4 public static final String DRIVER_ID = “DRIVER_ID”

Property (named “DRIVER_ID”) identifying a driver.

A DRIVER_ID should start with the reversed domain name of the company

that implemented the driver (e.g., com.acme), and must meet the following

requirements:

• It must be independent of the location from where it is obtained.

• It must be independent of the Dri ve rLo ca tor [p.250] service that down-

loaded it.

• It must be unique.

• It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered

with it.

Device

11.10.3 public interface Device

Interface for identifying device services.

A service must implement this interface or use the

Co nstan ts .DEVIC E_C ATEGO RY [p.247] registration property to indicate that

it is a device. Any services implementing this interface or registered with

the DEVICE_CATEGORY property will be discovered by the device manager.

Device services implementing this interface give the device manager the

opportunity to indicate to the device that no drivers were found that could

(further) refine it. In this case, the device manager calls the

noDr iverF o und [p.248] method on the Device object.

Specialized device implementations will extend this interface by adding
methods appropriate to their device category to it.

See Also Driver[p.248]
MATCH_NONE

11.10.3.1 public static final int MATCH_NONE = 0

Return value from Dr iver . match [p.249] indicating that the driver cannot

refine the device presented to it by the device manager. The value is zero.

noDriverFound()

11.10.3.2 public void noDriverFound()

� Indicates to this Device object that the device manager has failed to attach

any drivers to it.

If this Device object can be configured differently, the driver that registered

this Device object may unregister it and register a different Device service

instead.

Driver
248-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 org.osgi.service.device
11.10.4 public interface Driver

A Driver service object must be registered by each Driver bundle wishing to

attach to Device services provided by other drivers. For each newly discov-
ered De vi ce [p.248] object, the device manager enters a bidding phase. The

Driver object whose match [p.249] method bids the highest for a particular

Device object will be instructed by the device manager to attach to the

Device object.

See Also Device[p.248] , DriverLocator[p.250]
attach(ServiceReference)

11.10.4.1 public String attach(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to attach to

� Attaches this Driver service to the Device service represented by the given
ServiceReference object.

A return value of null indicates that this Driver service has successfully

attached to the given Device service. If this Driver service is unable to attach

to the given Device service, but knows of a more suitable Driver service, it

must return the DRIVER_ID of that Driver service. This allows for the imple-
mentation of referring drivers whose only purpose is to refer to other drivers

capable of handling a given Device service.

After having attached to the Device service, this driver may register the

underlying device as a new service exposing driver-specific functionality.

This method is called by the device manager.

Returns null if this Driver service has successfully attached to the given Device serv-

ice, or the DRIVER_ID of a more suitable driver

Throws Exception – if the driver cannot attach to the given device and does not

know of a more suitable driver
match(Serv iceReference)

11.10.4.2 public int match(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to match

� Checks whether this Driver service can be attached to the Device service.
The Device service is represented by the given Ser vi ceR ef ere nce and

returns a value indicating how well this driver can support the given Device

service, or Device .MATC H_NO NE [p.248] if it cannot support the given

Device service at all.

The return value must be one of the possible match values defined in the
device category definition for the given Device service, or

Device.MATCH_NONE if the category of the Device service is not recognized.

In order to make its decision, this Driver service may examine the properties

associated with the given Device service, or may get the referenced service

object (representing the actual physical device) to talk to it, as long as it
ungets the service and returns the physical device to a normal state before

this method returns.

A Driver service must always return the same match code whenever it is

presented with the same Device service.

The match function is called by the device manager during the matching

process.
OSGi Service-Platform Release 3 249-588

org.osgi.service.device Device Access Specif ication Version 1.1
Returns value indicating how well this driver can support the given Device service,
or Device.MATCH_NONE if it cannot support the Device service at all

Throws Exception – if this Driver service cannot examine the Device service
DriverLocator

11.10.5 public interface DriverLocator

A Driver Locator service can find and load device driver bundles given a
property set. Each driver is represented by a unique DRIVER_ID.

Driver Locator services provide the mechanism for dynamically download-

ing new device driver bundles into an OSGi environment. They are supplied

by providers and encapsulate all provider-specific details related to the loca-

tion and acquisition of driver bundles.

See Also Driver[p.248]
findDrivers(Dictionary)

11.10.5.1 public String[] findDrivers(Dictionary props)

props the properties of the device for which a driver is sought

� Returns an array of DRIVER_ID strings of drivers capable of attaching to a

device with the given properties.

The property keys in the specified Dictionary objects are case-insensitive.

Returns array of driver DRIVER_ID strings of drivers capable of attaching to a Device

service with the given properties, or null if this Driver Locator service does

not know of any such drivers
loadDriver(S tring)

11.10.5.2 public InputStream loadDriver(String id) throws IOException

id the DRIVER_ID of the driver that needs to be installed.

� Get an InputStream from which the driver bundle providing a driver with

the giving DRIVER_ID can be installed.

Returns a InputStream object from which the driver bundle can be installed

Throws IOException – the input stream for the bundle cannot be created
DriverSelector

11.10.6 public interface DriverSelector

When the device manager detects a new Device service, it calls all registered
Driver services to determine if anyone matches the Device service. If at least

one Driver service matches, the device manager must choose one. If there is

a Driver Selector service registered with the Framework, the device manager

will ask it to make the selection. If there is no Driver Selector service, or if it

returns an invalid result, or throws an Exception, the device manager uses

the default selection strategy.

Since 1.1
SELECT_NONE

11.10.6.1 public static final int SELECT_NONE = -1

Return value from DriverSelector.select, if no Driver service should be
attached to the Device service. The value is -1.

select(ServiceReference,Match[])

11.10.6.2 public int select(ServiceReference reference, Match[] matches)

reference the ServiceReference object of the Device service.

matches the array of all non-zero matches.
250-588 OSGi Service-Platform Release 3

Device Access Specification Version 1.1 References
� Select one of the matching Driver services. The device manager calls this
method if there is at least one driver bidding for a device. Only Driver ser-

vices that have responded with nonzero (not De vice. MATCH _NO NE[p.248])

match values will be included in the list.

Returns index into the array of Match objects, or SELECT_NONE if no Driver service

should be attached
Match

11.10.7 public interface Match

Instances of Match are used in the Driver Sele cto r .s elec t [p.250] method to

identify Driver services matching a Device service.

See Also DriverSelector[p.250]

Since 1.1
getDriver()

11.10.7.1 public ServiceReference getDriver()

� Return the reference to a Driver service.

Returns ServiceReference object to a Driver service.
getMatchValue()

11.10.7.2 public int getMatchValue()

� Return the match value of this object.

Returns the match value returned by this Driver service.

11.11 References

[28] Java Communications API

http://java.sun.com/products/javacomm

[29] USB Specification

http://www.usb.org/developers/data/usbspec.zip

[30] Universal Plug and Play

http://www.upnp.org

[31] Jini, Service Discovery and Usage

http://www.jini.org/resources/

[32] Salutation, Service Discovery Protocol

http://www.salutation.org
OSGi Service-Platform Release 3 251-588

References Device Access Specif ication Version 1.1
252-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 Introduction
12 User Admin Service

Specification

Version 1.0

12.1 Introduction

OSGi Service Platforms are often used in places where end users or devices
initiate actions. These kinds of actions inevitably create a need for authenti-

cating the initiator. Authenticating can be done in many different ways,

including with passwords, one-time token cards, bio-metrics, and certifi-

cates.

Once the initiator is authenticated, it is necessary to verify that this princi-
pal is authorized to perform the requested action. This authorization can

only be decided by the operator of the OSGi environment, and thus requires

administration.

The User Admin service provides this type of functionality. Bundles can use

the User Admin service to authenticate an initiator and represent this
authentication as an Autho r izat io n object. Bundles that execute actions on

behalf of this user can use the Autho r izat io n object to verify if that user is

authorized.

The User Admin service provides authorization based on who runs the code,

instead of using the Java code-based permission model. See [33] The Java

Security Architecture for JDK 1.2. It performs a role similar to [34] Java Authen-

tication and Authorization Service.

12.1.1 Essentials

• Authentication – A large number of authentication schemes already exist,
and more will e developed. The User Admin service must be flexible

enough to adapt to the many different authentication schemes that can

be run on a computer system.

• Authorization – All bundles should use the User Admin service to authen-

ticate users and to find out if those users are authorized. It is therefore

paramount that a bundle can find out authorization information with
little effort.

• Security – Detailed security, based on the Framework security model, is

needed to provide safe access to the User Admin service. It should allow

limited access to the credentials and other properties.

• Extensibility – Other bundles should be able to build on the User Admin

service. It should be possible to examine the information from this

service and get real-time notifications of changes.
• Properties – The User Admin service must maintain a persistent database

of users. It must be possible to use this database to hold more infor-

mation about this user.
OSGi Service-Platform Release 3 253-588

Introduction User Admin Service Specification Version 1.0
• Administration – Administering authorizations for each possible action
and initiator is time-consuming and error-prone. It is therefore necessary

to have mechanisms to group end users and make it simple to assign

authorizations to all members of a group at one time.

12.1.2 Entities

This Specification defines the following User Admin service entities:

• UserAdmin – This interface manages a database of named roles which

can be used for authorization and authentication purposes.

• Role – This interface exposes the characteristics shared by all roles: a

name, a type, and a set of properties.

• User – This interface (which extends R ole) is used to represent any entity
which may have credentials associated with it. These credentials can be

used to authenticate an initiator.

• Group – This interface (which extends U ser) is used to contain an aggre-

gation of named R ole objects (G ro up or U ser objects).

• Authorization – This interface encapsulates an authorization context on

which bundles can base authorization decisions.
• UserAdminEvent – This class is used to represent a role change event.

• UserAdminListener – This interface provides a listener for events of type

Use rAdminEvent that can be registered as a service.

• UserAdminPermission – This permission is needed to configure and access

the roles managed by a User Admin service.
254-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 Introduction
Figure 45 User Admin Service, or g.o sgi .ser vi ce. user admin

12.1.3 Operation

An Operator uses the User Admin service to define OSGi Service Platform

users and configure them with properties, credentials, and roles.

A Ro le object represents the initiator of a request (human or otherwise).

This specification defines two types of roles:

• User – A Use r object can be configured with credentials, such as a

password, and properties, such as address, telephone number, and so on.
• Group – A Gr ou p object is an aggregation of basic and required roles. Basic

and required roles are used in the authorization phase.

An OSGi Service Platform can have several entry points, each of which will

be responsible for authenticating incoming requests. An example of an

entry point is the Http Service, which delegates authentication of incoming
requests to the ha ndleS ecur ity method of the HttpC o ntext object that was

specified when the target servlet or resource of the request was registered.

The OSGi Service Platform entry points should use the information in the

User Admin service to authenticate incoming requests, such as a password

stored in the private credentials or the use of a certificate.

<<interface>>
UserAdmin

<<interface>>
Role

<<interface>>
Group

UserAdmin
Event

<<interface>>
Authorization

<<interface>>
UserAdmin
Listener

<<interface>>
User

UserAdmin
Permission

UserAdmin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation

perform action

consult
for authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

re
qu

ir
ed

 m
em

b
er

ba
si

c
m

em
be

r

OSGi Service-Platform Release 3 255-588

Authentication User Admin Service Specification Version 1.0
A bundle can determine if a request for an action is authorized by looking
for a Ro le object that has the name of the requested action.

The bundle may execute the action if the Ro le object representing the initia-

tor implies the Ro le object representing the requested action.

For example, an initiator R ol e object X implies an action Gr oup object A if:

• X implies at least one of A’s basic members, and

• X implies all of A’s required members.

An initiator R ol e object X implies an action U ser object A if:

• A and X are equal.

The Autho r izat io n class handles this non-trivial logic. The User Admin ser-

vice can capture the privileges of an authenticated U ser object into an

Au thor izat io n object. The Autho ri zat io n.ha sRo le method checks if the

authenticate Us er object has (or implies) a specified action Ro le object.

For example, in the case of the Http Service, the H ttpCo ntext object can

authenticate the initiator and place an Autho ri zat io n object in the request

header. The servlet calls the ha sRo le method on this Autho riza t io n object to

verify that the initiator has the authority to perform a certain action. See

Authentication on page 295.

12.2 Authentication

The authentication phase determines if the initiator is actually the one it
says it is. Mechanisms to authenticate always need some information

related to the user or the OSGi Service Platform to authenticate an external

user. This information can consist of the following:

• A secret known only to the initiator.

• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.

• Information about the user that can be measured in a trusted way.

• Other specific information.

12.2.1 Repository

The User Admin service offers a repository of Ro le objects. Each R o le object

has a unique name and a set of properties that are readable by anyone, and

are changeable when the changer has the U ser AdminPe rmissi on . Addition-

ally, Use r objects, a sub-interface of Ro le , also have a set of private protected

properties called credentials. Credentials are an extra set of properties that

are used to authenticate users and that are protected by
Use rAdminP ermiss ion .

Properties are accessed with the Ro le. getPr op ert ie s() method and creden-

tials with the Us er. getC red entia l s() method. Both methods return a

Dict io nar y object containing key/value pairs. The keys are Str ing objects

and the values of the Dic t ion ary object are limited to Str ing or byte[]

objects.
256-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 Authentication
This specification does not define any standard keys for the properties or
credentials. The keys depend on the implementation of the authentication

mechanism and are not formally defined by OSGi specifications.

The repository can be searched for objects that have a unique property (key/

value pair) with the method Use rAdmin. getU ser (S tr ing ,Str i ng) . This makes

it easy to find a specific user related to a specific authentication mechanism.
For example, a secure card mechanism that generates unique tokens could

have a serial number identifying the user. The owner of the card could be

found with the method

User owner = useradmin.getUser(
"secure-card-serial", "132456712-1212");

If multiple U ser objects have the same property (key and value), a nul l is

returned.

There is a convenience method to verify that a user has a credential without

actually getting the credential. This is the Use r.ha sC red entia l (S tr ing,
O bjec t) method.

Access to credentials is protected on a name basis by U ser AdminPe rmissi on .

Because properties can be read by anyone with access to a Us er object,

Us erAdmin Permis sio n only protects change access to properties.

12.2.2 Basic Authentication

The following example shows a very simple authentication algorithm based

on passwords.

The vendor of the authentication bundle uses the property

"c om. acme .ba sic- id" to contain the name of a user as it logs in. This prop-
erty is used to locate the Use r object in the repository. Next, the credential

"c om. acme .pas swo rd" contains the password and is compared to the

entered password. If the password is correct, the U ser object is returned. In

all other cases a Sec ur i tyExce ptio n is thrown.

public User authenticate(
UserAdmin ua, String name, String pwd)

throws SecurityException {
User user = ua.getUser("com.acme.basicid",

username);
if (user == null)

throw new SecurityException("No such user");

if (!user.hasCredential(“com.acme.password”, pwd))
throw new SecurityException(

"Invalid password");
return user;

}

12.2.3 Certificates

Authentication based on certificates does not require a shared secret.

Instead, a certificate contains a name, a public key, and the signature of one

or more signers.
OSGi Service-Platform Release 3 257-588

Authorization User Admin Service Specification Version 1.0
The name in the certificate can be used to locate a U ser object in the reposi-
tory. Locating a U ser object, however, only identifies the initiator and does

not authenticate it.

1. The first step to authenticate the initiator is to verify that it has the pri-

vate key of the certificate.

2. Next, the User Admin service must verify that it has a Use r object with

the right property, for example "c o m. acme .ce rt i f icate "="F udd" .

3. The next step is to see if the certificate is signed by a trusted source. The

bundle could use a central list of trusted signers and only accept certifi-

cates signed by those sources. Alternatively, it could require that the cer-
tificate itself is already stored in the repository under a unique key as a

byte [] in the credentials.

4. In any case, once the certificate is verified, the associated Use r object is

authenticated.

12.3 Authorization

The User Admin service authorization architecture is a role-based model. In

this model, every action that can be performed by a bundle is associated
with a role. Such a role is a G ro up object (called group from now on) from

the User Admin service repository. For example, if a servlet could be used to

activate the alarm system, there should be a group named

Al armS ys te mActivat io n .

The operator can administrate authorizations by populating the group with
Use r objects (users) and other groups. Groups are used to minimize the

amount of administration required. For example, it is easier to create one

Ad ministr ator s group and add administrative roles to it rather than individ-

ually administer all users for each role. Such a group requires only one

action to remove or add a user as an administrator.

The authorization decision can now be made in two fundamentally differ-

ent ways:

An initiator could be allowed to carry out an action (represented by a Gr oup

object) if it implied any of the Gr oup object’s members. For example, the

Al armS ys te mActivat io n Gro up object contains an Ad mi nistra tor s and a
Famil y Gr oup object:

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation = { Administrators, Family }

Any of the four members El me r, Pe pe , Da ffy, or Bug s can activate the alarm

system.

Alternatively, an initiator could be allowed to perform an action (repre-

sented by a G ro up object) if it implied all the Gr oup object’s members. In
this case, using the same Ala rmSystemAc tivat io n group, only Elmer and

Pepe would be authorized to activate the alarm system, since Daf fy and

Bugs are not members of both the Administr ato rs and F amily Gro up objects.
258-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 Authorization
The User Admin service supports a combination of both strategies by defin-
ing both a set of basic members (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
required = { Administrators }
basic = { Family }

The difference is made when R o le objects are added to the G ro up object. To

add a basic member, use the G ro up.a ddM ember (R o le) method. To add a

required member, use the G ro up.a ddR equir edM ember (R o le) method.

Basic members define the set of members that can get access and required

members reduce this set by requiring the initiator to imply each required

member.

A Use r object implies a Gro up object if it implies the following:

• All of the Group’s required members, and

• At least one of the Group’s basic members

A Use r object always implies itself.

If only required members are used to qualify the implication, then the stan-

dard user us er . anyo ne can be obtained from the User Admin service and

added to the Gr oup object. This Ro le object is implied by anybody and there-

fore does not affect the required members.

12.3.1 The Authorization Object

The complexity of authorization is hidden in an Au th or izat io n class. Nor-

mally, the authenticator should retrieve an Autho ri zat io n object from the

User Admin service by passing the authenticated Use r object as an argu-

ment. This Autho riza t io n object is then passed to the bundle that performs

the action. This bundle checks the authorization with the

Autho riza t ion. hasR o le(Str i ng) method. The performing bundle must pass
the name of the action as an argument. The Autho riza t ion object checks

whether the authenticated user implies the R ol e object, specifically a G ro up

object, with the given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {
if (auth.hasRole("AlarmSystemActivation")) {

// activate the alarm
...

}
else throw new SecurityException(

"Not authorized to activate alarm");
}

12.3.2 Authorization Example

This section demonstrates a possible use of the User Admin service. The ser-

vice has a flexible model and many other schemes are possible.

Assume an Operator installs an OSGi Service Platform. Bundles in this envi-

ronment have defined the following action groups:
OSGi Service-Platform Release 3 259-588

Authorization User Admin Service Specification Version 1.0
AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding

Installing and uninstalling bundles could potentially extend this set. There-

fore, the Operator also defines a number of groups that can be used to con-

tain the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the Operator installs it in a household with the fol-

lowing residents and buddies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Sec-

ond, the user groups need to be assigned to the action groups.

The following tables show how the groups could be assigned.

Groups Elmer Fudd Marvin Pepe Daffy Foghorn

Res idents Bas ic Bas ic Bas ic Bas ic - -

Budd ies - - - - Bas ic Bas ic

Chi l dre n - - Bas ic Bas ic - -

Ad ults Bas ic Bas ic - - - -

Ad ministra tor s Bas ic - - - - -

Tab le 16 Example Groups with Basic and Required Members

Groups Residents Buddies Children Adults Admin

Al armS ys te mCo n-

tr o l

Bas ic - - - R equ ired

Inter netAcc ess Bas ic - - Re quir ed -

Te mp era tureC o n-

tr o l

Bas ic - - Re quir ed -

Photo Albu mEdi t Bas ic - B asic Ba sic -

Photo Albu mVi ew Bas ic Ba sic - - -

Por tFo rw ar ding Bas ic - - - R equ ired

Tab le 17 Example Action Groups with their Basic and Required Members
260-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 Repository Maintenance
12.4 Repository Maintenance

The Use rAdmin interface is a straightforward API to maintain a repository
of U ser and Gr oup objects. It contains methods to create new Gr o up and

Us er objects with the cr eateR o le(Str i ng, in t) method. The method is pre-

pared so that the same signature can be used to create new types of roles in

the future. The interface also contains a method to remove a Ro le object.

The existing configuration can be obtained with methods that list all R o le
objects using a filter argument. This filter, which has the same syntax as the

Framework filter, must only return the R o le objects for which the filter

matches the properties.

Several utility methods simplify getting U ser objects depending on their

properties.

12.5 User Admin Events

Changes in the User Admin service can be determined in real time. Each
User Admin service implementation must send a U ser AdminEvent object to

any service in the Framework service registry that is registered under the

Us erAdmin Listene r interface.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener {
public void roleChanged(UserAdminEvent event) {

...
}

}
public class MyActivator

implements BundleActivator {
public void start(BundleContext context) {

context.registerService(
UserAdminListener.class.getName(),
new Listener(), null);

}
public void stop(BundleContext context) {}

}

It is not necessary to unregister the listener object when the bundle is

stopped because the Framework automatically unregisters it. Once regis-

tered, the U serAdmi nListen er object must be notified of all changes to the
role repository.
OSGi Service-Platform Release 3 261-588

Security User Admin Service Specification Version 1.0
12.6 Security

The User Admin service is related to the security model of the OSGi Service
Platform, but is complementary to the [33] The Java Security Architecture for

JDK 1.2. The final permission of most code should be the intersection of the

Java 2 Permissions, which are based on the code that is executing, and the

User Admin service authorization, which is based on the user for whom the

code runs.

12.6.1 UserAdminPermission

The User Admin service defines the U ser AdminPer missio n class that can be

used to restrict bundles in accessing credentials. This permission class has

the following actions:

• chan gePr ope rty – This permission is required to modify properties. The
name of the permission is the prefix of the property name.

• chan geC red entia l – This action permits changing credentials. The name

of the permission is the prefix of the name of the credential.

• getC rede ntia l – This action permits getting credentials. The name of the

permission is the prefix of the credential.

If the name of the permission is "admin ", it allows the owner to administer

the repository. No action is associated with the permission in that case.

Otherwise, the permission name is used to match the property name. This

name may end with a ".* " string to indicate a wildcard. For example,

co m. ac me .*matches c om. acme .fud d.el me r and c om. acme. bugs .

12.7 Relation to JAAS

At a glance, the Java Authorization and Authentication Service (JAAS)

seems to be a very suitable model for user administration. The OSGi organi-

zation, however, decided to develop an independent User Admin service

because JAAS was not deemed applicable. The reasons for this include

dependency on J2SE version 1.3 ("JDK 1.3") and existing mechanisms in the

previous OSGi Service Gateway 1.0 specification.

12.7.1 JDK 1.3 Dependencies

The authorization component of JAAS relies on the

java. secu r ity .Do mainC o mbiner interface, which provides a means to

dynamically update the Pro tec t ionDo mai n objects affiliated with an

Ac ce ssCo ntr olC o ntext object.

This interface was added in JDK 1.3. In the context of JAAS, the

Subje ctDo ma inC ombi ner object, which implements the Do ma inC ombi ner

interface, is used to update Pr otec t io nDoma in objects. The permissions of

Pro tect i onDo main objects depend on where code came from and who

signed it, with permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the

OSGi Service Platform being available only with JDK 1.3, which was not

deemed acceptable.
262-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 Changes
12.7.2 Existing OSGi Mechanism

JAAS provides a pluggable authentication architecture, which enables

applications and their underlying authentication services to remain inde-
pendent from each other.

The Http Service already provides a similar feature by allowing servlet and

resource registrations to be supported by an H ttpC on te xt object, which uses

a callback mechanism to perform any required authentication checks

before granting access to the servlet or resource. This way, the registering
bundle has complete control on a per-servlet and per-resource basis over

which authentication protocol to use, how the credentials presented by the

remote requestor are to be validated, and who should be granted access to

the servlet or resource.

12.7.3 Future Road Map

In the future, the main barrier of 1.3 compatibility will be removed. JAAS

could then be implemented in an OSGi environment. At that time, the User

Admin service will still be needed and will provide complementary services

in the following ways:

• The authorization component relies on group membership information
to be stored and managed outside JAAS. JAAS does not manage persistent

information, so the User Admin service can be a provider of group infor-

mation when principals are assigned to a Subj ect object.

• The authorization component allows for credentials to be collected and

verified, but a repository is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to

JAAS. The only aspect JAAS will remove from the User Admin service is the

need for the Autho riza t ion interface.

12.8 Changes

The description of the Http Service authentication has been removed

because it duplicated the description in the Http Service Specification.

12.9 org.osgi.service.useradmin

The OSGi User Admin service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.useradmin; specification-ver-
sion=1.0

12.9.1 Summary

• Authorization – The Authorization interface encapsulates an authori-

zation context on which bundles can base authorization decisions,

where appropriate. [p.264]

• Group – A named grouping of roles (Role objects). [p.265]
OSGi Service-Platform Release 3 263-588

org.osgi.service.useradmin User Admin Service Specification Version 1.0
• Role – The base interface for Role objects managed by the User Admin
service. [p.267]

• User – A User role managed by a User Admin service. [p.268]

• UserAdmin – This interface is used to manage a database of named Role

objects, which can be used for authentication and authorization pur-

poses. [p.269]

• UserAdminEvent – Role change event. [p.271]
• UserAdminListener – Listener for UserAdminEvents. [p.272]

• UserAdminPermission – Permission to configure and access the

Ro le [p.267] objects managed by a User Admin service. [p.272]
Authorization

12.9.2 public interface Authorization

The Authorization interface encapsulates an authorization context on
which bundles can base authorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations

with roles. Before granting access to a restricted resource or operation, a

bundle will check if the Authorization object passed to it possess the

required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the

Use rAdmin. getAutho r iz at io n [p.270] method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorization objects.

Hence, a service must only accept Authorization objects from bundles that

has been authorized to use the service using code based (or Java 2) permis-

sions.

In some cases it is useful to use ServicePermission to do the code based
access control. A service basing user access control on Authorization

objects passed to it, will then require that a calling bundle has the

ServicePermission to get the service in question. This is the most conve-

nient way. The OSGi environment will do the code based permission check

when the calling bundle attempts to get the service from the service regis-

try.

Example: A servlet using a service on a user’s behalf. The bundle with the

servlet must be given the ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more

fine-grained. A service might allow all bundles to get it, but require certain
code based permissions for some of its methods.

Example: A servlet using a service on a user’s behalf, where some service

functionality is open to anyone, and some is restricted by code based per-

missions. When a restricted method is called (e.g., one handing over an

Authorization object), the service explicitly checks that the calling bundle
has permission to make the call.

getName()

12.9.2.1 public String getName()

� Gets the name of the U ser [p.268] that this Authorization context was cre-
ated for.
264-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
Returns The name of the U ser [p.268] object that this Authorization context was cre-
ated for, or null if no user was specified when this Authorization context

was created.
getRo les()

12.9.2.2 public String[] getRoles()

� Gets the names of all roles encapsulated by this Authorization context.

Returns The names of all roles encapsulated by this Authorization context, or null

if no roles are in the context. The predefined role user.anyone will not be in-

cluded in this list.
hasRole(String)

12.9.2.3 public boolean hasRole(String name)

name The name of the role to check for.

� Checks if the role with the specified name is implied by this Authorization

context.

Bundles must define globally unique role names that are associated with the

privilege of accessing restricted resources or operations. Operators will

grant users access to these resources, by creating a G ro up[p.265] object for

each role and adding U se r[p.268] objects to it.

Returns true if this Authorization context implies the specified role, otherwise
false.
Group

12.9.3 public interface Group
extends User

A named grouping of roles (Role objects).

Whether or not a given Authorization context implies a Group object

depends on the members of that Group object.

A Group object can have two kinds of members: basic and required. A Group

object is implied by an Authorization context if all of its required members

are implied and at least one of its basic members is implied.

A Group object must contain at least one basic member in order to be

implied. In other words, a Group object without any basic member roles is
never implied by any Authorization context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects,

which means that it is possible to create circular implications. Loop detec-
tion is instead done when roles are checked. The semantics is that if a role

depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be

implied is motivated by the following example:

group foo
required members: marketing
basic members: alice, bob

Privileged operations that require membership in “foo” can be performed

only by “alice” and “bob”, who are in marketing.
OSGi Service-Platform Release 3 265-588

org.osgi.service.useradmin User Admin Service Specification Version 1.0
If “alice” and “bob” ever transfer to a different department, anybody in mar-
keting will be able to assume the “foo” role, which certainly must be pre-

vented. Requiring that “foo” (or any Group object for that matter) must have

at least one basic member accomplishes that.

However, this would make it impossible for a Group object to be implied by

just its required members. An example where this implication might be use-
ful is the following declaration: “Any citizen who is an adult is allowed to

vote.” An intuitive configuration of “voter” would be:

group voter
required members: citizen, adult

basic members:

However, according to the above rule, the “voter” role could never be

assumed by anybody, since it lacks any basic members. In order to address

this issue a predefined role named “user.anyone” can be specified, which is

always implied. The desired implication of the “voter” group can then be

achieved by specifying “user.anyone” as its basic member, as follows:

group voter
required members: citizen, adult

basic members: user.anyone
addMember(Role)

12.9.3.1 public boolean addMember(Role role)

role The role to add as a basic member.

� Adds the specified Role object as a basic member to this Group object.

Returns true if the given role could be added as a basic member, and false if this

Group object already contains a Role object whose name matches that of the
specified role.

Throws SecurityException – If a security manager exists and the caller does not

have the UserAdminPermission with name admin.
addRequiredMember(Role)

12.9.3.2 public boolean addRequiredMember(Role role)

role The Role object to add as a required member.

� Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and false
if this Group object already contains a Role object whose name matches that

of the specified role.

Throws SecurityException – If a security manager exists and the caller does not

have the UserAdminPermission with name admin.
getMembers()

12.9.3.3 public Role[] getMembers()

� Gets the basic members of this Group object.

Returns The basic members of this Group object, or null if this Group object does not

contain any basic members.
getRequiredMembers()

12.9.3.4 public Role[] getRequiredMembers()

� Gets the required members of this Group object.

Returns The required members of this Group object, or null if this Group object does
not contain any required members.
removeMember(Role)
266-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
12.9.3.5 public boolean removeMember(Role role)

role The Role object to remove from this Group object.

� Removes the specified Role object from this Group object.

Returns true if the Role object could be removed, otherwise false.

Throws SecurityException – If a security manager exists and the caller does not

have the UserAdminPermission with name admin.
Role

12.9.4 public interface Role

The base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name,

a type, and a set of properties.

Properties represent public information about the Role object that can be

read by anyone. Specific U ser AdminPer missio n [p.272] objects are required
to change a Role object’s properties.

Role object properties are Dictionary objects. Changes to these objects are

propagated to the User Admin service and made persistent.

Every User Admin service contains a set of predefined Role objects that are
always present and cannot be removed. All predefined Role objects are of

type ROLE. This version of the org.osgi.service.useradmin package

defines a single predefined role named “user.anyone”, which is inherited by

any other role. Other predefined roles may be added in the future. Since

“user.anyone” is a Role object that has properties associated with it that can

be read and modified. Access to these properties and their use is application
specific and is controlled using UserAdminPermission in the same way that

properties for other Role objects are.

GROUP

12.9.4.1 public static final int GROUP = 2

The type of a Gr oup [p.265] role.

The value of GROUP is 2.

ROLE

12.9.4.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.

USER

12.9.4.3 public static final int USER = 1

The type of a U ser [p.268] role.

The value of USER is 1.

getName()

12.9.4.4 public String getName()

� Returns the name of this role.

Returns The role’s name.
getProperti es()
OSGi Service-Platform Release 3 267-588

org.osgi.service.useradmin User Admin Service Specification Version 1.0
12.9.4.5 public Dictionary getProperties()

� Returns a Dictionary of the (public) properties of this Role object. Any

changes to the returned Dictionary will change the properties of this Role

object. This will cause a UserAdminEvent object of type

Use rAdminEvent. RO LE_C HANGED [p.271] to be broadcast to any

UserAdminListener objects.

Only objects of type String may be used as property keys, and only objects

of type String or byte[] may be used as property values. Any other types

will cause an exception of type IllegalArgumentException to be raised.

In order to add, change, or remove a property in the returned Dictionary, a
Use rAdminP ermiss ion [p.272] named after the property name (or a prefix of

it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.
getType()

12.9.4.6 public int getType()

� Returns the type of this role.

Returns The role’s type.
User

12.9.5 public interface User
extends Role

A User role managed by a User Admin service.

In this context, the term “user” is not limited to just human beings. Instead,

it refers to any entity that may have any number of credentials associated

with it that it may use to authenticate itself.

In general, Userobjects are associated with a specific User Admin service

(namely the one that created them), and cannot be used with other User
Admin services.

A Userobject may have credentials (and properties, inherited from the

Ro le [p.267] class) associated with it. Specific U ser AdminPer missio n [p.272]

objects are required to read or change a User object’s credentials.

Credentials are Dictionary objects and have semantics that are similar to

the properties in the Role class.

getCredential s()

12.9.5.1 public Dictionary getCredentials()

� Returns a Dictionary of the credentials of this User object. Any changes to

the returned Dictionary object will change the credentials of this User

object. This will cause a UserAdminEvent object of type

Use rAdminEvent. RO LE_C HANGED [p.271] to be broadcast to any

UserAdminListeners objects.

Only objects of type String may be used as credential keys, and only objects

of type String or of type byte[] may be used as credential values. Any other

types will cause an exception of type IllegalArgumentException to be

raised.

In order to retrieve a credential from the returned Dictionary object, a
Use rAdminP ermiss ion [p.272] named after the credential name (or a prefix of

it) with action getCredential is required.
268-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
In order to add or remove a credential from the returned Dictionary object,
a Use rAdminP ermiss ion [p.272] named after the credential name (or a prefix

of it) with action changeCredential is required.

Returns Dictionary object containing the credentials of this User object.
hasCredential(String,Object)

12.9.5.2 public boolean hasCredential(String key, Object value)

key The credential key.

value The credential value.

� Checks to see if this User object has a credential with the specified key set to
the specified value.

If the specified credential value is not of type String or byte[], it is

ignored, that is, false is returned (as opposed to an

IllegalArgumentException being raised).

Returns true if this user has the specified credential; false otherwise.

Throws SecurityException – If a security manager exists and the caller does not

have the UserAdminPermission named after the credential key (or a prefix of

it) with action getCredential.
UserAdmin

12.9.6 public interface UserAdmin

This interface is used to manage a database of named Role objects, which

can be used for authentication and authorization purposes.

This version of the User Admin service defines two types of Role objects:

“User” and “Group”. Each type of role is represented by an int constant and
an interface. The range of positive integers is reserved for new types of roles

that may be added in the future. When defining proprietary role types, nega-

tive constant values must be used.

Every role has a name and a type.

A Use r [p.268] object can be configured with credentials (e.g., a password)

and properties (e.g., a street address, phone number, etc.).

A Gro up [p.265] object represents an aggregation of U ser [p.268] and

Gro up [p.265] objects. In other words, the members of a Group object are

roles themselves.

Every User Admin service manages and maintains its own namespace of

Role objects, in which each Role object has a unique name.

createRole(Str ing,int)

12.9.6.1 public Role createRole(String name, int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Ro le. USER [p.267] type

or R o le.G RO U P[p.267] type.

� Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type

Us erAdmin Eve nt.RO LE_C REATED [p.271] is broadcast to any

UserAdminListener object.
OSGi Service-Platform Release 3 269-588

org.osgi.service.useradmin User Admin Service Specification Version 1.0
Returns The newly created Role object, or null if a role with the given name already
exists.

Throws IllegalArgumentException – if type is invalid.

SecurityException – If a security manager exists and the caller does not

have the UserAdminPermission with name admin.
getAuthorization(User)

12.9.6.2 public Authorization getAuthorization(User user)

user The User object to create an Authorization object for, or null for the anon-

ymous user.

� Creates an Authorization object that encapsulates the specified User

object and the Role objects it possesses. The null user is interpreted as the

anonymous user. The anonymous user represents a user that has not been

authenticated. An Authorization object for an anonymous user will be

unnamed, and will only imply groups that user.anyone implies.

Returns the Authorization object for the specified User object.
getRole(String)

12.9.6.3 public Role getRole(String name)

name The name of the Role object to get.

� Gets the Role object with the given name from this User Admin service.

Returns The requested Role object, or null if this User Admin service does not have

a Role object with the given name.
getRoles(String)

12.9.6.4 public Role[] getRoles(String filter) throws InvalidSyntaxException

filter The filter criteria to match.

� Gets the Role objects managed by this User Admin service that have proper-

ties matching the specified LDAP filter criteria. See

org.osgi.framework.Filter for a description of the filter syntax. If a null

filter is specified, all Role objects managed by this User Admin service are
returned.

Returns The Role objects managed by this User Admin service whose properties

match the specified filter criteria, or all Role objects if a null filter is speci-

fied. If no roles match the filter, null will be returned.
getUser(String,Str ing)

12.9.6.5 public User getUser(String key, String value)

key The property key to look for.

value The property value to compare with.

� Gets the user with the given property key-value pair from the User Admin

service database. This is a convenience method for retrieving a User object

based on a property for which every User object is supposed to have a

unique value (within the scope of this User Admin service), such as for

example a X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching

users are found, null is returned.
removeRole(String)

12.9.6.6 public boolean removeRole(String name)

name The name of the Role object to remove.

� Removes the Role object with the given name from this User Admin service.
270-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
If the Role object was removed, a UserAdminEvent object of type
Us erAdmin Eve nt.RO LE_R EMO VED [p.271] is broadcast to any

UserAdminListener object.

Returns true If a Role object with the given name is present in this User Admin serv-

ice and could be removed, otherwise false.

Throws SecurityException – If a security manager exists and the caller does not

have the UserAdminPermission with name admin.
UserAdminEvent

12.9.7 public class UserAdminEvent

Role change event.

UserAdminEvent objects are delivered asynchronously to any

UserAdminListener objects when a change occurs in any of the Role

objects managed by a User Admin service.

A type code is used to identify the event. The following event types are

defined: RO LE_C REATED [p.271] type, RO LE_C HANGED [p.271] type, and
RO LE_R EM O VED [p.271] type. Additional event types may be defined in the

future.

See Also UserAdmin[p.269] , UserAdminListener[p.272]
ROLE_CHANGED

12.9.7.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.

ROLE_CREATED

12.9.7.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.

ROLE_REMOVED

12.9.7.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.

UserAdminEvent(ServiceReference,int,Role)

12.9.7.4 public UserAdminEvent(ServiceReference ref, int type, Role role)

ref The ServiceReference object of the User Admin service that generated this

event.

type The event type.

role The Role object on which this event occurred.

� Constructs a UserAdminEvent object from the given ServiceReference
object, event type, and Role object.

getRo le()

12.9.7.5 public Role getRole()

� Gets the Role object this event was generated for.

Returns The Role object this event was generated for.
getServiceReference()
OSGi Service-Platform Release 3 271-588

org.osgi.service.useradmin User Admin Service Specification Version 1.0
12.9.7.6 public ServiceReference getServiceReference()

� Gets the ServiceReference object of the User Admin service that generated

this event.

Returns The User Admin service’s ServiceReference object.
getType()

12.9.7.7 public int getType()

� Returns the type of this event.

The type values are R O LE_C R EATED[p.271] type, R OL E_C H ANG ED [p.271]

type, and R OL E_R EMO VED [p.271] type.

Returns The event type.
UserAdminLi stener

12.9.8 public interface UserAdminListener

Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service reg-

istry and notified with a UserAdminEvent object when a Role object has

been created, removed, or modified.

UserAdminListener objects can further inspect the received

UserAdminEvent object to determine its type, the Role object it occurred on,
and the User Admin service that generated it.

See Also UserAdmin[p.269] , UserAdminEvent[p.271]
roleChanged(UserAdminEvent)

12.9.8.1 public void roleChanged(UserAdminEvent event)

event The UserAdminEvent object.

� Receives notification that a Role object has been created, removed, or modi-

fied.

UserAdminPermis sion

12.9.9 public final class UserAdminPermission
extends BasicPermission

Permission to configure and access the R ole [p.267] objects managed by a

User Admin service.

This class represents access to the Role objects managed by a User Admin

service and their properties and credentials (in the case of U ser [p.268]

objects).

The permission name is the name (or name prefix) of a property or creden-

tial. The naming convention follows the hierarchical property naming con-

vention. Also, an asterisk may appear at the end of the name, following a “.”,

or by itself, to signify a wildcard match. For example: “org.osgi.security.pro-

tocol.*” or “*” is valid, but “*protocol” or “a*b” are not valid.

The UserAdminPermission with the reserved name “admin” represents the

permission required for creating and removing Role objects in the User

Admin service, as well as adding and removing members in a Group object.

This UserAdminPermission does not have any actions associated with it.
272-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
The actions to be granted are passed to the constructor in a string containing
a list of one or more comma-separated keywords. The possible keywords are:

changeProperty, changeCredential, and getCredential. Their meaning

is defined as follows:

action
changeProperty Permission to change (i.e., add and
remove)

Role object properties whose names start
with

the name argument specified in the con-
structor.
changeCredential Permission to change (i.e., add and
remove)

User object credentials whose names start
with the name argument specified in the

constructor.
getCredential Permission to retrieve and check for the

existence of User object credentials whose
names

start with the name argument specified in
the

constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user admin-

istration bundle a number of UserAdminPermission object:

(org.osgi.service.useradmin.UserAdminPermission “admin”)
(org.osgi.service.useradmin.UserAdminPermission “com.foo.*”
“changeProperty,getCredential,changeCredential”)
(org.osgi.service.useradmin.UserAdminPermission “user.*”,
“changeProperty,changeCredential”)

The first permission statement grants the bundle the permission to perform

any User Admin service operations of type “admin”, that is, create and

remove roles and configure Group objects.

The second permission statement grants the bundle the permission to

change any properties as well as get and change any credentials whose

names start with com.foo..

The third permission statement grants the bundle the permission to change
any properties and credentials whose names start with user.. This means

that the bundle is allowed to change, but not retrieve any credentials with

the given prefix.

The following policy entry empowers the Http Service bundle to perform

user authentication:

grant codeBase “${jars}http.jar” {
permission org.osgi.service.useradmin.UserAdminPermission
“user.password”, “getCredential”;

};
OSGi Service-Platform Release 3 273-588

org.osgi.service.useradmin User Admin Service Specification Version 1.0
The permission statement grants the Http Service bundle the permission to
validate any password credentials (for authentication purposes), but the

bundle is not allowed to change any properties or credentials.

ADMIN

12.9.9.1 public static final String ADMIN = “admin”

The permission name “admin”.

CHANGE_CREDENTIAL

12.9.9.2 public static final String CHANGE_CREDENTIAL = “changeCredential”

The action string “changeCredential”.

CHANGE_PROPERTY

12.9.9.3 public static final String CHANGE_PROPERTY = “changeProperty”

The action string “changeProperty”.

GET_CREDENTIAL

12.9.9.4 public static final String GET_CREDENTIAL = “getCredential”

The action string “getCredential”.

UserAdminPermis sion(String,String)

12.9.9.5 public UserAdminPermission(String name, String actions)

name the name of this UserAdminPermission

actions the action string.

� Creates a new UserAdminPermission with the specified name and actions.

name is either the reserved string “admin” or the name of a credential or

property, and actions contains a comma-separated list of the actions

granted on the specified name. Valid actions are changeProperty,

changeCredential, and getCredential.

Throws IllegalArgumentException – If name equals “admin” and actions are spec-
ified.
equal s(Ob ject)

12.9.9.6 public boolean equals(Object obj)

obj the object to be compared for equality with this object.

� Checks two UserAdminPermission objects for equality. Checks that obj is a

UserAdminPermission, and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and ac-

tions as this UserAdminPermission object.
getActions()

12.9.9.7 public String getActions()

� Returns the canonical string representation of the actions, separated by

comma.

Returns the canonical string representation of the actions.
hashCode()

12.9.9.8 public int hashCode()

� Returns the hash code of this UserAdminPermission object.

imp li es (Permi ssi on)

12.9.9.9 public boolean implies(Permission p)

p the permission to check against.

� Checks if this UserAdminPermission object “implies” the specified permis-

sion.

More specifically, this method returns true if:
274-588 OSGi Service-Platform Release 3

User Admin Service Specification Version 1.0 References
• p is an instanceof UserAdminPermission,
• p‘s actions are a proper subset of this object’s actions, and

• p‘s name is implied by this object’s name. For example, “java.*” implies

“java.home”.

Returns true if the specified permission is implied by this object; false otherwise.
newPermiss ionColl ection()

12.9.9.10 public PermissionCollection newPermissionCollection()

� Returns a new PermissionCollection object for storing

UserAdminPermission objects.

Returns a new PermissionCollection object suitable for storing
UserAdminPermission objects.
toString()

12.9.9.11 public String toString()

� Returns a string describing this UserAdminPermission object. This string

must be in PermissionInfo encoded format.

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi.service.permissionadmin.PermissionInfo.getEncoded

12.10 References

[33] The Java Security Architecture for JDK 1.2

Version 1.0, Sun Microsystems, October 1998

http://java.sun.com/products/jdk/1.4/docs/guide/security/spec/security-

spec.doc.html

[34] Java Authentication and Authorization Service

http://java.sun.com/products/jaas
OSGi Service-Platform Release 3 275-588

References User Admin Service Specification Version 1.0
276-588 OSGi Service-Platform Release 3

IO Connector Service Specif ication Version 1.0 Introduction
13 IO Connector Service

Specification

Version 1.0

13.1 Introduction

Communication is at the heart of OSGi Service Platform functionality.
Therefore, a flexible and extendable communication API is needed: one that

can handle all the complications that arise out of the Reference Architec-

ture. These obstacles could include different communication protocols

based on different networks, firewalls, intermittent connectivity, and oth-

ers.

Therefore, this IO Connector Service specification adopts the [35] Java 2

Micro Edition (J2ME) ja va x.micr o edit io n. i o packages as a basic communica-

tions infrastructure. In J2ME, this API is also called the Connector frame-

work. A key aspect of this framework is that the connection is configured by

a single string, the URI.

In J2ME, the Connector framework can be extended by the vendor of the

Virtual Machine, but cannot be extended at run-time by other code. There-

fore, this specification defines a service that adopts the flexible model of the

Connector framework, but allows bundles to extend the Connector Services

into different communication domains.

13.1.1 Essentials

• Abstract – Provide an intermediate layer that abstracts the actual pro-

tocol and devices from the bundle using it.

• Extendable – Allow third-party bundles to extend the system with new

protocols and devices.
• Layered – Allow a protocol to be layered on top of lower layer protocols

or devices.

• Configurable – Allow the selection of an actual protocol/device by means

of configuration data.

• Compatibility – Be compatible with existing standards.

13.1.2 Entities

• ConnectorService – The service that performs the same function–-creating

connections from different providers–-as the static methods in the Con-

nector framework of ja va x.micr o edito n. io .

• ConnectionFactory – A service that extends the Connector service with

more schemes.
• Scheme – A protocol or device that is supported in the Connector

framework.
OSGi Service-Platform Release 3 277-588

The Connector Framework IO Connector Service Specification Version 1.0
Figure 46 Class Diagram, org.osgi.service.io (jmi is javax.microedition.io)

13.2 The Connector Framework

The [35] Java 2 Micro Edition specification introduces a package for commu-
nicating with back-end systems. The requirements for this package are very

similar to the following OSGi requirements:

• Small footprint

• Allows many different implementations simultaneously

• Simple to use
• Simple configuration

The key design goal of the Connector framework is to allow an application

to use a communication mechanism/protocol without understanding

implementation details.

An application passes a Uniform Resource Identifier (URI) to the

java. mi cro ed it io n. io .C on necto r class, and receives an object implementing

one or more C onne ctio n interfaces. The java. micr oe dit io n. io .C o nnecto r

class uses the scheme in the URI to locate the appropriate Connection Fac-

tory service. The remainder of the URI may contain parameters that are used

by the Connection Factory service to establish the connection; for example,
they may contain the baud rate for a serial connection. Some examples:

<<interface>>
Connector
Service

jmi.Connector

<<interface>>
Connection
Factory

<<interface>>
jmi.Connection

<<interface>>
jmi.Input
Connection

<<interface>>
jmi.Output
Connection

<<interface>>
jmi.Stream
Connection

<<interface>>
jmi.Content
Connection

<<interface>>
jmi.Http
Connection

<<interface>>
jmi.Datagram
Connection

<<interface>>
jmi.StreamConn
ec-tionNotifier

Connector impl.

Impl. of scheme
providers

Impl. of IO user

provides io scheme
0..*

1

connections

0..*

0,1

uses
Impl. of
Connection

factory

10..*

javax.microedition.io

used as default

1

0,1
278-588 OSGi Service-Platform Release 3

IO Connector Service Specif ication Version 1.0 The Connector Framework
• sms://+4 670 59508 99 ;expi ry=24h;r eply=yes; typ e=9
• data gra m:// :53

• so cket: //w w w. acme .co m:530 2

• co mm: //CO M1;b audr ate=9 600 ;da tabits=9

• f i l e :c :/auto exec .ba t

The ja vax.mic ro edit io n. io API itself does not prescribe any schemes. It is up
to the implementor of this package to include a number of extensions that

provide the schemes. The ja va x.micr o edit io n. i o . Co nnec tor class dispatches

a request to a class which provides an implementation of a C onne ctio n

interface. J2ME does not specify how this dispatching takes place, but

implementations usually offer a proprietary mechanism to connect user

defined classes that can provide new schemes.

The Connector framework defines a taxonomy of communication mecha-

nisms with a number of interfaces. For example, a

java x. micr oe dit io n. io . I nputC onne ctio n interface indicates that the

connection supports the input stream semantics, such as an I/O port. A

java x. micr oe dit io n. io .Da tagr amC onne ctio n interface indicates that com-
munication should take place with messages.

When a javax. micro ed it io n. io .C on necto r . ope n method is called, it returns

a javax. mi cro edi t ion . io .C onn ect io n object. The interfaces implemented by

this object define the type of the communication session. The following

interfaces may be implemented:

• HttpConnection – A j avax.mic ro edit i on. io . Co nten tC o nnec tion with spe-

cific HTTP support.

• DatagramConnection – A connection that can be used to send and receive

datagrams.

• OutputConnection – A connection that can be used for streaming output.

• InputConnection – A connection that can be used for streaming input.
• StreamConnection – A connection that is both input and output.

• StreamConnectionNotifier – Can be used to wait for incoming stream

connection requests.

• ContentConnection – A javax. mi cro ed it io n. io .Str eamC o nnecti on that

provides information about the type, encoding, and length of the infor-

mation.

Bundles using this approach must indicate to the Operator what kind of

interfaces they expect to receive. The operator must then configure the bun-

dle with a URI that contains the scheme and appropriate options that match

the bundle’s expectations. Well-written bundles are flexible enough to com-

municate with any of the types of j avax.mic ro edi ti on. io .C onne ct io n inter-
faces they have specified. For example, a bundle should support

java x. micr oe dit io n. io .S tr ea mC o nnec tion as well as

java x. micr oe dit io n. io .Da tagr amC onne ctio n objects in the appropriate

direction (input or output).

The following code example shows a bundle that sends an alarm message
with the help of the java x.micr oe dit io n. io .C o nnec tor framework:

public class Alarm {
String uri;
public Alarm(String uri) { this.uri = uri; }
private void send(byte[] msg) {
OSGi Service-Platform Release 3 279-588

Connector Service IO Connector Service Specification Version 1.0
while (true) try {
Connection connection = Connector.open(uri);
DataOutputStream dout = null;

 if (connection instanceof OutputConnection) {
dout = ((OutputConnection)

connection).openDataOutputStream();
 dout.write(msg);
 }
 else if (connection instanceof DatagramConnection) {
 DatagramConnection dgc =

(DatagramConnection) connection;
 Datagram datagram = dgc.newDatagram(

msg, msg.length);
 dgc.send(datagram);
 } else {
 error("No configuration for alarm");
 return;
 }
 connection.close();
 } catch(Exception e) { ... }
 }
}

13.3 Connector Service

The j avax.mic ro edit i on. io .C onne cto r framework matches the require-

ments for OSGi applications very well. The actual creation of connections,

however, is handled through static methods in the

javax. mi cro edi t ion . io .C onn ecto r class. This approach does not mesh well
with the OSGi service registry and dynamic life-cycle management.

This specification therefore introduces the Connector Service. The methods

of the Co nnec tor Ser vi ce interface have the same signatures as the static

methods of the ja vax.mic ro edit i on. io . Co nne cto r class.

Each ja va x.mic ro edit io n. i o . Co nnec tio n object returned by a Connector Ser-

vice must implement interfaces from the ja vax.mic ro edit io n. io package.

Implementations must strictly follow the semantics that are associated

with these interfaces.

The Connector Service must provide all the schemes provided by the
exporter of the javax. micro ed it io n. io package. The Connection Factory ser-

vices must have priority over schemes implemented in the Java run-time

environment. For example, if a Connection Factory provides the http

scheme and a built-in implementation exists, then the Connector Service

must use the Connection Factory service with the http scheme.

Bundles that want to use the Connector Service should first obtain a

Co nnec tor Ser vi ce service object. This object contains o pen methods that

should be called to get a new javax. mi cro edi t ion . io .C onn ect io n object.
280-588 OSGi Service-Platform Release 3

IO Connector Service Specif ication Version 1.0 Providing New Schemes
13.4 Providing New Schemes

The Connector Service must be able to be extended with the Connection
Factory service. Bundles that can provide new schemes must register a

Co nne ctio nFa cto ry service object.

The Connector Service must listen for registrations of new

Co nne ctio nFa cto ry service objects and make the supplied schemes avail-

able to bundles that create connections.

Implementing a Connection Factory service requires implementing the fol-

lowing method:

• cr eateC o nnec tion (Str ing, int ,bo o lea n) – Creates a new connection

object from the given URI.

The Connection Factory service must be registered with the IO _SC HEM E

property to indicate the provided scheme to the Connector Service. The

value of this property must be a Str ing[] object.

If multiple Connection Factory services register with the same scheme, the
Connector Service should select the Connection Factory service with the

highest value for the s ervic e.r anki ng service registration property, or if

more than one Connection Factory service has the highest value, the Con-

nection Factory service with the lowest se rvice . id is selected.

The following example shows how a Connection Factory service may be

implemented. The example will return a
java x. micr oe dit io n. io . I nputC onne ctio n object that returns the value of the

URI after removing the scheme identifier.

public class ConnectionFactoryImpl
implements BundleActivator, ConnectionFactory {

public void start(BundleContext context) {
Hashtable properties = new Hashtable();
properties.put(IO_SCHEME,

new String[] { "data" });
context.registerService(

ConnectorService.class.getName(),
this, properties);

}
public void stop(BundleContext context) {}

public Connection createConnection(
String uri, int mode, boolean timeouts) {
return new DataConnection(uri);

}
}

class DataConnection
implements javax.microedition.io.InputConnection {
String uri;
DataConnection(String uri) {this.uri = uri;}
public DataInputStream openDataInputStream()

throws IOException {
OSGi Service-Platform Release 3 281-588

Execution Environment IO Connector Service Specification Version 1.0
return new DataInputStream(openInputStream());
}

public InputStream openInputStream() throws IOException {
byte [] buf = uri.getBytes();
return new ByteArrayInputStream(buf,5,buf.length-5);

}
public void close() {}

}

13.4.1 Orphaned Connection Objects

When a Connection Factory service is unregistered, it must close all

Co nnec tion objects that are still open. Closing these Co nne ctio n objects
should make these objects unusable, and they should subsequently throw

an IO Excepti on when used.

Bundles should not unnecessarily hang onto objects they retrieved from ser-

vices. Implementations of Connection Factory services should program

defensively and ensure that resource allocation is minimized when a
Co nnec tion object is closed.

13.5 Execution Environment

The j avax.mic ro edit i on. io package is available in J2ME configurations/pro-

files, but is not present in J2SE, J2EE, and the OSGi minimum execution

requirements.

Implementations of the Connector Service that are targeted for all environ-
ments should carry their own implementation of the ja va x.mic ro edit io n. i o

package and export it.

13.6 Security

The OSGi Connector Service is a key service available in the Service Plat-

form. A malicious bundle which provides this service can spoof any com-

munication. Therefore, it is paramount that the

Servic ePe rmissi on[R EG ISTER, Co nne cto rSer vice] is given only to a trusted

bundle. Ser vi cePe rmissi on[GET,C o nnec to rS ervic e] may be handed to bun-
dles that are allowed to communicate to the external world.

Servic ePe rmissi on[R EG ISTER, Co nne ctio nFa cto ry] should also be restricted

to trusted bundles because they can implement specific protocols or access

devices. Ser vi cePe rmissi on[GET,C o nnec ti onF ac tor y] should be limited to

trusted bundles that implement the Connector Service.

Implementations of Connection Factory services must perform all I/O oper-

ations within a privileged region. For example, an implementation of the

sms: scheme must have permission to access the mobile phone, and should

not require the bundle that opened the connection to have this permission.

Normally, the operations need to be implemented in a do Pr iv i leg ed method
or in a separate thread.
282-588 OSGi Service-Platform Release 3

IO Connector Service Specif ication Version 1.0 org.osgi.service.io
If a specific Connection Factory service needs more detailed permissions
than provided by the OSGi or Java 2, it may create a new specific Permission

sub-class for its purpose.

13.7 org.osgi.service.io

The OSGi IO Connector Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.io; specification-ver-
sion=1.0, javax.microedition.io

13.7.1 Summary

• ConnectionFactory – A Connection Factory service is called by the
implementation of the Connector Service to create

javax.microedition.io.Connection objects which implement the

scheme named by IO_SCHEME. [p.281]

• ConnectorService – The Connector Service should be called to create and

open javax.microedition.io.Connection objects. [p.283]
ConnectionFactory

13.7.2 public interface ConnectionFactory

A Connection Factory service is called by the implementation of the Con-

nector Service to create javax.microedition.io.Connection objects

which implement the scheme named by IO_SCHEME. When a

ConnectorService.open method is called, the implementation of the Con-

nector Service will examine the specified name for a scheme. The Connector
Service will then look for a Connection Factory service which is registered

with the service property IO_SCHEME which matches the scheme. The

cr eateC o nnec tion [p.283] method of the selected Connection Factory will

then be called to create the actual Connection object.

IO_SCHEME

13.7.2.1 public static final String IO_SCHEME = “io.scheme”

Service property containing the scheme(s) for which this Connection Fac-

tory can create Connection objects. This property is of type String[].

createConnection(String,int,boo lean)

13.7.2.2 public Connection createConnection(String name, int mode, boolean
timeouts) throws IOException

name The full URI passed to the ConnectorService.open method

mode The mode parameter passed to the ConnectorService.open method

timeouts The timeouts parameter passed to the ConnectorService.open method

� Create a new Connection object for the specified URI.

Returns A new javax.microedition.io.Connection object.

Throws IOException – If a javax.microedition.io.Connection object can not not

be created.
ConnectorServ ice
OSGi Service-Platform Release 3 283-588

org.osgi.service. io IO Connector Service Specification Version 1.0
13.7.3 public interface ConnectorService

The Connector Service should be called to create and open

javax.microedition.io.Connection objects. When an open* method is
called, the implementation of the Connector Service will examine the speci-

fied name for a scheme. The Connector Service will then look for a Connec-

tion Factory service which is registered with the service property IO_SCHEME

which matches the scheme. The createConnection method of the selected

Connection Factory will then be called to create the actual Connection

object.

If more than one Connection Factory service is registered for a particular

scheme, the service with the highest ranking (as specified in its

service.ranking property) is called. If there is a tie in ranking, the service

with the lowest service ID (as specified in its service.id property), that is

the service that was registered first, is called. This is the same algorithm
used by BundleContext.getServiceReference.

READ

13.7.3.1 public static final int READ = 1

Read access mode.

See Also javax.microedition.io.Connector.READ
READ_WRITE

13.7.3.2 public static final int READ_WRITE = 3

Read/Write access mode.

See Also javax.microedition.io.Connector.READ_WRITE
WRITE

13.7.3.3 public static final int WRITE = 2

Write access mode.

See Also javax.microedition.io.Connector.WRITE
open(String)

13.7.3.4 public Connection open(String name) throws IOException

name The URI for the connection.

� Create and open a Connection object for the specified name.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-

tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open(String name)
open(String,int)

13.7.3.5 public Connection open(String name, int mode) throws IOException

name The URI for the connection.

mode The access mode.

� Create and open a Connection object for the specified name and access

mode.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.
284-588 OSGi Service-Platform Release 3

IO Connector Service Specif ication Version 1.0 org.osgi.service.io
javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open(String name, int mode)
open(String,int,boolean)

13.7.3.6 public Connection open(String name, int mode, boolean timeouts)
throws IOException

name The URI for the connection.

mode The access mode.

timeouts A flag to indicate that the caller wants timeout exceptions.

� Create and open a Connection object for the specified name, access mode

and timeouts.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-

tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open(String name, int mode,
boolean timeouts)
openDataInputStream(String)

13.7.3.7 public DataInputStream openDataInputStream(String name) throws
IOException

name The URI for the connection.

� Create and open a DataInputStream object for the specified name.

Returns A DataInputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-

tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openDataInputStream(String
name)
openDataOutputStream(String)

13.7.3.8 public DataOutputStream openDataOutputStream(String name)
throws IOException

name The URI for the connection.

� Create and open a DataOutputStream object for the specified name.

Returns A DataOutputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.
OSGi Service-Platform Release 3 285-588

References IO Connector Service Specification Version 1.0
See Also javax.microedition.io.Connector.openDataOutputStream(String
name)
openInputStream(String)

13.7.3.9 public InputStream openInputStream(String name) throws IOException

name The URI for the connection.

� Create and open an InputStream object for the specified name.

Returns An InputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-

tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openInputStream(String name)
openOutputStream(Str ing)

13.7.3.10 public OutputStream openOutputStream(String name) throws
IOException

name The URI for the connection.

� Create and open an OutputStream object for the specified name.

Returns An OutputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openOutputStream(String name)

13.8 References

[35] Java 2 Micro Edition

http://java.sun.com/j2me/

[36] javax.microedition.io whitepaper

http://wireless.java.sun.com/midp/chapters/j2mewhite/chap13.pdf

[37] J2ME Foundation Profile

http://www.jcp.org/jsr/detail/46.jsp
286-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 Introduction
14 Http Service

Specification

Version 1.1

14.1 Introduction

An OSGi Service Platform normally provides users with access to services
on the Internet and other networks. This access allows users to remotely

retrieve information from, and send control to, services in an OSGi Service

Platform using a standard web browser.

Bundle developers typically need to develop communication and user inter-

face solutions for standard technologies such as HTTP, HTML, XML, and
servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets – A servlet is a Java object which implements the Java

Servlet API. Registering a servlet in the Framework gives it control over
some part of the Http Service URI name-space.

• Registering resources – Registering a resource allows HTML files, image

files, and other static resources to be made visible in the Http Service URI

name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [38] HTTP 1.0 Specification RFC-1945

• [39] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols

if these protocols can conform to the semantics of the java x. ser vl et API.
This additional support is necessary because the Http Service is closely

related to [40] Java Servlet Technology. Http Service implementations must

support at least version 2.1 of the Java Servlet API.

14.1.1 Entities

This specification defines the following interfaces which a bundle devel-

oper can implement collectively as an Http Service or use individually:

• HttpC o ntext – Allows bundles to provide information for a servlet or

resource registration.

• HttpS ervic e – Allows other bundles in the Framework to dynamically

register and unregister resources and servlets into the Http Service URI
name-space.

• Namesp ace Exc eptio n – Is thrown to indicate an error with the caller's

request to register a servlet or resource into the Http Service URI name-

space.
OSGi Service-Platform Release 3 287-588

Registering Servlets Http Service Specif ication Version 1.1
Figure 47 Http Service Overview Diagram

14.2 Registering Servlets

javax. servle t .Ser vlet objects can be registered with the Http Service by

using the H ttpSer vice interface. For this purpose, the H ttpSe rvice interface

defines the method reg ister Ser vl et(Str ing , ja va x.ser vlet .S ervle t ,Dict i o-

nary, HttpC o ntext) .

For example, if the Http Service implementation is listening to port 80 on
the machine w w w. acme. co m and the S ervle t object is registered with the

name "/se rvlet" , then the S ervle t object’s ser vice method is called when the

following URL is used from a web browser:

http://www.acme.com/servlet?name=bugs

All S ervle t objects and resource registrations share the same name-space. If

an attempt is made to register a resource or S ervle t object under the same

name as a currently registered resource or Ser vl et object, a

Na mespa ceExc eptio n is thrown. See Mapping HTTP Requests to Servlet and

Resource Registrations on page 292 for more information about the handling

of the Http Service name-space.

Each Ser vl et registration must be accompanied with an H ttpCo ntext object.

This object provides the handling of resources, media typing, and a method

to handle authentication of remote requests. See Authentication on page 295.

For convenience, a default Http Co ntext object is provided by the Http Ser-
vice and can be obtained with cr eate Defa ultHttp Co ntext() . Passing a nul l

parameter to the registration method achieves the same effect.

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http
HttpServlet
Request

javax.servlet.http
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception
288-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 Registering Servlets
Ser vlet objects require a Ser vletC onte xt object. This object provides a num-
ber of functions to access the Http Service Java Servlet environment. It is

created by the implementation of the Http Service for each unique

HttpC o ntext object with which a Se rvlet object is registered. Thus, Se rvlet

objects registered with the same H ttpCo ntext object must also share the

same Ser vletC onte xt object.

Ser vlet objects are initialized by the Http Service when they are registered

and bound to that specific Http Service. The initialization is done by calling

the S ervle t object’s Se rvlet . in it(Ser vl etCo nf ig) method. The Ser vletC onf ig

parameter provides access to the initialization parameters specified when

the S ervle t object was registered.

Therefore, the same Se rvlet instance must not be reused for registration

with another Http Service, nor can it be registered under multiple names.

Unique instances are required for each registration.

The following example code demonstrates the use of the regi sterS ervle t

method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
String name = "<not set>";

public void init(ServletConfig config) {
this.name = (String)

config.getInitParameter("name");
}

public void doGet(
HttpServletRequest req,
HttpServletResponse rsp

) throws IOException {
rsp.setContentType("text/plain");
req.getWriter().println(this.name);

}
};

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
null // use default context

);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
getHttpService().unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called
OSGi Service-Platform Release 3 289-588

Registering Resources Http Service Specif ication Version 1.1
This example registers the servlet, mySer vlet , at alias: /se rvletAl i as. Future

requests for http: //ww w .ac me .co m/ser vletAl ia s maps to the servlet,

mySe rvlet , whose servic e method is called to process the request. (The

servic e method is called in the H ttpSer vl et base class and dispatched to a

doG et , do Put , do Po st , do O ptio ns , do Tr ac e, or d oDel ete call depending on
the HTTP request method used.)

14.3 Registering Resources

A resource is a file containing images, static HTML pages, sounds, movies,

applets, etc. Resources do not require any handling from the bundle. They

are transferred directly from their source--usually the JAR file that contains

the code for the bundle--to the requestor using HTTP.

Resources could be handled by Servlet objects as explained in Registering

Servlets on page 288. Transferring a resource over HTTP, however, would

require very similar Servle t objects for each bundle. To prevent this redun-

dancy, resources can be registered directly with the Http Service via the

HttpS ervic e interface. This HttpS ervic e interface defines the re gister Re -

sour ce s(S tr ing, Str i ng,H ttpC onte xt)method for registering a resource into

the Http Service URI name-space.

The first parameter is the external alias under which the resource is regis-

tered with the Http Service. The second parameter is an internal prefix to

map this resource to the bundle’s name-space. When a request is received,

the H ttpSer vice object must remove the external alias from the URI, replace

it with the internal prefix, and call the g etRe so urce (S tr ing) method with
this new name on the associated H ttpC onte xt object. The H ttpC on te xt

object is further used to get the MIME type of the resource and to authenti-

cate the request.

Resources are returned as a java. net .U R L object. The Http Service must read

from this U RL object and transfer the content to the initiator of the HTTP
request.

This return type was chosen because it matches the return type of the

java. lang .C lass . getR eso urc e(Str in g r eso urc e) method. This method can

retrieve resources directly from the same place as the one from which the

class was loaded – often a package directory in the JAR file of the bundle.
This method makes it very convenient to retrieve resources from the bundle

that are contained in the package.

The following example code demonstrates the use of the r egis te r

Res our ces method:

package com.acme;
...
HttpContext context = new HttpContext() {

public boolean handleSecurity(
HttpServletRequest request,

 HttpServletResponse response
) throws IOException {

return true;
290-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 Registering Resources
}

public URL getResource(String name) {
return getClass().getResource(name);

}

public String getMimeType(String name) {
return null;

}
};

getHttpService().registerResources (
"/files",
"www",
context

);
...
getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for

resources below this name-space are transferred to the H ttp Co ntext object

with an internal name of ww w /<na me> . This example uses the C lass .get

Re sou rce (S tr ing) method. Because the internal name does not start with a

"/", it must map to a resource in the "co m/ac me /ww w " directory of the JAR

file. If the internal name did start with a "/", the package name would not
have to be prefixed and the JAR file would be searched from the root. Con-

sult the ja va . la ng.C la ss .ge tRe sour ce(Str ing) method for more information.

In the example, a request for http://w ww .a cme. co m/f i les/myfi le .html must

map to the name "co m/a cme/w ww /myfi le .html" which is in the bundle’s

JAR file.

More sophisticated implementations of the getR eso urc e(Str i ng) method

could filter the input name, restricting the resources that may be returned

or map the input name onto the file system (if the security implications of

this action are acceptable).

Alternatively, the resource registration could have used a default

HttpC o ntext object, as demonstrated in the following call to

reg ister Res our ces :

getHttpService().registerResources(
"/files",
"/com/acme/www",
null

);

In this case, the Http Service implementation would call the

cr eateDe fa ultHttpC o ntext() method and use its return value as the
HttpC o ntext argument for the r egis te rR eso urc es method. The default

implementation must map the resource request to the bundle’s resource,

using
OSGi Service-Platform Release 3 291-588

Mapping HTTP Requests to Servlet and Resource Registrations Http Service Specif ica-
Bundl e.g etRe sour ce (S tr ing) . In the case of the previous example, however,
the internal name must now specify the full path to the directory contain-

ing the resource files in the JAR file. No automatic prefixing of the package

name is done.

The g etMime(Str ing) implementation of the default HttpC o ntext object

should return a reasonable mapping. Its handl eSec ur ity(H ttp Ser vl et
Req uest ,H ttpSe rvletR espo nse) may implement an authentication mecha-

nism that is implementation-dependent.

14.4 Mapping HTTP Requests to Servlet

and Resource Registrations

When an HTTP request comes in from a client, the Http Service checks to

see if the requested URI matches any registered aliases. A URI matches only

if the path part of the URI is exactly the same string. Matching is case sensi-

tive.

If it does match, a matching registration takes place, which is processed as
follows:

1. If the registration corresponds to a servlet, the authorization is verified

by calling the ha ndleS ecur ity method of the associated H ttpCo ntext

object. See Authentication on page 295. If the request is authorized, the

servlet must be called by its ser vice method to complete the HTTP
request.

2. If the registration corresponds to a resource, the authorization is verified

by calling the ha ndleS ecur ity method of the associated H ttpCo ntext

object. See Authentication on page 295. If the request is authorized, a tar-

get resource name is constructed from the requested URI by substituting
the alias from the registration with the internal name from the registra-

tion if the alias is not "/". If the alias is "/", then the target resource name is

constructed by prefixing the requested URI with the internal name. An

internal name of "/" is considered to have the value of the empty string

("") during this process.

3. The target resource name must be passed to the g etRe sou rce method of

the associated H ttpC on text object.

4. If the returned U RL object is not nul l , the Http Service must return the

contents of the U RL to the client completing the HTTP request. The trans-

lated target name, as opposed to the original requested URI, must also be
used as the argument to H ttpC ontext . getMi meTyp e.

5. If the returned U RL object is nul l , the Http Service continues as if there

was no match.

6. If there is no match, the Http Service must attempt to match sub-strings
of the requested URI to registered aliases. The sub-strings of the

requested URI are selected by removing the last "/" and everything to the

right of the last "/".
292-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 The Default Http Context Object
The Http Service must repeat this process until either a match is found or
the sub-string is an empty string. If the sub-string is empty and the alias "/"

is registered, the request is considered to match the alias "/" . Otherwise, the

Http Service must return H ttpSer vletRe spo nse. SC _NO T_FO U ND(4 04) to

the client.

For example, an HTTP request comes in with a request URI of " /f udd/bu gs/
fo o. txt" , and the only registered alias is " /f udd" . A search for "/ fudd /b ugs/

fo o. txt" will not match an alias. Therefore, the Http Service will search for

the alias "/ f udd/bug s" and the alias "/ fud d" . The latter search will result in a

match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the
alias "/ fud d" , and another bundle tries to register the exactly the same alias,

the second caller must receive a Na mespa ceExc eptio n and its resource or

servlet must not be registered. It could, however, register a similar alias – for

example, "/ fud d/bugs" , as long as no other registration for this alias already

exists.

The following table shows some examples of the usage of the name-space.

14.5 The Default Http Context Object

The HttpC o ntext object in the first example demonstrates simple imple-

mentations of the H ttpCo ntext interface methods. Alternatively, the exam-

ple could have used a default H ttpC onte xt object, as demonstrated in the

following call to regi sterS ervle t :

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
null

);

In this case, the Http Service implementation must call c rea teDef ault

HttpC o ntext and use the return value as the HttpC o ntext argument.

Alias Internal Name URI getResource Parameter

/ (e mpty str ing) /fudd /b ugs /fudd /b ugs

/ / /fudd /b ugs /fudd /b ugs

/ /tmp /fudd /b ugs /tmp /bugs

/fudd (e mpty str ing) /fudd /b ugs /bugs

/fudd / /fudd /b ugs /bugs

/fudd /tmp /fudd /b ugs /tmp /bugs

/fudd tmp /fudd /b ugs/x.g i f tmp/bugs/x.g i f

/ fudd /b ugs/x.g i f tmp/y. gi f / fudd /b ugs/x.g i f tmp/y. gi f

Table 18 Examples of Name-space Mapping
OSGi Service-Platform Release 3 293-588

Multipurpose Internet Mail Extension (MIME) Types Http Service Specification Version
If the default H ttpC onte xt object, and thus the Se rvletC o ntext object, is to
be shared by multiple servlet registrations, the previous servlet registration

example code needs to be changed to use the same default H ttp Co ntext

object. This change is demonstrated in the next example:

HttpContext defaultContext =
getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
defaultContext

);

// defaultContext can be reused
// for further servlet registrations

14.6 Multipurpose Internet Mail Extension

(MIME) Types

MIME defines an extensive set of headers and procedures to encode binary

messages in US-ASCII mails. For an overview of all the related RFCs, consult

[41] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of

the binary messages. The type is defined by a string containing a general cat-

egory (text, application, image, audio and video, multipart, and message) fol-

lowed by a "/" and a specific media type, as in the example, "text/html" for

HTML formatted text files. A MIME type string can be followed by addi-

tional specifiers by separating key=value pairs with a ’;’. These specifiers can
be used, for example, to define character sets as follows:

text/plan ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined

MIME media types. This list can be found at [42] Assigned MIME Media

Types. MIME media types are extendable, and when any part of the type

starts with the prefix "x-" , it is assumed to be vendor-specific and can be

used for testing. New types can be registered as described in [43] Registration

Procedures for new MIME media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header
should contain a MIME media type so that the browser can recognize the

type and format the content correctly.

The source of the data must define the MIME media type for each transfer.

Most operating systems do not support types for files, but use conventions

based on file names, such as the last part of the file name after the last ".".
This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of

mapping common extensions to media types based on file extensions.
294-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 Authentication
Only the bundle developer, however, knows exactly which files have what

media type. The H ttpC on text interface can therefore be used to map this

knowledge to the media type. The Http Co ntext class has the following

method for this: ge tMimeType(Str ing) .

The implementation of this method should inspect the file name and use its
internal knowledge to map this name to a MIME media type.

Simple implementations can extract the extension and look up this exten-

sion in a table.

Returning nul l from this method allows the Http Service implementation to
use its default mapping mechanism.

14.7 Authentication

The Http Service has separated the authentication and authorization of a

request from the execution of the request. This separation allows bundles to

use available Ser vl et sub-classes while still providing bundle specific

authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the

hand leSe cur ity(ja vax.se rvlet . http.H ttpSer vletRe quest , java x. ser v-

let . http.H ttpSer vletRe spo nse) method on the HttpC o ntext object that is

associated with the request URI. This method controls whether the request

is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the

authentication mechanisms of HTTP. See [44] RFC 2617: HTTP Authentica-

tion: Basic and Digest Access Authentication. These mechanisms normally inter-

pret the headers and decide if the user identity is available, and if it is,

whether that user has authenticated itself correctly.

There are many different ways of authenticating users, and the
hand leSe cur ity method on the H ttpCo ntext object can use whatever

method it requires. If the method returns true , the request must continue to

be processed using the potentially modified H ttpSe rvletR eque st and

HttpS ervle tRes pon se objects. If the method returns fa ls e , the request must

not be processed.

Extension MIME media type Description

. jpg . jpeg image /jpeg JPEG Files

.g i f image /gi f GIF Files

.cs s text/css Cascading Style Sheet Files

. txt text/pla i n Text Files

.w ml text/vnd.w ap. wml Wireless Access Protocol (WAP) Mark Language

.htm . html text/html Hyper Text Markup Language

.w bmp image /vn d.w ap. wbmp Bitmaps for WAP

Table 19 Sample Extension to MIME Media Mapping
OSGi Service-Platform Release 3 295-588

Authentication Http Service Specif ication Version 1.1
A common standard for HTTP is the basic authentication scheme that is not
secure when used with HTTP. Basic authentication passes the password in

base 64 encoded strings that are trivial to decode into clear text. Secure

transport protocols like HTTPS use SSL to hide this information. With these

protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Autho ri zat io n header is set in the request, the method should set

the W WW -Authe ntica te header in the response. This header indicates

the desired authentication mechanism and the realm. For example,

WW W- Authentic ate: B asi c r eal m=" ACM E" .

The header should be set with the response object that is given as a
parameter to the handl eSec ur ity method. The h andle Sec ur ity method

should set the status to H ttpSer vletR espo nse. SC _UNAU TH O RI ZED

(4 01) and return fa lse .

2. Secure connections can be verified with the

Ser vle tRe quest . getSc heme() method. This method returns, for exam-
ple, "https" for an SSL connection; the handl eSe cur i ty method can use

this and other information to decide if the connection’s security level is

acceptable. If not, the handl eSe cur i ty method should set the status to

HttpS ervletR esp onse .SC _FO R BIDDEN (403) and return fa l se .

3. Next, the request must be authenticated. When basic authentication is

used, the Autho ri zat io n header is available in the request and should be
parsed to find the user and password. See [44] RFC 2617: HTTP Authentica-

tion: Basic and Digest Access Authentication for more information.

If the user cannot be authenticated, the status of the response object

should be set to H ttp Ser vl etRe spo nse.S C_U NAUTH O RIZ ED (40 1) and

return fa lse .

4. The authentication mechanism that is actually used and the identity of

the authenticated user can be of interest to the Ser vl et object. Therefore,

the implementation of the ha ndle Sec ur ity method should set this infor-

mation in the request object using the Ser vletR eques t .setAttr i bute

method. This specification has defined a number of OSGi-specific

attribute names for this purpose:
• AU TH ENTIC ATIO N_TY PE - Specifies the scheme used in authentica-

tion. A Servlet may retrieve the value of this attribute by calling the

HttpS ervletR equ est .ge tAuthTyp e method. This attribute name is

or g.o sgi . ser vic e. http .au th entica t io n.type .

• REMO TE_US ER - Specifies the name of the authenticated user. A Serv-

let may retrieve the value of this attribute by calling the
HttpS ervletR equ est .ge tRe mo teU ser method. This attribute name is

or g .o sgi .ser vice. http.a uthentic at io n.r emo te .use r .

• AU TH OR IZ ATI ON - If a User Admin service is available in the environ-

ment, then the han dleSe cur ity method should set this attribute with

the Autho r izat io n object obtained from the User Admin service. Such

an object encapsulates the authentication of its remote user. A Servlet
may retrieve the value of this attribute by calling

Ser vle tRe quest . getAttr ib ute(HttpC o ntext .AU TH O RI ZATIO N) . This

header name is o rg. osg i .se rvice .use rad mi n.au thor izat io n .
296-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 Security
5. Once the request is authenticated and any attributes are set, the

hand leSe cur ity method should return tru e . This return indicates to the

Http Service that the request is authorized and processing may continue.
If the request is for a Servlet, the Http Service must then call the s ervic e

method on the Se rvlet object.

14.8 Security

This section only applies when executing in an OSGi environment which is

enforcing Java permissions.

14.8.1 Accessing Resources in Bundles

The Http Service must be granted AdminPe rmissio n so that bundles may

use a default H ttpC onte xt object. This is necessary because the implementa-

tion of the default H ttpC onte xt object must call B undle .getR eso urc e to

access the resources of a bundle and this method requires the caller to have

AdminPe rmissio n .

Any bundle may access resources in its own bundle by calling

Cl ass. getR eso urc e . This operation is privileged. The resulting UR L object

may then be passed to the Http Service as the result of a

HttpC o ntext .ge tRe sour ce call. No further permission checks are performed

when accessing bundle resource UR L objects, so the Http Service does not

need to be granted any additional permissions.

14.8.2 Accessing Other Types of Resources

In order to access resources that were not registered using the default

HttpC o ntext object, the Http Service must be granted sufficient privileges

to access these resources. For example, if the getR eso urc e method of the reg-

istered H ttpC onte xt object returns a file URL, the Http Service requires the
corresponding Fi le Per mi ss io n to read the file. Similarly, if the ge tRes our ce

method of the registered H ttpC on text object returns an HTTP URL, the Http

Service requires the corresponding S oc ketPe rmiss io n to connect to the

resource.

Therefore, in most cases, the Http Service should be a privileged service that
is granted sufficient permission to serve any bundle's resources, no matter

where these resources are located. Therefore, the Http Service must capture

the Ac cess Co ntro lC onte xt object of the bundle registering resources or a

servlet, and then use the captured Ac cess Co ntro lC onte xt object when

accessing resources returned by the registered H ttpC onte xt object. This sit-

uation prevents a bundle from registering resources that it does not have
permission to access.

Therefore, the Http Service should follow a scheme like the following exam-

ple. When a resource or servlet is registered, it should capture the context.

AccessControlContext acc =
AccessController.getContext();
OSGi Service-Platform Release 3 297-588

Configuration Properties Http Service Specif ication Version 1.1
When a URL returned by the ge tRes our ce method of the associated
HttpC o ntext object is called, the Http Service must call the getR eso urc e

method in a do Pr iv i l eged construct using the Ac cess Co ntro lC on te xt object

of the registering bundle:

AccessController.doPrivileged(
new PrivilegedExceptionAction() {

public Object run() throws Exception {
...
}

}, acc);

The Http Service must only use the captured Acc essC on tro lCo ntext when
accessing resource U RL objects. Servlet and HttpC o ntext objects must use a

doP r iv i le ged construct in their implementations when performing privi-

leged operations.

14.9 Configuration Properties

If the Http Service does not have its port values configured through some

other means, the Http Service implementation should use the following

properties to determine the port values upon which to listen.

The following OSGi environment properties are used to specify default

HTTP ports:

• or g.o sgi . ser vic e. http .po rt – This property specifies the port used for

servlets and resources accessible via HTTP. The default value for this

property is 80.
• or g.o sgi . ser vic e. http .po rt . secur e – This property specifies the port used

for servlets and resources accessible via HTTPS. The default value for this

property is 443.

14.10 Changes

The API of the HTTP service has not been changed and the version is there-

fore also not changed.

14.10.1 Example

The example in Mapping HTTP Requests to Servlet and Resource Registrations

on page 292 contained two errors in calling non-existing methods. These

were corrected.

14.10.2 Use of single /

Ambiguities in the use of a single ’/’ were corrected and an example was

added to Table 18, “Examples of Name-space Mapping,” on page 293.

14.10.3 MIME Type Table

Table 19, “Sample Extension to MIME Media Mapping,” on page 295 con-
tained the . html extension twice. The first occurrence was replaced with

.htm .
298-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 org.osgi.service.http
14.11 org.osgi.service.http

The OSGi Http Service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.http; specification-ver-
sion=1.1

14.11.1 Summary

• HttpContext – This interface defines methods that the Http Service may

call to get information about a registration. [p.299]

• HttpService – The Http Service allows other bundles in the OSGi envi-

ronment to dynamically register resources and servlets into the URI
namespace of Http Service. [p.301]

• NamespaceException – A NamespaceException is thrown to indicate an

error with the caller’s request to register a servlet or resources into the

URI namespace of the Http Service. [p.303]
HttpContext

14.11.2 public interface HttpContext

This interface defines methods that the Http Service may call to get infor-

mation about a registration.

Servlets and resources may be registered with an HttpContext object; if no

HttpContext object is specified, a default HttpContext object is used. Serv-
lets that are registered using the same HttpContext object will share the

same ServletContext object.

This interface is implemented by users of the HttpService.

AUTHENTICATION_TYPE

14.11.2.1 public static final String AUTHENTICATION_TYPE =
“org.osgi.service.http.authentication.type”

HttpServletRequest attribute specifying the scheme used in authentica-

tion. The value of the attribute can be retrieved by

HttpServletRequest.getAuthType. This attribute name is
org.osgi.service.http.authentication.type.

Since 1.1
AUTHORIZATION

14.11.2.2 public static final String AUTHORIZATION =
“org.osgi.service.useradmin.authorization”

HttpServletRequest attribute specifying the Authorization object

obtained from the org.osgi.service.useradmin.UserAdmin service. The

value of the attribute can be retrieved by

HttpServletRequest.getAttribute(HttpContext.AUTHORIZATION). This

attribute name is org.osgi.service.useradmin.authorization.

Since 1.1
REMOTE_USER

14.11.2.3 public static final String REMOTE_USER =
OSGi Service-Platform Release 3 299-588

org.osgi.service.http Http Service Specif ication Version 1.1
“org.osgi.service.http.authentication.remote.user”

HttpServletRequest attribute specifying the name of the authenticated

user. The value of the attribute can be retrieved by

HttpServletRequest.getRemoteUser. This attribute name is

org.osgi.service.http.authentication.remote.user.

Since 1.1
getMimeType(String)

14.11.2.4 public String getMimeType(String name)

name determine the MIME type for this name.

� Maps a name to a MIME type. Called by the Http Service to determine the

MIME type for the name. For servlet registrations, the Http Service will call

this method to support the ServletContext method getMimeType. For

resource registrations, the Http Service will call this method to determine

the MIME type for the Content-Type header in the response.

Returns MIME type (e.g. text/html) of the name or null to indicate that the Http Serv-

ice should determine the MIME type itself.
getResource(String)

14.11.2.5 public URL getResource(String name)

name the name of the requested resource

� Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet reg-

istrations, Http Service will call this method to support the ServletContext

methods getResource and getResourceAsStream. For resource registra-

tions, Http Service will call this method to locate the named resource. The
context can control from where resources come. For example, the resource

can be mapped to a file in the bundle’s persistent storage area via

bundleContext.getDataFile(name).toURL() or to a resource in the con-

text’s bundle via getClass().getResource(name)

Returns URL that Http Service can use to read the resource or null if the resource
does not exist.
handleSecurity(javax.servlet.http .HttpServ letRequest,javax.servlet.http.HttpServletResponse)

14.11.2.6 public boolean handleSecurity(HttpServletRequest request,
HttpServletResponse response) throws IOException

request the HTTP request

response the HTTP response

� Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request.
This method controls whether the request is processed in the normal man-

ner or an error is returned.

If the request requires authentication and the Authorization header in the

request is missing or not acceptable, then this method should set the

WWW-Authenticate header in the response object, set the status in the
response object to Unauthorized(401) and return false. See also RFC 2617:

HTTP Authentication: Basic and Digest Access Authentication (available at http://

www.ietf.org/rfc/rfc2617.txt).
300-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 org.osgi.service.http
If the request requires a secure connection and the getScheme method in the
request does not return ‘https’ or some other acceptable secure protocol,

then this method should set the status in the response object to Forbid-

den(403) and return false.

When this method returns false, the Http Service will send the response

back to the client, thereby completing the request. When this method
returns true, the Http Service will proceed with servicing the request.

If the specified request has been authenticated, this method must set the

AUTH ENTI CATIO N_TYPE [p.299] request attribute to the type of authentica-

tion used, and the R EMO TE_U SER [p.299] request attribute to the remote

user (request attributes are set using the setAttribute method on the
request). If this method does not perform any authentication, it must not set

these attributes.

If the authenticated user is also authorized to access certain resources, this

method must set the AU TH OR IZ ATI ON [p.299] request attribute to the

Authorization object obtained from the
org.osgi.service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the

authentication type and remote user by calling the getAuthType and

getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, false if the request should not be serv-
iced and Http Service will send the response back to the client.

Throws IOException – may be thrown by this method. If this occurs, the Http Serv-

ice will terminate the request and close the socket.
HttpService

14.11.3 public interface HttpService

The Http Service allows other bundles in the OSGi environment to dynami-

cally register resources and servlets into the URI namespace of Http Service.

A bundle may later unregister its resources or servlets.

See Also HttpContext[p.299]
createDefaul tHttpContext()

14.11.3.1 public HttpContext createDefaultHttpContext()

� Creates a default HttpContext for registering servlets or resources with the

HttpService, a new HttpContext object is created each time this method is

called.

The behavior of the methods on the default HttpContext is defined as fol-

lows:

• getMimeType - Does not define any customized MIME types for the

Content-Type header in the response, and always returns null.
• handleSecurity - Performs implementation-defined authentication on

the request.

• getResource - Assumes the named resource is in the context bundle; this

method calls the context bundle’s Bundle.getResource method, and

returns the appropriate URL to access the resource. On a Java runtime

environment that supports permissions, the Http Service needs to be
granted the org.osgi.framework.AdminPermission.

Returns a default HttpContext object.
OSGi Service-Platform Release 3 301-588

org.osgi.service.http Http Service Specif ication Version 1.1
Since 1.1
regi sterResources(String,String,HttpContext)

14.11.3.2 public void registerResources(String alias, String name, HttpContext
context) throws NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or null if a default

HttpContext is to be created and used.

� Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the

registration will be mapped. An alias must begin with slash (’/’) and must

not end with slash (’/’), with the exception that an alias of the form “/” is

used to denote the root alias. The name parameter must also not end with

slash (’/’). See the specification text for details on how HTTP requests are
mapped to servlet and resource registrations.

For example, suppose the resource name /tmp is registered to the alias /files.

A request for /files/foo.txt will map to the resource name /tmp/foo.txt.

httpservice.registerResources(”/files”,
“/tmp”,
context);

The Http Service will call the HttpContext argument to map resource

names to URLs and MIME types and to handle security for requests. If the

HttpContext argument is null, a default HttpContext is used (see

cre ateDe faul tHttpC on text [p.301]).

Throws NamespaceException – if the registration fails because the alias is already in

use.

IllegalArgumentException – if any of the parameters are invalid
regi sterServlet(String,javax .servlet.Servlet,Dictionary,HttpContext)

14.11.3.3 public void registerServlet(String alias, Servlet servlet, Dictionary
initparams, HttpContext context) throws ServletException,
NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or null if there are none. This argu-

ment is used by the servlet’s ServletConfig object.

context the HttpContext object for the registered servlet, or null if a default
HttpContext is to be created and used.

� Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the

registration will be mapped.

An alias must begin with slash (’/’) and must not end with slash (’/’), with the

exception that an alias of the form “/” is used to denote the root alias. See the

specification text for details on how HTTP requests are mapped to servlet

and resource registrations.

The Http Service will call the servlet’s init method before returning.
302-588 OSGi Service-Platform Release 3

Http Service Specif ication Version 1.1 org.osgi.service.http
httpService.registerServlet(”/myservlet”,
servlet,
initparams,
context);

Servlets registered with the same HttpContext object will share the same

ServletContext. The Http Service will call the context argument to sup-
port the ServletContext methods getResource, getResourceAsStream

and getMimeType, and to handle security for requests. If the context argu-

ment is null, a default HttpContext object is used (see

cr eateDe fa ultHttpC o ntext [p.301]).

Throws NamespaceException – if the registration fails because the alias is already in
use.

javax.servlet.ServletException – if the servlet’s init method throws

an exception, or the given servlet object has already been registered at a dif-

ferent alias.

IllegalArgumentException – if any of the arguments are invalid
unregi ster(String)

14.11.3.4 public void unregister(String alias)

alias name in the URI name-space of the registration to unregister

� Unregisters a previous registration done by registerServlet or

registerResources methods.

After this call, the registered alias in the URI name-space will no longer be

available. If the registration was for a servlet, the Http Service must call the

destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise

“unget”s the Http Service without calling un regi ster [p.303] then Http Ser-

vice must automatically unregister the registration. However, if the registra-

tion was for a servlet, the destroy method of the servlet will not be called in

this case since the bundle may be stopped. unr egis ter [p.303] must be explic-

itly called to cause the destroy method of the servlet to be called. This can
be done in the o rg. osg i . f ramew o rk. Bund leActi va tor .sto p method of the

bundle registering the servlet.

Throws IllegalArgumentException – if there is no registration for the alias or the

calling bundle was not the bundle which registered the alias.
NamespaceException

14.11.4 public class NamespaceException
extends Exception

A NamespaceException is thrown to indicate an error with the caller’s

request to register a servlet or resources into the URI namespace of the Http

Service. This exception indicates that the requested alias already is in use.

NamespaceException(String)

14.11.4.1 public NamespaceException(String message)

message the detail message

� Construct a NamespaceException object with a detail message.

NamespaceException(String,Throwab le)

14.11.4.2 public NamespaceException(String message, Throwable exception)

message the detail message
OSGi Service-Platform Release 3 303-588

References Http Service Specif ication Version 1.1
exception the nested exception

� Construct a NamespaceException object with a detail message and a nested

exception.

getException()

14.11.4.3 public Throwable getException()

� Returns the nested exception.

Returns the nested exception or null if there is no nested exception.

14.12 References

[38] HTTP 1.0 Specification RFC-1945

htpp://www.ietf.org/rfc/rfc1945.txt, May 1996

[39] HTTP 1.1 Specification RFC-2616

http://www.ietf.org/rfc/rfc2616.txt, June 1999

[40] Java Servlet Technology

http://java.sun.com/products/servlet/index.html

[41] MIME Multipurpose Internet Mail Extension

http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html

[42] Assigned MIME Media Types

http://www.iana.org/assignments/media-types

[43] Registration Procedures for new MIME media types

http://www.ietf.org/rfc/rfc2048.txt

[44] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication

http://www.ietf.org/rfc/rfc2617.txt
304-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 Introduction
15 Preferences Service

Specification

Version 1.0

15.1 Introduction

Many bundles need to save some data persistently--in other words, the data
is required to survive the stopping and restarting of the bundle, Framework

and OSGi Service Platform. In some cases, the data is specific to a particular

user. For example, imagine a bundle that implements some kind of game.

User specific persistent data could include things like the user’s preferred

difficulty level for playing the game. Some data is not specific to a user,

which we call system data. An example would be a table of high scores for
the game.

Bundles which need to persist data in an OSGi environment can use the file

system via or g.o sgi . f r amew o rk.B undl eCo ntext . getData Fi l e . A file system,

however, can store only bytes and characters, and provides no direct support

for named values and different data types.

A popular class used to address this problem for Java applications is the

java .ut i l . Pro per t ies class. This class allows data to be stored as key/value

pairs, called properties. For example, a property could have a name

co m.ac me.f udd and a value of elmer . The Pro per t ies class has rudimentary

support for storage and retrieving with its lo ad and stor e methods. The
Pro pe rt ies class, however, has the following limitations:

• Does not support a naming hierarchy.

• Only supports Str ing property values.

• Does not allow its content to be easily stored in a back-end system.

• Has no user name-space management.

Since the Pr op ert ie s class was introduced in Java 1.0, efforts have been

undertaken to replace it with a more sophisticated mechanism. One of these

efforts is this Preferences Service specification.

15.1.1 Essentials

The focus of this specification is simplicity, not reliable access to stored

data. This specification does not define a general database service with trans-

actions and atomicity guarantees. Instead, it is optimized to deliver the

stored information when needed, but it will return defaults, instead of

throwing an exception, when the back-end store is not available. This

approach may reduce the reliability of the data, but it makes the service eas-
ier to use, and allows for a variety of compact and efficient implementa-

tions.
OSGi Service-Platform Release 3 305-588

Introduction Preferences Service Specif ication Version 1.0
This API is made easier to use by the fact that many bundles can be written
to ignore any problems that the Preferences Service may have in accessing

the back-end store, if there is one. These bundles will mostly or exclusively

use the methods of the Pr efe renc es interface which are not declared to

throw a B ac kingS tor eExcep ti on .

This service only supports the storage of scalar values and byte arrays. It is not
intended for storing large data objects like documents or images. No stan-

dard limits are placed on the size of data objects which can be stored, but

implementations are expected to be optimized for the handling of small

objects.

A hierarchical naming model is supported, in contrast to the flat model of
the Pr ope rt ie s class. A hierarchical model maps naturally to many comput-

ing problems. For example, maintaining information about the positions of

adjustable seats in a car requires information for each seat. In a hierarchy,

this information can be modeled as a node per seat.

A potential benefit of the Preferences Service is that it allows user specific
preferences data to be kept in a well defined place, so that a user manage-

ment system could locate it. This benefit could be useful for such operations

as cleaning up files when a user is removed from the system, or to allow a

user's preferences to be cloned for a new user.

The Preferences Service does not provide a mechanism to allow one bundle

to access the preferences data of another. If a bundle wishes to allow another
bundle to access its preferences data, it can pass a Pr efer enc es or Pr ef eren -

cesS ervic e object to that bundle.

The Preferences Service is not intended to provide configuration manage-

ment functionality. For information regarding Configuration Management,

refer to the Configuration Admin Service Specification on page 181.

15.1.2 Entities

The P ref ere nces Ser vic e is a relatively simple service. It provides access to

the different roots of Preferences trees. A single system root node and any

number of user root nodes are supported. Each node of such a tree is an
object that implements the Pref ere nce s interface.

This Pr efer enc es interface provides methods for traversing the tree, as well

as methods for accessing the properties of the node. This interface also con-

tains the methods to flush data into persistent storage, and to synchronize

the in-memory data cache with the persistent storage.

All nodes except root nodes have a parent. Nodes can have multiple chil-

dren.
306-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 Preferences Interface
Figure 48 Preferences Class Diagram

15.1.3 Operation

The purpose of the Preferences Service specification is to allow bundles to

store and retrieve properties stored in a tree of nodes, where each node

implements the P ref ere nces interface. The Pre fer enc esSe rvice interface
allows a bundle to create or obtain a Preferences tree for system properties,

as well as a Preferences tree for each user of the bundle.

This specification allows for implementations where the data is stored

locally on the service platform or remotely on a back-end system.

15.2 Preferences Interface

Pre fer enc es is an interface that defines the methods to manipulate a node
and the tree to which it belongs. A P ref ere nce s object contains:

• A set of properties in the form of key/value pairs.

• A parent node.

• A number of child nodes.

15.2.1 Hierarchies

A valid Pre fer enc es object always belongs to a tree. A tree is identified by its

root node. In such a tree, a Pre fer enc es object always has a single parent,

except for a root node which has a nul l parent.

The root node of a tree can be found by recursively calling the par ent()
method of a node until nul l is returned. The nodes that are traversed this

way are called the ancestors of a node.

Preferences Node
implementation

<<interface>>
Preferences
Service

<<interface>>
Preferences

Preferences
Service
implementation

a bundle

root system node

root user nodes

1

1

1

0..n

0..n 1nodes

user name

node name

Bundle
Preferences

BackingStore
Exception

parent

0..n

1

1:n bundle - service
OSGi Service-Platform Release 3 307-588

Preferences Interface Preferences Service Specif ication Version 1.0
Each Preferences object has a private name-space for child nodes. Each child
node has a name that must be unique among its siblings. Child nodes are

created by getting a child node with the no de(Str i ng) method. The Str i ng

argument of this call contains a path name. Path names are explained in the

next section.

Child nodes can have child nodes recursively. These objects are called the
descendants of a node.

Descendants are automatically created when they are obtained from a

Pref er ence s object, including any intermediate nodes that are necessary for

the given path. If this automatic creation is not desired, the no deEx-

ists(Str in g) method can be used to determine if a node already exists.

Figure 49 Categorization of nodes in a tree

15.2.2 Naming

Each node has a name relative to its parent. A name may consist of Unicode

characters except for the forward slash ("/"). There are no special names, like

" . . " or " . " .

Empty names are reserved for root nodes. Node names that are directly cre-
ated by a bundle must always contain at least one character.

Preferences node names and property keys are case sensitive: for example,

"o rg. os gi" and "o Rg .o SgI" are two distinct names.

The Preferences Service supports different roots, so there is no absolute root
for the Preferences Service. This concept is similar to [46] Windows Registry

that also supports a number of roots.

A path consists of one or more node names, separated by a slash ("/"). Paths

beginning with a " /" are called absolute paths while other paths are called

relative paths. Paths cannot end with a "/" except for the special case of the
root node which has absolute path " /".

Path names are always associated with a specific node; this node is called the

current node in the following descriptions. Paths identify nodes as follows.

• Absolute path – The first " /" is removed from the path, and the remainder
of the path is interpreted as a relative path from the tree’s root node.

• Relative path –

• If the path is the empty string, it identifies the current node.

• If the path is a name (does not contain a " /"), then it identifies the

child node with that name.

root

parent

current

children

ancestors

descendants

tree
308-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 Preferences Interface
• Otherwise, the first name from the path identifies a child of the cur-
rent node. The name and slash are then removed from the path, and

the remainder of the path is interpreted as a relative path from the

child node.

15.2.3 Tree Traversal Methods

A tree can be traversed and modified with the following methods:

• chi l dre nNames()– Returns the names of the child nodes.

• par ent() – Returns the parent node.

• remo veNo de() – Removes this node and all its descendants.

• no de(Str i ng) – Returns a Preferences object, which is created if it does

not already exist. The parameter is an absolute or relative path.
• no deExists(Str ing) – Returns true if the Preferences object identified by

the path parameter exists.

15.2.4 Properties

Each Preferences node has a set of key/value pairs called properties. These
properties consist of:

• Key – A key is a Str ing object and case sensitive.

• The name-space of these keys is separate from that of the child nodes. A

Preferences node could have both a child node named f udd and a

property named fud d .
• Value – A value can always be stored and retrieved as a Str ing object.

Therefore, all primitive values must be encoded into Str i ng objects. A

number of methods are available to store and retrieve values as primitive

types. These methods are provided both for the convenience of the user

of the Pre fer enc es interface, and to allow an implementation the option

of storing the values in a more compact form.

All the keys that are defined in a Pr efe renc es object can be obtained with

the ke ys() method. The c lea r() method can be used to clear all properties

from a Pre fer enc es object. A single property can be removed with the

remo ve(Str i ng) method.

15.2.5 Storing and Retrieving Properties

The Pref er ence s interface has a number of methods for storing and retriev-

ing property values based on their key. All the put* methods take as param-

eters a key and a value. All the g et* methods take as parameters a key and a

default value.

• put(Str i ng,Str ing) , ge t(S tr ing, Str i ng)

• putB oo lea n(S tr ing ,bo ol ean) , ge tBo ol ean(Str ing, bo ole an)

• putInt(Str ing, int) , getInt(Str ing, i nt)

• putLo ng(Str i ng, l ong) , g etLo ng(Str in g, lo ng)

• putF loa t(S tr ing, f lo at) , ge tFlo at(Str ing, f lo at)

• putDo uble(Str ing, dou ble) , ge tDoubl e(Str in g,do ubl e)
• putB yte Ar ra y(Str ing, byte[]) , ge tByteArr ay(Str i ng,byte [])
OSGi Service-Platform Release 3 309-588

Concurrency Preferences Service Specif ication Version 1.0
The methods act as if all the values are stored as Str i ng objects, even though
implementations may use different representations for the different types.

For example, a property can be written as a S tr ing object and read back as a

f lo at , providing that the string can be parsed as a valid Java f loa t object. In

the event of a parsing error, the get* methods do not raise exceptions, but

instead return their default parameters.

15.2.6 Defaults

All ge t* methods take a default value as a parameter. The reasons for having

such a default are:

• When a property for a Pr efe renc es object has not been set, the default is

returned instead. In most cases, the bundle developer does not have to
distinguish whether or not a property exists.

• A best effort strategy has been a specific design choice for this specifi-

cation. The bundle developer should not have to react when the back-

end store is not available. In those cases, the default value is returned

without further notice.

Bundle developers who want to assure that the back-end store is avail-
able should call the f lush or sync method. Either of these methods will

throw a B ac kingS tor eExcep ti on if the back-end store is not available.

15.3 Concurrency

This specification specifically allows an implementation to modify

Pref er ence s objects in a back-end store. If the back-end store is shared by

multiple processes, concurrent updates may cause differences between the

back-end store and the in-memory Pre fer ence s objects.

Bundle developers can partly control this concurrency with the f lush() and

syn c() method. Both methods operate on a Pre fer ence s object.

The f lush method performs the following actions:

• Stores (makes persistent) any ancestors (including the current node) that

do not exist in the persistent store.

• Stores any properties which have been modified in this node since the

last time it was flushed.

• Removes from the persistent store any child nodes that were removed

from this object since the last time it was flushed.
• Flushes all existing child nodes.

The sync method will first flush, and then ensure that any changes that

have been made to the current node and its descendents in the back-end

store (by some other process) take effect. For example, it could fetch all the

descendants into a local cache, or it could clear all the descendants from the
cache so that they will be read from the back-end store as required.

If either method fails, a Ba ckin gSto reExce ptio n is thrown.
310-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 PreferencesService Interface
The f lush or sync methods provide no atomicity guarantee. When updates
to the same back-end store are done concurrently by two different processes,

the result may be that changes made by different processes are intermin-

gled. To avoid this problem, implementations may simply provide a dedi-

cated section (or name-space) in the back-end store for each OSGi

environment, so that clashes do not arise, in which case there is no reason

for bundle programmers to ever call s ync .

In cases where sync is used, the bundle programmer needs to take into

account that changes from different processes may become intermingled,

and the level of granularity that can be assumed is the individual property

level. Hence, for example, if two properties need to be kept in lockstep, so

that one should not be changed without a corresponding change to the
other, consider combining them into a single property, which would then

need to be parsed into its two constituent parts.

15.4 PreferencesService Interface

The Pref er ence sSer vice is obtained from the Framework’s service registry

in the normal way. Its purpose is to provide access to Preferences root nodes.

A Preferences Service maintains a system root and a number of user roots.

User roots are automatically created, if necessary, when they are requested.
Roots are maintained on a per bundle basis. For example, a user root called

elmer in one bundle is distinct from a user root with the same name in

another bundle. Also, each bundle has its own system root. Implementa-

tions should use a Ser viceF ac tor y service object to create a separate

Pre fer enc esSe rvice object for each bundle.

The precise description of user and system will vary from one bundle to

another. The Preference Service only provides a mechanism, the bundle

may use this mechanism in any desired way.

The Pref er ence sSer vice interface has the following methods to access the

system root and user roots:

• getSyste mP ref ere nce s() – Return a Pr efe renc es object that is the root of

the system preferences tree.

• getU ser Pre fer ence s(Str in g) – Return a P ref ere nces object associated

with the user name that is given as argument. If the user does not exist, a

new root is created atomically.
• getU ser s() – Return an array of the names of all the users for whom a

Preferences tree exists.

15.5 Cleanup

The Preferences Service must listen for bundle uninstall events, and remove

all the preferences data for the bundle that is being uninstalled.

It also must handle the possibility of a bundle getting uninstalled while the

Preferences Service is stopped. Therefore, it must check on startup whether
preferences data exists for any bundle which is not currently installed. If it

does, that data must be removed.
OSGi Service-Platform Release 3 311-588

Changes Preferences Service Specif ication Version 1.0
15.6 Changes

• Added several exception clauses to the methods.
• Removed the description of JSR 10 from this specification.

15.7 org.osgi.service.prefs

The OSGi Preferences Service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.prefs; specification-ver-
sion=1.0

15.7.1 Summary

• BackingStoreException – Thrown to indicate that a preferences oper-

ation could not complete because of a failure in the backing store, or a
failure to contact the backing store. [p.312]

• Preferences – A node in a hierarchical collection of preference data.

[p.312]

• PreferencesService – The Preferences Service. [p.322]
BackingStoreException

15.7.2 public class BackingStoreException
extends Exception

Thrown to indicate that a preferences operation could not complete because

of a failure in the backing store, or a failure to contact the backing store.

BackingStoreException(String)

15.7.2.1 public BackingStoreException(String s)

s the detail message.

� Constructs a BackingStoreException with the specified detail message.

Preferences

15.7.3 public interface Preferences

A node in a hierarchical collection of preference data.

This interface allows applications to store and retrieve user and system pref-

erence data. This data is stored persistently in an implementation-depen-

dent backing store. Typical implementations include flat files, OS-specific

registries, directory servers and SQL databases.

For each bundle, there is a separate tree of nodes for each user, and one for

system preferences. The precise description of “user” and “system” will vary

from one bundle to another. Typical information stored in the user prefer-

ence tree might include font choice, and color choice for a bundle which

interacts with the user via a servlet. Typical information stored in the sys-

tem preference tree might include installation data, or things like high score
information for a game program.
312-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 org.osgi.service.prefs
Nodes in a preference tree are named in a similar fashion to directories in a
hierarchical file system. Every node in a preference tree has a node name

(which is not necessarily unique), a unique absolute path name, and a path

name relative to each ancestor including itself.

The root node has a node name of the empty String object (””). Every other

node has an arbitrary node name, specified at the time it is created. The only
restrictions on this name are that it cannot be the empty string, and it can-

not contain the slash character (’/’).

The root node has an absolute path name of “/”. Children of the root node

have absolute path names of “/” + <node name>. All other nodes have abso-

lute path names of <parent’s absolute path name> + “/” + <node name>. Note
that all absolute path names begin with the slash character.

A node n‘s path name relative to its ancestor a is simply the string that must

be appended to a‘s absolute path name in order to form n‘s absolute path

name, with the initial slash character (if present) removed. Note that:

• No relative path names begin with the slash character.

• Every node’s path name relative to itself is the empty string.

• Every node’s path name relative to its parent is its node name (except for

the root node, which does not have a parent).

• Every node’s path name relative to the root is its absolute path name

with the initial slash character removed.

Note finally that:

• No path name contains multiple consecutive slash characters.

• No path name with the exception of the root’s absolute path name end in

the slash character.

• Any string that conforms to these two rules is a valid path name.

Each Preference node has zero or more properties associated with it, where

a property consists of a name and a value. The bundle writer is free to choose

any appropriate names for properties. Their values can be of type String,

long, int, boolean, byte[], float, or double but they can always be

accessed as if they were String objects.

All node name and property name comparisons are case-sensitive.

All of the methods that modify preference data are permitted to operate

asynchronously; they may return immediately, and changes will eventually

propagate to the persistent backing store, with an implementation-depen-
dent delay. The flush method may be used to synchronously force updates

to the backing store.

Implementations must automatically attempt to flush to the backing store

any pending updates for a bundle’s preferences when the bundle is stopped

or otherwise ungets the Preferences Service.

The methods in this class may be invoked concurrently by multiple threads

in a single Java Virtual Machine (JVM) without the need for external syn-

chronization, and the results will be equivalent to some serial execution. If

this class is used concurrently by multiple JVMs that store their preference

data in the same backing store, the data store will not be corrupted, but no
other guarantees are made concerning the consistency of the preference

data.
OSGi Service-Platform Release 3 313-588

org.osgi.service.prefs Preferences Service Specif ication Version 1.0
absolutePath()

15.7.3.1 public String absolutePath()

� Returns this node’s absolute path name. Note that:

• Root node - The path name of the root node is “/”.

• Slash at end - Path names other than that of the root node may not end in
slash (‘/’).

• Unusual names - “.” and “..” have no special significance in path

names.

• Illegal names - The only illegal path names are those that contain mul-

tiple consecutive slashes, or that end in slash and are not the root.

Returns this node’s absolute path name.
chil drenNames()

15.7.3.2 public String[] childrenNames() throws BackingStoreException

� Returns the names of the children of this node. (The returned array will be

of size zero if this node has no children and not null!)

Returns the names of the children of this node.

Throws BackingStoreException – if this operation cannot be completed due to a

failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.
clear()

15.7.3.3 public void clear() throws BackingStoreException

� Removes all of the properties (key-value associations) in this node. This call

has no effect on any descendants of this node.

Throws BackingStoreException – if this operation cannot be completed due to a

failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.

See Also remove(String)[p.322]
flush()

15.7.3.4 public void flush() throws BackingStoreException

� Forces any changes in the contents of this node and its descendants to the
persistent store.

Once this method returns successfully, it is safe to assume that all changes

made in the subtree rooted at this node prior to the method invocation have

become permanent.

Implementations are free to flush changes into the persistent store at any

time. They do not need to wait for this method to be called.

When a flush occurs on a newly created node, it is made persistent, as are

any ancestors (and descendants) that have yet to be made persistent. Note

however that any properties value changes in ancestors are not guaranteed
to be made persistent.

Throws BackingStoreException – if this operation cannot be completed due to a

failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed
with the re moveNo de() [p.322] method.
314-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 org.osgi.service.prefs
See Also sync()[p.322]
get(String,String)

15.7.3.5 public String get(String key, String def)

key key whose associated value is to be returned.

def the value to be returned in the event that this node has no value associated
with key or the backing store is inaccessible.

� Returns the value associated with the specified key in this node. Returns the

specified default if there is no value associated with the key, or the backing

store is inaccessible.

Returns the value associated with key, or def if no value is associated with key.

Throws IllegalStateException – if this node (or an ancestor) has been removed

with the r emove Node ()[p.322] method.

NullPointerException – if key is null. (A null default is permitted.)
getBoo lean(String,boolean)

15.7.3.6 public boolean getBoolean(String key, boolean def)

key key whose associated value is to be returned as a boolean.

def the value to be returned in the event that this node has no value associated
with key or the associated value cannot be interpreted as a boolean or the

backing store is inaccessible.

� Returns the boolean value represented by the String object associated with

the specified key in this node. Valid strings are “true”, which represents

true, and “false”, which represents false. Case is ignored, so, for example,

“TRUE” and “False” are also valid. This method is intended for use in con-
junction with the p utBo ol ean [p.319] method.

Returns the specified default if there is no value associated with the key, the

backing store is inaccessible, or if the associated value is something other

than “true” or “false”, ignoring case.

Returns the boolean value represented by the String object associated with key in

this node, or null if the associated value does not exist or cannot be interpret-

ed as a boolean.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed

with the r emove Node ()[p.322] method.

See Also get(String,String)[p.315] , putBoolean(String,boolean)[p.319]
getByteArray(String,byte[])

15.7.3.7 public byte[] getByteArray(String key, byte[] def)

key key whose associated value is to be returned as a byte[] object.

def the value to be returned in the event that this node has no value associated

with key or the associated value cannot be interpreted as a byte[] type, or

the backing store is inaccessible.
OSGi Service-Platform Release 3 315-588

org.osgi.service.prefs Preferences Service Specif ication Version 1.0
� Returns the byte[] value represented by the String object associated with
the specified key in this node. Valid String objects are Base64 encoded

binary data, as defined in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) ,

Section 6.8, with one minor change: the string must consist solely of charac-

ters from the Base64 Alphabet; no newline characters or extraneous charac-

ters are permitted. This method is intended for use in conjunction with the

putByteAr ray [p.320] method.

Returns the specified default if there is no value associated with the key, the

backing store is inaccessible, or if the associated value is not a valid Base64

encoded byte array (as defined above).

Returns the byte[] value represented by the String object associated with key in
this node, or def if the associated value does not exist or cannot be interpret-

ed as a byte[].

Throws NullPointerException – if key is null. (A null value for defis permitted.)

IllegalStateException – if this node (or an ancestor) has been removed
with the re moveNo de() [p.322] method.

See Also get(String,String)[p.315] , putByteArray(String,byte[])[p.320]
getDouble(String,double)

15.7.3.8 public double getDouble(String key, double def)

key key whose associated value is to be returned as a double value.

def the value to be returned in the event that this node has no value associated

with key or the associated value cannot be interpreted as a double type or the

backing store is inaccessible.

� Returns the double value represented by the String object associated with
the specified key in this node. The String object is converted to an int

value as by Double.parseDouble(String). Returns the specified default if

there is no value associated with the key, the backing store is inaccessible, or

if Double.parseDouble(String) would throw a NumberFormatException

if the associated value were passed. This method is intended for use in con-

junction with the putDo ubl e [p.320] method.

Returns the double value represented by the String object associated with key in

this node, or def if the associated value does not exist or cannot be interpret-

ed as a double type.

Throws IllegalStateException – if this node (or an ancestor) has been removed
with the the remo veNod e() [p.322] method.

NullPointerException – if key is null.

See Also putDouble(String,double)[p.320] , get(String,String)[p.315]
getFloat(String,f loat)

15.7.3.9 public float getFloat(String key, float def)

key key whose associated value is to be returned as a float value.

def the value to be returned in the event that this node has no value associated

with key or the associated value cannot be interpreted as a float type or the
backing store is inaccessible.
316-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 org.osgi.service.prefs
� Returns the float value represented by the String object associated with
the specified key in this node. The String object is converted to an int

value as by Float.parseFloat(String). Returns the specified default if

there is no value associated with the key, the backing store is inaccessible, or

if Float.parseFloat(String) would throw a NumberFormatException if

the associated value were passed. This method is intended for use in con-

junction with the p utFlo at [p.320] method.

Returns the float value represented by the string associated with key in this node, or

def if the associated value does not exist or cannot be interpreted as a float

type.

Throws IllegalStateException – if this node (or an ancestor) has been removed
with the r emove Node ()[p.322] method.

NullPointerException – if key is null.

See Also putFloat(String,float)[p.320] , get(String,String)[p.315]
getInt(String,int)

15.7.3.10 public int getInt(String key, int def)

key key whose associated value is to be returned as an int.

def the value to be returned in the event that this node has no value associated

with key or the associated value cannot be interpreted as an int or the back-
ing store is inaccessible.

� Returns the int value represented by the String object associated with the

specified key in this node. The String object is converted to an int as by

Integer.parseInt(String). Returns the specified default if there is no

value associated with the key, the backing store is inaccessible, or if

Integer.parseInt(String) would throw a NumberFormatException if the
associated value were passed. This method is intended for use in conjunc-

tion with the putI nt [p.321] method.

Returns the int value represented by the String object associated with key in this

node, or def if the associated value does not exist or cannot be interpreted as

an int type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed

with the r emove Node ()[p.322] method.

See Also putInt(String,int)[p.321] , get(String,String)[p.315]
getLong(S tring,l ong)

15.7.3.11 public long getLong(String key, long def)

key key whose associated value is to be returned as a long value.

def the value to be returned in the event that this node has no value associated

with key or the associated value cannot be interpreted as a long type or the

backing store is inaccessible.

� Returns the long value represented by the String object associated with the

specified key in this node. The String object is converted to a long as by
Long.parseLong(String). Returns the specified default if there is no value

associated with the key, the backing store is inaccessible, or if

Long.parseLong(String) would throw a NumberFormatException if the

associated value were passed. This method is intended for use in conjunc-

tion with the putL ong [p.321] method.
OSGi Service-Platform Release 3 317-588

org.osgi.service.prefs Preferences Service Specif ication Version 1.0
Returns the long value represented by the String object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as

a long type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the re moveNo de() [p.322] method.

See Also putLong(String,long)[p.321] , get(String,String)[p.315]
keys()

15.7.3.12 public String[] keys() throws BackingStoreException

� Returns all of the keys that have an associated value in this node. (The

returned array will be of size zero if this node has no preferences and not

null!)

Returns an array of the keys that have an associated value in this node.

Throws BackingStoreException – if this operation cannot be completed due to a

failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.
name()

15.7.3.13 public String name()

� Returns this node’s name, relative to its parent.

Returns this node’s name, relative to its parent.
node(String)

15.7.3.14 public Preferences node(String pathName)

pathName the path name of the Preferences object to return.

� Returns a named Preferences object (node), creating it and any of its ances-

tors if they do not already exist. Accepts a relative or absolute pathname.

Absolute pathnames (which begin with ‘/’) are interpreted relative to the
root of this node. Relative pathnames (which begin with any character other

than ‘/’) are interpreted relative to this node itself. The empty string (“”) is

a valid relative pathname, referring to this node itself.

If the returned node did not exist prior to this call, this node and any ances-

tors that were created by this call are not guaranteed to become persistent
until the flush method is called on the returned node (or one of its descen-

dants).

Returns the specified Preferences object.

Throws IllegalArgumentException – if the path name is invalid.

IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.

NullPointerException – if path name is null.

See Also flush()[p.314]
nodeEx ists(String)

15.7.3.15 public boolean nodeExists(String pathName) throws
BackingStoreException

pathName the path name of the node whose existence is to be checked.
318-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 org.osgi.service.prefs
� Returns true if the named node exists. Accepts a relative or absolute path-
name. Absolute pathnames (which begin with ‘/’) are interpreted relative

to the root of this node. Relative pathnames (which begin with any charac-

ter other than ‘/’) are interpreted relative to this node itself. The pathname

“” is valid, and refers to this node itself.

If this node (or an ancestor) has already been removed with the
remo veNo de() [p.322] method, it is legal to invoke this method, but only

with the pathname “”; the invocation will return false. Thus, the idiom

p.nodeExists(””) may be used to test whether p has been removed.

Returns true if the specified node exists.

Throws BackingStoreException – if this operation cannot be completed due to a

failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed

with the remo veNo de() [p.322] method and pathname is not the empty string

(“”).

IllegalArgumentException – if the path name is invalid (i.e., it contains

multiple consecutive slash characters, or ends with a slash character and is

more than one character long).
parent()

15.7.3.16 public Preferences parent()

� Returns the parent of this node, or null if this is the root.

Returns the parent of this node.

Throws IllegalStateException – if this node (or an ancestor) has been removed

with the r emove Node ()[p.322] method.
put(S tring,String)

15.7.3.17 public void put(String key, String value)

key key with which the specified value is to be associated.

value value to be associated with the specified key.

� Associates the specified value with the specified key in this node.

Throws NullPointerException – if key or value is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the r emove Node ()[p.322] method.
putBoolean(S tring,boolean)

15.7.3.18 public void putBoolean(String key, boolean value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

� Associates a String object representing the specified boolean value with

the specified key in this node. The associated string is “true” if the value is

true, and “false” if it is false. This method is intended for use in conjunc-

tion with the ge tBo ol ean [p.315] method.

Implementor’s note: it is not necessary that the value be represented by a

string in the backing store. If the backing store supports boolean values, it is

not unreasonable to use them. This implementation detail is not visible

through the Preferences API, which allows the value to be read as a

boolean (with getBoolean) or a String (with get) type.

Throws NullPointerException – if key is null.
OSGi Service-Platform Release 3 319-588

org.osgi.service.prefs Preferences Service Specif ication Version 1.0
IllegalStateException – if this node (or an ancestor) has been removed
with the re moveNo de() [p.322] method.

See Also getBoolean(String,boolean)[p.315] , get(String,String)[p.315]
putByteArray (String,byte[])

15.7.3.19 public void putByteArray(String key, byte[] value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

� Associates a String object representing the specified byte[] with the speci-

fied key in this node. The associated String object the Base64 encoding of
the byte[], as defined in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) ,

Section 6.8, with one minor change: the string will consist solely of charac-

ters from the Base64 Alphabet; it will not contain any newline characters.

This method is intended for use in conjunction with the

getByte Ar ra y [p.315] method.

Implementor’s note: it is not necessary that the value be represented by a

String type in the backing store. If the backing store supports byte[] val-

ues, it is not unreasonable to use them. This implementation detail is not

visible through the Preferences API, which allows the value to be read as

an a byte[] object (with getByteArray) or a String object (with get).

Throws NullPointerException – if key or value is null.

IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.

See Also getByteArray(String,byte[])[p.315] , get(String,String)[p.315]
putDouble(String,double)

15.7.3.20 public void putDouble(String key, double value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

� Associates a String object representing the specified double value with the

specified key in this node. The associated String object is the one that

would be returned if the double value were passed to

Double.toString(double). This method is intended for use in conjunction

with the ge tDoubl e [p.316] method

Implementor’s note: it is not necessary that the value be represented by a

string in the backing store. If the backing store supports double values, it is

not unreasonable to use them. This implementation detail is not visible

through the Preferences API, which allows the value to be read as a double

(with getDouble) or a String (with get) type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.

See Also getDouble(String,double)[p.316]
putFloat(String,fl oat)

15.7.3.21 public void putFloat(String key, float value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.
320-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 org.osgi.service.prefs
� Associates a String object representing the specified float value with the
specified key in this node. The associated String object is the one that

would be returned if the float value were passed to

Float.toString(float). This method is intended for use in conjunction

with the g etFlo at [p.316] method.

Implementor’s note: it is not necessary that the value be represented by a
string in the backing store. If the backing store supports float values, it is

not unreasonable to use them. This implementation detail is not visible

through the Preferences API, which allows the value to be read as a float

(with getFloat) or a String (with get) type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed

with the r emove Node ()[p.322] method.

See Also getFloat(String,float)[p.316]
putInt(String,int)

15.7.3.22 public void putInt(String key, int value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

� Associates a String object representing the specified int value with the

specified key in this node. The associated string is the one that would be

returned if the int value were passed to Integer.toString(int). This

method is intended for use in conjunction with getIn t [p.317] method.

Implementor’s note: it is not necessary that the property value be repre-

sented by a String object in the backing store. If the backing store supports
integer values, it is not unreasonable to use them. This implementation

detail is not visible through the Preferences API, which allows the value to

be read as an int (with getInt or a String (with get) type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed

with the r emove Node ()[p.322] method.

See Also getInt(String,int)[p.317]
putLong(String,long)

15.7.3.23 public void putLong(String key, long value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

� Associates a String object representing the specified long value with the
specified key in this node. The associated String object is the one that

would be returned if the long value were passed to Long.toString(long).

This method is intended for use in conjunction with the getLo ng [p.317]

method.

Implementor’s note: it is not necessary that the value be represented by a
String type in the backing store. If the backing store supports long values,

it is not unreasonable to use them. This implementation detail is not visible

through the Preferences API, which allows the value to be read as a long

(with getLong or a String (with get) type.

Throws NullPointerException – if key is null.
OSGi Service-Platform Release 3 321-588

org.osgi.service.prefs Preferences Service Specif ication Version 1.0
IllegalStateException – if this node (or an ancestor) has been removed
with the re moveNo de() [p.322] method.

See Also getLong(String,long)[p.317]
remove(String)

15.7.3.24 public void remove(String key)

key key whose mapping is to be removed from this node.

� Removes the value associated with the specified key in this node, if any.

Throws IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.

See Also get(String,String)[p.315]
removeNode()

15.7.3.25 public void removeNode() throws BackingStoreException

� Removes this node and all of its descendants, invalidating any properties
contained in the removed nodes. Once a node has been removed, attempting

any method other than name(), absolutePath() or nodeExists(””) on the

corresponding Preferences instance will fail with an

IllegalStateException. (The methods defined on Object can still be

invoked on a node after it has been removed; they will not throw

IllegalStateException.)

The removal is not guaranteed to be persistent until the flush method is

called on the parent of this node. (It is illegal to remove the root node.)

Throws IllegalStateException – if this node (or an ancestor) has already been re-

moved with the r emoveNo de() [p.322] method.

RuntimeException – if this is a root node.

BackingStoreException – if this operation cannot be completed due to a

failure in the backing store, or inability to communicate with it.

See Also flush()[p.314]
sync()

15.7.3.26 public void sync() throws BackingStoreException

� Ensures that future reads from this node and its descendants reflect any

changes that were committed to the persistent store (from any VM) prior to

the sync invocation. As a side-effect, forces any changes in the contents of
this node and its descendants to the persistent store, as if the flush method

had been invoked on this node.

Throws BackingStoreException – if this operation cannot be completed due to a

failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed

with the re moveNo de() [p.322] method.

See Also flush()[p.314]
PreferencesService

15.7.4 public interface PreferencesService

The Preferences Service.

Each bundle using this service has its own set of preference trees: one for

system preferences, and one for each user.
322-588 OSGi Service-Platform Release 3

Preferences Service Specif ication Version 1.0 References
A PreferencesService object is specific to the bundle which obtained it
from the service registry. If a bundle wishes to allow another bundle to

access its preferences, it should pass its PreferencesService object to that

bundle.

getSystemPreferences()

15.7.4.1 public Preferences getSystemPreferences()

� Returns the root system node for the calling bundle.

getUserPreferences(String)

15.7.4.2 public Preferences getUserPreferences(String name)

� Returns the root node for the specified user and the calling bundle.

getUsers ()

15.7.4.3 public String[] getUsers()

� Returns the names of users for which node trees exist.

15.8 References

[45] JSR 10 Preferences API

http://www.jcp.org/jsr/detail/10.jsp

[46] Windows Registry

http://www.microsoft.com/technet/win98/reg.asp

[47] RFC 2045 Base 64 encoding

http://www.ietf.org/rfc/rfc2045.txt
OSGi Service-Platform Release 3 323-588

References Preferences Service Specif ication Version 1.0
324-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Introduction
16 Wire Admin Service

Specification

Version 1.0

16.1 Introduction

The Wire Admin service is an administrative service that is used to control a
wiring topology in the OSGi Service Platform. It is intended to be used by

user interfaces or management programs that control the wiring of services

in an OSGi Service Platform.

The Wire Admin service plays a crucial role in minimizing the amount of

context-specific knowledge required by bundles when used in a large array
of configurations. The Wire Admin service fulfills this role by dynamically

wiring services together. Bundles participate in this wiring process by regis-

tering services that produce or consume data. The Wire Admin service wires

the services that produce data to services which consume data.

The purpose of wiring services together is to allow configurable cooperation
of bundles in an OSGi Service Platform. For example, a temperature sensor

can be connected to a heating module to provide a controlled system.

The Wire Admin service is a very important OSGi configuration service and

is designed to cooperate closely with the Configuration Admin service, as

defined in Configuration Admin Service Specification on page 181.

16.1.1 Wire Admin Service Essentials

• Topology Management – Provide a comprehensive mechanism to link

data-producing components with data-consuming components in an

OSGi environment.
• Configuration Management – Contains configuration data in order to

allow either party to adapt to the special needs of the wire.

• Data Type Handling – Facilitate the negotiation of the data type to be used

for data transfer between producers of data and consumers of data. Con-

sumers and producers must be able to handle multiple data types for

data exchanges using a preferred order.
• Composites – Support producers and consumers that can handle a large

number of data items.

• Security – Separate connected parties from each other. Each party must

not be required to hold the service object of the other party.

• Simplicity – The interfaces should be designed so that both parties, the

Producer and the Consumer services, should be easy to implement.
OSGi Service-Platform Release 3 325-588

Introduction Wire Admin Service Specification Version 1.0
16.1.2 Wire Admin Service Entities

• Producer – A service object that generates information to be used by a

Consumer service.
• Consumer – A service object that receives information generated by a Pro-

ducer service.

• Wire – An object created by the Wire Admin service that defines an asso-

ciation between a Producer service and a Consumer service. Multiple

Wire objects can exist between the same Producer and Consumer pair.

• WireAdmin – The service that provides methods to create, update,
remove, and list Wir e objects.

• WireAdminListener – A service that receives events from the Wire Admin

service when the Wir e object is manipulated or used.

• WireAdminEvent – The event that is sent to a W ireAd mi nListe ner object,

describing the details of what happened.

• Configuration Properties – Properties that are associated with a W ire object
and that contain identity and configuration information set by the

administrator of the Wire Admin service.

• PID – The Persistent IDentity as defined in the Configuration Admin

specification.

• Flavors – The different data types that can be used to exchange infor-

mation between Producer and Consumer services.

• Composite Producer/Consumer – A Producer/Consumer service that can
generate/accept different kinds of values.

• Envelope –An interface for objects that can identify a value that is trans-

ferred over the wire. En ve lo pe objects contain also a scope name that is

used to verify access permissions.

• Scope – A set of names that categorizes the kind of values contained in

En ve lop e objects for security and selection purposes.
• Basic Envelope – A concrete implementation of the Envelo pe interface.

• WirePermission – A Permission sub-class that is used to verify if a Con-

sumer service or Producer service has permission for specific scope

names.

• Composite Identity – A name that is agreed between a composite Con-

sumer and Producer service to identify the kind of objects that they can
exchange.
326-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Introduction
Figure 50 Class Diagram, org.osgi.service.wiring

16.1.3 Operation Summary

The Wire Admin service maintains a set of persistent W ire objects. A Wi re

object contains a Persistent IDentity (PID) for a Consumer service and a PID
for a Producer service. (W ir e objects can therefore be created when the Pro-

ducer or Consumer service is not registered.)

If both those Producer and Consumer services are registered with the Frame-

work, they are connected by the Wire Admin service. The Wire Admin ser-

vice calls a method on each service object and provides the list of W ire
objects to which they are connected.

up
d

at
ed

0,1

0..*

po
ll

<<interface>>
Wire

<<interface>>
WireAdmin

<<interface>>
Consumer

1 maintains

<<interface>>
Producer

WireAdmin
Event

<<interface>>
WireAdmin
Listener

Wire Admin impl.

Producer impl. Consumer impl.WireAdmin
Listener impl.

Wire impl
(persistent)

0..*

listens to

sends out events

Administrating UI

adm
inisters

0..*

0,10..*

1

<<interface>>
Envelope

Basic
Envelope

up
da

te

p
o
lled

scope

security check

Wire
Permission

verify scope

java.security.
Basic
Permission
OSGi Service-Platform Release 3 327-588

Producer Service Wire Admin Service Specification Version 1.0
When a Producer service has new information, it should send this informa-
tion to each of the connected Wi re objects. Each W ir e object then must

check the filtering and security. If both filtering and security allow the

transfer, the Producer service should inform the associated Consumer ser-

vice with the new information. The Consumer services can also poll a W ire

object for an new value at any time.

When a Consumer or Producer service is unregistered from the OSGi Frame-

work, the other object in the association is informed that the W ire object is

no longer valid.

Administrative applications can use the Wire Admin service to create and

delete wires. These changes are immediately reflected in the current topol-
ogy and are broadcast to Wire Admin Listener services.

Figure 51 An Example Wiring Scheme in an OSGi Environment

16.2 Producer Service

A P ro duce r is a service that can produce a sequence of data objects. For

example, a Pr oduc er service can produce, among others, the following type

of objects:

• Mea sure me nt objects that represent a sensor measurement such as tem-
perature, movement, or humidity.

• A S tr ing object containing information for user consumption, such as

headlines.

• A Da te object indicating the occurrence of a periodic event.

• Position information.

• En ve lop e objects containing status items which can be any type.

16.2.1 Producer Properties

A Producer service must be registered with the OSGi Framework under the

interface name o rg. os gi .se rvic e.w ire admin. Pro duc er . The following service

properties must be set:

Producer

Consumer

Bundle

Wire object

Actuator

Sensor

External conn.

External source

converter
328-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Producer Service
• ser vi ce. pid – The value of this property, also known as the PID, defines
the Persistent IDentity of a service. A Producer service must always use

the same PID value whenever it is registered. The PID value allows the

Wire Admin service to consistently identify the Producer service and

create a persistent W ir e object that links a Producer service to a Con-

sumer service. See [48] Design Patterns specification for the rules

regarding PIDs.

• wi rea dmin.p ro duce r . f lavo rs – The value of this property is an array of

Cl ass objects (Cl ass[]) that are the classes of the objects the service can

produce. See Flavors on page 343 for more information about the data

type negotiation between Producer and Consumer services.

• wi rea dmin.p ro duce r . f i l ter s – This property indicates to the Wire Admin

service that this Producer service performs its own update filtering,

meaning that the consumer can limit the number of update calls with a

filter expression. This does not modify the data; it only determines

whether an update via the wire occurs. If this property is not set, the

Wire object must filter according to the description in Composite objects
on page 335. This service registration property does not need to have a

specific value.

• wi rea dmin.p ro duce r .sc op e – Only for a composite Producer service, a

list of scope names that define the scope of this Producer service, as

explained in Scope on page 336.

• wi rea dmin.p ro duce r .c ompo site – List the composite identities of Con-

sumer services with which this Producer service can interoperate. This
property is of type Str i ng[] . A composite Consumer service can inter-

operate with a composite Producer service when there is at least one

name that occurs in both the Consumer service’s array and the Producer

service’s array for this property.

16.2.2 Connections

The Wire Admin service connects a Producer service and a Consumer ser-

vice by creating a W ire object. If the Consumer and Producer services that

are bound to a W ire object are registered with the Framework, the Wire

Admin service must call the co nsumer sC onne cted (W ire []) method on the

Pro duc er service object. Every change in the Wire Admin service that affects
the Wire object to which a Producer service is connected must result in a

call to this method. This requirement ensures that the Pr od ucer object is

informed of its role in the wiring topology. If the Producer service has no

Wi re objects attached when it is registered, the Wire Admin service must

always call co nsumer sCo nne cted(nul l) . This situation implies that a Pro-

ducer service can assume it always gets called back from the Wire Admin
service when it registers.

16.2.3 Producer Example

The following example shows a clock producer service that sends out a Date

object every second.

public class Clock extends Thread implements Producer {
Wire wires[];
BundleContext context;
boolean quit;
OSGi Service-Platform Release 3 329-588

Producer Service Wire Admin Service Specification Version 1.0
Clock(BundleContext context) {
this.context = context;
start();

}
public synchronized void run() {

Hashtable p = new Hashtable();
p.put(org.osgi.service.wireadmin.WireConstants.

WIREADMIN_PRODUCER_FLAVORS,
 new Class[] { Date.class });

p.put(org.osgi.framework.Constants.SERVICE_PID,
 "com.acme.clock");

context.registerService(
Producer.class.getName(),this,p);

while(! quit)
try {

Date now = new Date();
for(int i=0; wires!=null && i<wires.length; i++)

wires[i].update(now);
wait(1000);

}
catch(InterruptedException ie) {

/* will recheck quit */
}

}
public void synchronized consumersConnected(Wire wires[])
{

this.wires = wires;
}
public Object polled(Wire wire) { return new Date(); }

 ...
}

16.2.4 Push and Pull

Communication between Consumer and Producer services can be initiated

in one of the following ways.

• The Producer service calls the upda te(O bjec t) method on the Wire

object. The W ire object implementation must then call the

update d(Wir e,O bj ect) method on the Co nsumer service, if the filtering

allows this.

• The C o nsumer service can call po l l()on the W ire object. The Wir e object

must then call pol led(Wi re) on the P ro duce r object. Update filtering

must not apply to polling.

16.2.5 Producers and Flavors

Consumer services can only understand specific data types, and are there-

fore restricted in what data they can process. The acceptable object classes,

the flavors, are communicated by the Consumer service to the Wire Admin

service using the Consumer service’s service registration properties. The
330-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Consumer Service
method getF la vo rs() on the Wi re object returns this list of classes. This list is
an ordered list in which the first class is the data type that is the most pre-

ferred data type supported by the Consumer service. The last class is the

least preferred data type. The Producer service must attempt to convert its

data into one of the data types according to the preferred order, or will

return nul l from the po l l method to the Consumer service if none of the

types are recognized.

Classes cannot be easily compared for equivalence. Sub-classes and inter-

faces allow classes to masquerade as other classes. The

Cl ass. isAssig nabl eFr om(C lass) method verifies whether a class is type com-

patible, as in the following example:

Object polled(Wire wire) {
Class clazzes[] = wire.getFlavors();
for (int i=0; i<clazzes.length; i++) {

Class clazz = clazzes[i];
if (clazz.isAssignableFrom(Date.class))

return new Date();
if (clazz.isAssignableFrom(String.class))

return new Date().toString();
}
return null;

}

The order of the i f statements defines the preferences of the Pro duc er object.
Preferred data types are checked first. This order normally works as

expected but in rare cases, sub-classes can change it. Normally, however,

that is not a problem.

16.3 Consumer Service

A Consumer service is a service that receives information from one or more

Producer services and is wired to Producer services by the Wire Admin ser-

vice. Typical Consumer services are as follows:

• The control of an actuator, such as a heating element, oven, or electric

shades

• A display

• A log

• A state controller such as an alarm system

16.3.1 Consumer Properties

A Consumer service must be registered with the OSGi Framework under the

interface name o rg .o sgi .s ervic e.w ir eadmin .C onsu me r. The following ser-

vice properties must be set:

• ser vi ce. pid – The value of this property, also known as the PID, defines

the Persistent IDentity of a service. A Consumer service must always use

the same PID value whenever it is registered. The PID value allows the

Wire Admin service to consistently identify the Consumer service and

create a persistent W ir e object that links a Producer service to a Con-
OSGi Service-Platform Release 3 331-588

Consumer Service Wire Admin Service Specification Version 1.0
sumer service. See the Configuration Admin specification for the rules
regarding PIDs.

• wir ead mi n.c onsu me r. f lavo rs – The value of this property is an array of

Cla ss objects (Cla ss[]) that are the acceptable classes of the objects the

service can process. See Flavors on page 343 for more information about

the data type negotiation between Producer and Consumer services.
• wir ead mi n.c onsu me r.s co pe – Only for a composite Consumer service, a

list of scope names that define the scope of this Consumer service, as

explained in Scope on page 336.

• wir ead mi n.c onsu me r.c ompo site – List the composite identities of Pro-

ducer services that this Consumer service can interoperate with. This

property is of type Str ing [] . A composite Consumer service can interop-
erate with a composite Producer service when at least one name occurs

in both the Consumer service’s array and the Producer service’s array for

this property.

16.3.2 Connections

When a C o nsumer service is registered and a Wir e object exists that associ-
ates it to a registered Producer service, the pro duc er sCo nnec ted(W ire[])

method is called on the C o nsumer service.

Every change in the Wire Admin service that affects a Wi re object to which

a Consumer service is connected must result in a call to the pr od ucer sC on-

necte d(W ir e[]) method. This rule ensures that the Consumer object is
informed of its role in the wiring topology. If the Consumer service has no

Wir e objects attached, the argument to the pr o ducer sC onn ected (W ir e[])

method must be nul l . This method must also be called when a Producer ser-

vice registers for the first time and no W ire objects are available.

16.3.3 Consumer Example

For example, a service can implement a Consumer service that logs all

objects that are sent to it in order to allow debugging of a wiring topology.

public class LogConsumer implements Consumer {
public LogConsumer(BundleContext context) {

Hashtable ht = new Hashtable();
ht.put(

Constants.SERVICE_PID, "com.acme.logconsumer");
ht.put(WireConstants.WIREADMIN_CONSUMER_FLAVORS,

new Class[] { Object.class });
context.registerService(Consumer.class.getName(),

this, ht);
}
public void updated(Wire wire, Object o) {

getLog().log(LogService.LOG_INFO, o.toString());
}
public void producersConnected(Wire [] wires) {}
LogService getLog() { ... }

}

332-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Implementation issues
16.3.4 Polling or Receiving a Value

When the P ro duce r service produces a new value, it calls the

upda te(Ob ject) method on the Wi re object, which in turn calls the
upda ted(Wi re, Ob ject) method on the Co nsume r service object. When the

Consumer service needs a value immediately, it can call the po l l() method

on the Wir e object which in turn calls the po l le d(Wir e) method on the

Pro duc er service.

If the pol l() method on the Wire object is called and the Producer is unregis-
tered, it must return a nul l value.

16.3.5 Consumers and Flavors

Pro duc er objects send objects of different data types through W ire objects. A

Co nsume r service object should offer a list of preferred data types (classes)

in its service registration properties. The Producer service, however, can still
send a nu l l object or an object that is not of the preferred types. Therefore,

the C o nsumer service must check the data type and take the appropriate

action. If an object type is incompatible, then a log message should be

logged to allow the operator to correct the situation.

The following example illustrates how a Consumer service can handle
objects of type Date , Mea sure me nt, and S tr ing .

void process(Object in) {
if (in instanceof Date)

processDate((Date) in);
else if (in instanceof Measurement)

processMeasurement((Measurement) in);
else if (in instanceof String)

processString((String) in);
else

processError(in);
}

16.4 Implementation issues

The Wire Admin service can call the c on sumers Co nnec ted or

pro duc ers Co nnec ted methods during the registration of the Consumer or

Producer service. Care should be taken in this method call so that no vari-

ables are used that are not yet set, such as the Ser vi ceR egis trat io n object

that is returned from the registration. The same is true for the up dated or

po l led callback because setting the W ire objects on the Producer service
causes such a callback from the co nsumer sC onne cted or

pro duc ers Co nnec ted method.

A Wire Admin service must call the p ro duce rsC on necte d and

co nsumer sCo nne cted method asynchronously from the registrations,

meaning that the Consumer or Producer service can use sync hro nized to

restrict access to critical variables.
OSGi Service-Platform Release 3 333-588

Wire Properties Wire Admin Service Specification Version 1.0
16.5 Wire Properties

A W ir e object has a set of properties (a Dic ti ona ry object) that configure the
association between a Consumer service and a Producer service.

The Wire properties are explained in Table 20.

The properties associated with a Wir e object are not limited to the ones
defined in Table 20. The Dict io nar y object can also be used for configuring

both C o nsumer services and Pr odu cer services. Both services receive the

Wir e object and can inspect the properties and adapt their behavior accord-

ingly.

16.5.1 Display Service Example

In the following example, the properties of a Wi re object, which are set by

the Operator or User, are used to configure a P ro duce r service that monitors

a user’s email account regularly and sends a message when the user has

received email. This W ireM ai l service is illustrated as follows:

public class WireMail extends Thread
implements Producer {
Wire wires[];
BundleContext context;
boolean quit;

public void start(BundleContext context) {
Hashtable ht = new Hashtable();
ht.put(Constants.SERVICE_PID, "com.acme.wiremail");
ht.put(WireConstants.WIREADMIN_PRODUCER_FLAVORS,

 new Class[] { Integer.class });
context.registerService(this,

Producer.class.getName(),
ht);

}

Constant Description

WIR EADMIN_PI D The value of this property is a unique Persistent IDentity as

defined in chapter 10 Configuration Admin Service Specifica-

tion. This PID must be automatically created by the Wire

Admin service for each new W ir e object.

WIR EADMIN_PR O DUC ER_PI D The value of the property is the PID of the P ro duce r service.

WIR EADMIN_C O NSUM ER_PI D The value of this property is the PID of the C ons ume r ser-

vice.

WIR EADMIN_F ILTER The value of this property is an OSGi filter string that is

used to control the update of produced values.

This filter can contain a number of attributes as explained
in Wire Flow Control on page 339.

Tab le 20 Standard Wire Properties
334-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Composite objects
public synchronized void consumersConnected(
Wire wires[]) {
this.wires = wires;

}
public Object polled(Wire wire) {

Dictionary p = wire.getProperties();
// The password should be
// obtained from User Admin Service
int n = getNrMails(

p.get("userid"),
p.get("mailhost"));

return new Integer(n);
}
public synchronized void run() {

while (!quit)
try {

for (int i=0; wires != null && i<wires.length;i++)
wires[i].update(polled(wires[i]));

wait(150000);
}
catch(InterruptedException e) { break; }

}
...

}

16.6 Composite objects

A Producer and/or Consumer service for each information item is usually
the best solution. This solution is not feasible, however, when there are hun-

dreds or thousands of information items. Each registered Consumer or Pro-

ducer service carries the overhead of the registration, which may

overwhelm a Framework implementation on smaller platforms.

When the size of the platform is an issue, a Producer and a Consumer ser-
vice should abstract a larger number of information items. These Consumer

and Producer services are called composite.

Figure 52 Composite Producer Example

Composite Producer and Consumer services should register respectively the

WI READMI N_P RO DU CER _C O MPO S ITE and

WI READMI N_C O NSU MER_C O MPO SI TE composite identity property with

their service registration. These properties should contain a list of compos-

ite identities. These identities are not defined here, but are up to a mutual

agreement between the Consumer and Producer service. For example, a
composite identity could be MO ST- 1. 5 or GSM -P hase2- Termin al . The

multiplexed
wire
OSGi Service-Platform Release 3 335-588

Composite objects Wire Admin Service Specification Version 1.0
name may follow any scheme but will usually have some version informa-
tion embedded. The composite identity properties are used to match Con-

sumer and Producer services with each other during configuration of the

Wire Admin service. A Consumer and Producer service should interoperate

when at least one equal composite identity is listed in both the Producer and

Consumer composite identity service property.

Composite producers/consumers must identify the kind of objects that are

transferred over the Wi re object, where kind refers to the intent of the object,

not the data type. For example, a Producer service can represent the status of

a door-lock and the status of a window as a bo o lea n . If the status of the win-

dow is transferred as a b oo lea n to the Consumer service, how would it know

that this bo ol ean represents the window and not the door-lock?

To avoid this confusion, the Wire Admin service includes an Envel ope

interface. The purpose of the Envelo pe interface is to associate a value object

with:

• An identification object
• A scope name

Figure 53 Envelope

16.6.1 Identification

The Envel ope object’s identification object is used to identify the value car-
ried in the Envelo pe object. Each unique kind of value must have its own

unique identification object. For example, a left-front-window should have a

different identification object than a rear-window.

The identification is of type Ob ject . Using the O bj ect class allows Str in g

objects to be used, but also makes it possible to use more complex objects.
These objects can convey information in a way that is mutually agreed

between the Producer and Consumer service. For example, its type may dif-

fer depending on each kind of value so that the Visitor pattern, see [48] Design

Patterns, can be used. Or it may contain specific information that makes the

En ve lop e object easier to dispatch for the Consumer service.

16.6.2 Scope

The scope name is a Str ing object that categorizes the Envelo pe object. The

scope name is used to limit the kind of objects that can be exchanged

between composite Producer and Consumer services, depending on security

settings.

<<interface>>
Envelope

Basic
Envelope

Object String
scopeidentification

Impl.
identification
object

name
336-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Composite objects
The name-space for this scope should be mutually agreed between the Con-
sumer and Producer services a priori. For the Wire Admin service, the scope

name is an opaque string, though its syntax is specified in Scope name syntax

on page 339.

Both composite Producer and Consumer services must add a list of their

supported scope names to the service registration properties. This list is
called the scope of that service. A Consumer service must add this scope

property with the name of W IR EADMIN_C ONS UM ER_SC O PE, a Producer

service must add this scope property with the name

WI READMI N_P RO DU CER _S CO PE . The type of this property must be a

Str i ng[] object.

Not registering this property by the Consumer or the Producer service indi-

cates to the Wire Admin service that any W ire object connected to that ser-

vice must return n ul l for the W ir e.ge tSco pe() method. This case must be

interpreted by the Consumer or Producer service that no scope verification

is taking place. Secure Producer services should not produce values for this

Wi re object and secure Consumer services should not accept values.

It is also allowed to register with a wildcard, indicating that all scope names

are supported. In that case, the W IREADM IN_SC OP E_ALL (which is S tr ing[]

{ " *" }) should be registered as the scope of the service. The W ir e object’s

scope is then fully defined by the other service connected to the Wi re object.

The following example shows how a scope is registered.

static String [] scope = { "DoorLock", "DoorOpen", "VIN" };

public void start(BundleContext context) {
Dictionary properties = new Hashtable();
properties.put(

WireConstants.WIREADMIN_CONSUMER_SCOPE,
scope);

properties.put(WireConstants.WIREADMIN_CONSUMER_PID,
"com.acme.composite.consumer");

context.registerService(Consumer.class.getName(),
new AcmeConsumer(),
properties);

}

Both a composite Consumer and Producer service must register a scope to

receive scope support from the Wir e object. These two scopes must be con-

verted into a single Wi re object’s scope and scope names in this list must be
checked for the appropriate permissions. This resulting scope is available

from the Wir e. g etSco pe () method.

If no scope is set by either the Producer or the Consumer service the result

must be n ul l. In that case, the Producer or Consumer service must assume

that no security checking is in place. A secure Consumer or Producer service
should then refuse to operate with that W ir e object.

Otherwise, the resulting scope is the intersection of the Consumer and Pro-

ducer service scope where each name in the scope, called m , must be

implied by a W ireP ermiss ion [C O NSU ME,m] of the Consumer service, and

Wi rePe rmissi on[PR O DUC E,m] of the Producer service.
OSGi Service-Platform Release 3 337-588

Composite objects Wire Admin Service Specification Version 1.0
If either the Producer or Consumer service has registered a wildcard scope
then it must not restrict the list of the other service, except for the permis-

sion check. If both the Producer and Consumer service registered a wild-

card, the resulting list must be W IR EADMIN_SC O PE_ALL (Str in g[]{" *"}).

For example, the Consumer service has registered a scope of {A, B, C} and has

Wir ePer missio n[C ONS UM E, *] . The Producer service has registered a scope
of {B ,C ,E} and has W ire Per mi ssio n[PRO DU CE, C| E]. The resulting scope is

then {C} . Table 21 shows this and more examples.

The W ir e object’s scope must be calculated only once, when both the Pro-

ducer and Consumer service become connected. When a Producer or Con-

sumer service subsequently modifies its scope, the Wire object must not

modify the original scope. A Consumer and a Produce service can thus
assume that the scope does not change after the pr od ucer sC onne cted

method or co nsumers Co nnec ted method has been called.

16.6.3 Access Control

When an Enve lo pe object is used as argument in W ire .upda te(O bjec t) then
the W ire object must verify that the Envelo pe object’s scope name is

included in the W ir e object’s scope. If this is not the case, the update must be

ignored (the u pdate d method on the Consumer service must not be called).

A composite Producer represents a number of values, which is different

from a normal Producer that can always return a single object from the po l l
method. A composite Producer must therefore return an array of Envelo pe

objects (En ve lo pe[]). This array must contain Enve lo pe objects for all the

values that are in the W ire object’s scope. It is permitted to return all possi-

ble values for the Producer because the W ire object must remove all

En ve lop e objects that have a scope name not listed in the W ir e object’s

scope.

Cs Cp Ps Pp Wire Scope

nul l nul l nul l

{A,B ,C} * nul l nul l

nul l {C ,D, E} nul l

{A,B ,C} B|C {A, B,C } A|B {B}

* * {A, B,C } A|B |C {A,B ,C }

* * * * {*}

{A,B ,C} A| B| C {A, B,C } X {}

{A,B ,C} * {B ,C ,E} C |E {C}

Tab le 21 Examples of scope calculation. C=Consumer, P=Producer, p=WirePermis-

sion, s=scope
338-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Wire Flow Control
16.6.4 Composites and Flavors

Composite Producer and Consumer services must always use a flavor of the

Envelo pe class. The data types of the values must be associated with the
scope name or identification and mutually agreed between the Consumer

and Producer services.

Flavors and Enve lop e objects both represent categories of different values.

Flavors, however, are different Java classes that represent the same kind of

value. For example, the tire pressure of the left front wheel could be passed
as a Flo at , an Intege r , or a Mea sure ment object. Whatever data type is cho-

sen, it is still the tire pressure of the left front wheel. The Envelo pe object

represents the kind of object, for example the right front wheel tire pressure,

or the left rear wheel.

16.6.5 Scope name syntax

Scope names are normal S tr ing objects and can, in principle, contain any

Unicode character. Scope names are used with the W ire Permis sio n class

that extends ja va.se cur ity .Ba sic Permis s io n . The Bas icPe rmiss i on class

implements the i mp l ies method and performs the name matching. The

wildcard matching of this class is based on the concept of names where the

constituents of the name are separated with a period (’ . ’): for example,
or g.o sgi .ser vice. http.po rt .

Scope names must therefore follow the rules for fully qualified Java class

names. For example, do or . lo ck is a correct scope name while do or - l oc k is

not.

16.7 Wire Flow Control

The WIR EADMIN_F ILTER property contains a filter expression (as defined in
the OSGi Framework Fi l ter class, see page 117) that is used to limit the num-

ber of updates to the Co nsumer service. This is necessary because informa-

tion can arrive at a much greater rate than can be processed by a C o nsumer

service. For example, a single CAN bus (the electronic control bus used in

current cars) in a car can easily deliver hundreds of measurements per sec-

ond to an OSGi based controller. Most of these measurements are not rele-
vant to the OSGi bundles, at least not all the time. For example, a bundle

that maintains an indicator for the presence of frost is only interested in

measurements when the outside temperature passes the 4 degrees Celsius

mark.

Limiting the number of updates from a Producer service can make a signifi-
cant difference in performance (meaning that less hardware is needed). For

example, a vendor can implement the filter in native code and remove

unnecessary updates prior to processing in the Java Virtual Machine (JVM).

This is depicted in Figure 54 on page 340.
OSGi Service-Platform Release 3 339-588

Wire Flow Control Wire Admin Service Specification Version 1.0
Figure 54 Filtering of Updates

The filter can use any combination of the following attributes in a filter to

implement many common filtering schemes:

ControllerCAN bus

Filter

Actuator

Sensor

Filter from wire properties

Producer Consumer Bundle

Wire object

External connection

Native code

Constant Description

WIR EVALU E_C U RR ENT Current value of the data from the Producer

service.

WIR EVALU E_PR EVIO U S Previous data value that was reported to the

Consumer service.

WIR EVALU E_DELTA_ABS OL UTE The actual positive difference between the pre-

vious data value and the current data value.

For example, if the previous data value was 3
and the current data value is -0.5, then the

absolute delta is 4.5. This filter attribute is not

set when the current or previous value is not a

number.

WIR EVALU E_DELTA_RELATIVE The absolute (meaning always positive) rela-

tive change between the current and the previ-

ous data values, calculated with the following

formula: | previo us- cur ren t|/ |c urre nt| . For

example, if the previous value was 3 and the

new value is 5, then the relative delta is | 3-5| /
|5 | = 0. 4. This filter attribute is not set when

the current or previous value is not a number.

WIR EVALU E_ELAPS ED The time in milliseconds between the last time

the C on sumer .upda ted(Wi re, O bjec t) returned
and the time the filter is evaluated.

Tab le 22 Filter Attrib ute Names
340-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Wire Flow Control
Filter attributes can be used to implement many common filtering schemes
that limit the number of updates that are sent to a Consumer service. The

Wire Admin service specification requires that updates to a Consumer ser-

vice are always filtered if the W IREADM IN_FIL TER Wire property is present.

Producer services that wish to perform the filtering themselves should regis-

ter with a service property W IR EADMIN_PR O DUC ER_F ILTERS . Filtering

must be performed by the Wi re object for all other Producer services.

Filtering for composite Producer services is not supported. When a filter is

set on a W ire object, the Wire must still perform the filtering (which is lim-

ited to time filtering because an Envelo pe object is not a magnitude), but

this approach may lose relevant information because the objects are of a dif-

ferent kind. For example, an update of every 500 ms could miss all speed
updates because there is a wheel pressure update that resets the elapsed

time. Producer services should, however, still implement a filtering scheme

that could use proprietary attributes to filter on different kind of objects.

16.7.1 Filtering by Time

The simplest filter mechanism is based on time. The w ir evalue .el apse d
attribute contains the amount of milliseconds that have passed since the

last update to the associated Co nsume r service. The following example filter

expression illustrates how the updates can be limited to approximately 40

times per minute (once every 1500 ms).

(wirevalue.elapsed>=1500)

Figure 55 depicts this example graphically.

Figure 55 Elapsed Time Change

16.7.2 Filtering by Change

A Consumer service is often not interested in an update if the data value has

not changed. The following filter expression shows how a Consumer service
can limit the updates from a temperature sensor to be sent only when the

temperature has changed at least 1 °K.

(wirevalue.delta.absolute>=1)

Figure 56 depicts a band that is created by the absolute delta between the
previous data value and the current data value. The Consumer is only noti-

fied with the up dated (W ire ,O bje ct) method when a data value is outside of

this band.

temperature

t

elapsed

n n + 1

update
OSGi Service-Platform Release 3 341-588

Wire Flow Control Wire Admin Service Specification Version 1.0
Figure 56 Absolute Delta

The delta may also be relative. For example, if a car is moving slowly, then
updates for the speed of the car are interesting even for small variations.

When a car is moving at a high rate of speed, updates are only interesting for

larger variations in speed. The following example shows how the updates

can be limited to data value changes of at least 10%.

(wirevalue.delta.relative>=0.1)

Figure 57 on page 342 depicts a relative band. Notice that the size of the

band is directly proportional to the size of the sample value.

Figure 57 Relative Delta (not on scale)

16.7.3 Hysteresis

A thermostat is a control device that usually has a hysteresis, which means

that a heater should be switched on below a certain specified low tempera-

ture and should be switched off at a specified high temperature, where high

> low. This is graphically depicted in Figure 58 on page 342. The specified

acceptable temperatures reduce the amount of start/stops of the heater.

Figure 58 Hysteresis

temperature

t

n + 1n

absolute delta band

update

n + 2

temperature

t

n + 1n

relative delta band

update

high

low

off

on

temperature

high

temperature

low
342-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Flavors
A Co nsumer service that controls the heater is only interested in events at
the top and bottom of the hysteresis. If the specified high value is 250 °K and

the specified low value is 249 °K, the following filter illustrates this concept:

(|(&(wirevalue.previous<=250)(wirevalue.current>250))
(&(wirevalue.previous>=249)(wirevalue.current<249))

)

16.8 Flavors

Both C on sumer and Pro duc er services should register with a property
describing the classes of the data types they can consume or produce respec-

tively. The classes are the flavors that the service supports. The purpose of

flavors is to allow an administrative user interface bundle to connect Con-

sumer and Producer services. Bundles should only create a connection when

there is at least one class shared between the flavors from a Consumer ser-

vice and a Producer service. Producer services are responsible for selecting
the preferred object type from the list of the object types preferred by the

Consumer service. If the Producer service cannot convert its data to any of

the flavors listed by the Consumer service, n ul l should be used instead.

16.9 Converters

A converter is a bundle that registers a Consumer and a Producer service

that are related and performs data conversions. Data values delivered to the

Consumer service are processed and transferred via the related Producer ser-

vice. The Producer service sends the converted data to other Consumer ser-
vices. This is shown in Figure 59.

Figure 59 Converter (for legend see Figure 51)

16.10 Wire Admin Service Implementation

The Wire Admin service is the administrative service that is used to control

the wiring topology in the OSGi Service Platform. It contains methods to

create or update wires, delete wires, and list existing wires. It is intended to
be used by user interfaces or management programs that control the wiring

topology of the OSGi Service Platform.

converter
OSGi Service-Platform Release 3 343-588

Wire Admin Listener Service Events Wire Admin Service Specification Version 1.0
The c rea teWi re(Str ing, Str ing ,Dic t iona ry) method is used to associate a Pro-
ducer service with a Consumer service. The method always creates and

returns a new object. It is therefore possible to create multiple, distinct wires

between a Producer and a Consumer service. The properties can be used to

create multiple associations between Producer and Consumer services in

that act in different ways.

The properties of a Wir e object can be updated with the upda te(Ob jec t)

method. This method must update the properties in the Wire object and

must notify the associated Consumer and Producer services if they are regis-

tered. W ire objects that are no longer needed can be removed with the

delete Wir e(Wi re) method. All these methods are in the Wi reAdmin class

and not in the Wir e class for security reasons. See Security on page 347.

The g etWi res(Str ing) method returns an array of Wir e objects (or nu l l). All

objects are returned when the filter argument is nul l . Specifying a filter

argument limits the returned objects. The filter uses the same syntax as the

Framework Filter specification. This filter is applied to the properties of the

Wir e object and only Wir e objects that match this filter are returned.

The following example shows how the getW ire s method can be used to

print the PIDs of Pro duc er services that are wired to a specific C ons umer ser-

vice.

String f = "(wireadmin.consumer.pid=com.acme.x)";
Wire [] wires = getWireAdmin().getWires(f);
for (int i=0; wires != null && i < wires.length; i++)

System.out.println(
wires[i].getProperties().get(

"wireadmin.producer.pid")
);

16.11 Wire Admin Listener Service Events

The Wire Admin service has an extensive list of events that it can deliver.
The events allow other bundles to track changes in the topology as they

happen. For example, a graphic user interface program can use the events to

show when Wir e objects become connected, when these objects are deleted,

and when data flows over a Wire object.

A bundle that is interested in such events must register a
Wir eAdminLi stener service object with a special Inte ger property

WIR EADMIN_EVENTS ("wir ea dmin.eve nts"). This Intege r object contains a

bitmap of all the events in which this Wire Admin Listener service is inter-

ested (events have associated constants that can be OR’d together). A Wire

Admin service must not deliver events to the Wire Admin Listener service

when that event type is not in the bitmap. If no such property is registered,
no events are delivered to the Wire Admin Listener service.

The W ir eAdminLis tener interface has only one method: wi reAdmi n-

Even t(W ire AdminEvent) . The argument is a W ir eAdminEvent object that

contains the event type and associated data.
344-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Connecting External Entities
A Wir eAdminEvent object can be sent asynchronously but must be ordered
for each Wire Admin Listener service. Wire Admin Listener services must

not assume that the state reflected by the event is still true when they

receive the event.

The following types are defined for a W ire Eve nt object:

16.12 Connecting External Entities

The Wire Admin service can be used to control the topology of consumers

and producers that are services, as well as external entities. For example, a

video camera controlled over an IEEE 1394B bus can be registered as a Pro-

ducer service in the Framework’s service registry and a TV, also connected

to this bus, can be registered as a Consumer service. It would be very ineffi-

cient to stream the video data through the OSGi environment. Therefore,
the Wire Admin service can be used to supply the external addressing infor-

mation to the camera and the monitor to make a direct connection outside

the OSGi environment. The Wire Admin service provides a uniform mecha-

nism to connect both external entities and internal entities.

Event type Description

WI RE_CR EATED A new Wi re object has been created.

WI RE_CO NNEC TED Both the Pro duc er service and the Co nsume r service are regis-

tered but may not have executed their respective

co nnec tedPr od ucer s/co nnec tedC on sumers methods.

WI RE_U PDATED The Wir e object’s properties have been updated.

WI RE_TRAC E The Producer service has called the W ire .upd ate(O bjec t)

method with a new value or the Pr o ducer service has returned

from the Pro duc er .po l led(W ire) method.

WI RE_DISC O NNECTED The Producer service or Consumer service have become unreg-

istered and the W ir e object is no longer connected.

WI RE_DELETED The Wir e object is deleted from the repository and is no longer
available from the g etWi res method.

CO NSU MER _EXCEPTIO N The Consumer service generated an exception and the excep-

tion is included in the event.

PR ODU C ER _EXCEP TI ON The Producer service generated an exception in a callback and

the exception is included in the event.

Table 23 Events
OSGi Service-Platform Release 3 345-588

Related Standards Wire Admin Service Specification Version 1.0
Figure 60 Connecting External Entities

A Consumer service and a Producer service associated with a W ire object

receive enough information to establish a direct link because the PIDs of

both services are in the W ire object’s properties. This situation, however,
does not guarantee compatibility between Producer and the Consumer ser-

vice. It is therefore recommended that flavors are used to ensure this com-

patibility. Producer services that participate in an external addressing

scheme, like IEEE 1394B, should have a flavor that reflects this address. In

this case, there should then for example be a IEEE 1394B address class. Con-

sumer services that participate in this external addressing scheme should
only accept data of this flavor.

The OSGi Device Access Specification on page 223, defines the concept of a

device category. This is a description of what classes and properties are used

in a specific device category: for example, a UPnP device category that

defines the interface that must be used to register for a UPnP device, among
other things.

Device category descriptions should include a section that addresses the

external wiring issue. This section should include what objects are send

over the wire to exchange addressing information.

16.13 Related Standards

16.13.1 Java Beans

The Wire Admin service leverages the component architecture that the

Framework service registry offers. Java Beans attempt to achieve similar

goals. Java Beans are classes that follow a number of recommendations that

allow them to be configured at run time. The techniques that are used by

Java Beans during configuration are serialization and the construction of

adapter classes.

camera

monitor

OSGi Service Platform

Wire defining

the connection

IEEE 1394B
346-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 Security
Creating adapter classes in a resource constrained OSGi Service Platform
was considered too heavy weight. Also, the dynamic nature of the OSGi

environment, where services are registered and unregistered continuously,

creates a mismatch between the intended target area of Java Beans and the

OSGi Service Platform.

Also, Java Beans can freely communicate once they have a reference to each
other. This freedom makes it impossible to control the communication

between Java Beans.

This Wire Admin service specification was developed because it is light-

weight and leverages the unique characteristics of the OSGi Framework.

The concept of a Wi re object that acts as an intermediate between the Pro-
ducer and Consumer service allows the implementation of a security policy

because both parties cannot communicate directly.

16.14 Security

16.14.1 Separation of Consumer and Producer Services

The Consumer and Producer service never directly communicate with each

other. All communication takes place through a W ire object. This allows a

Wire Admin service implementation to control the security aspects of creat-
ing a connection, and implies that the Wire Admin service must be a trusted

service in a secure environment. Only one bundle should have the

Ser viceP ermiss ion [R EGISTER ,W ireAd mi n] .

Ser viceP ermiss ion [R EGISTER ,Pr odu cer |C ons umer] should not be

restricted. S ervic ePe rmissio n[GET,Pr od ucer |C on sumer] must be limited to
trusted bundles (the Wire Admin service implementation) because a bundle

with this permission can call such services and access information that it

should not be able to access.

16.14.2 Using Wire Admin Service

This specification assumes that only a few applications require access to the
Wire Admin service. The Wir eAdmin interface contains all the security sen-

sitive methods that create, update, and remove Wi re objects. (This is the rea-

son that the update and delete methods are on the Wir eAdmin interface and

not on the W ir e interface). Se rvice Permi ssio n[G ET, Wir eAdmin] should

therefore only be given to trusted bundles that can manage the topology.

16.14.3 Wire Permission

Composite Producer and Consumer services can be restricted in their use of

scope names. This restriction is managed with the W ir ePer missio n class. A

Wi rePe rmissi on consists of a scope name and the action CO NSU ME or

PR ODU C E . The name used with the W ireP ermis sio n may contain wild-cards
as specified in the ja va.s ecur ity .Ba sic Permi ss io n class.

16.15 org.osgi.service.wireadmin

The OSGi Wire Admin service Package. Specification Version 1.0.
OSGi Service-Platform Release 3 347-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.wireadmin; specification-ver-
sion=1.0

16.15.1 Summary

• BasicEnvelope – BasicEnvelope is an implementation of the

En ve lop e [p.350] interface [p.348]

• Consumer – Data Consumer, a service that can receive udpated values

from Pro duc er [p.350] services. [p.348]

• Envelope – Identifies a contained value. [p.350]

• Producer – Data Producer, a service that can generate values to be used by
Co nsumer [p.348] services. [p.350]

• Wire – A connection between a Producer service and a Consumer service.

[p.352]

• WireAdmin – Wire Administration service. [p.356]

• WireAdminEvent – A Wire Admin Event. [p.358]

• WireAdminListener – Listener for Wire Admin Events. [p.361]
• WireConstants – Defines standard names for Wire properties, wire filter

attributes, Consumer and Producer service properties. [p.361]

• WirePermission – Permission for the scope of a Wire object. [p.365]
BasicEnvelope

16.15.2 public class BasicEnvelope
implements Envelope

BasicEnvelope is an implementation of the Envelo pe [p.350] interface

BasicEnvelope(Object,Ob ject,String)

16.15.2.1 public BasicEnvelope(Object value, Object identification, String scope)

value Content of this envelope, may be null.

identifying Identifying object for this Envelope object, must not be null

scope Scope name for this object, must not be null

� Constructor.

See Also Envelope[p.350]
getIdenti f icati on()

16.15.2.2 public Object getIdentification()

See Also org.osgi.service.wireadmin.Envelope.getIdentification()[p.350]
getScope()

16.15.2.3 public String getScope()

See Also org.osgi.service.wireadmin.Envelope.getScope()[p.350]
getValue()

16.15.2.4 public Object getValue()

See Also org.osgi.service.wireadmin.Envelope.getValue()[p.350]
Consumer

16.15.3 public interface Consumer

Data Consumer, a service that can receive udpated values from

Pro duce r [p.350] services.
348-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
Service objects registered under the Consumer interface are expected to con-
sume values from a Producer service via a Wire object. A Consumer service

may poll the Producer service by calling the W ire .po l l [p.355] method. The

Consumer service will also receive an updated value when called at it’s

upda ted [p.349] method. The Producer service should have coerced the

value to be an instance of one of the types specified by the

Wi re. getF lavo rs [p.353] method, or one of their subclasses.

Consumer service objects must register with a service.pid and a

Wi reC o nstants. WIR EADMIN_C O NSU MER_F LAVO RS [p.362] property. It is

recommended that Consumer service objects also register with a

service.description property.

If an Exception is thrown by any of the Consumer methods, a

WireAdminEvent of type W ireAd mi nEve nt.C O NSUM ER_EXC EPTIO N [p.358]

is broadcast by the Wire Admin service.

Security Considerations - Data consuming bundles will require

ServicePermission[REGISTER,Consumer]. In general, only the Wire
Admin service bundle should have this permission. Thus only the Wire

Admin service may directly call a Consumer service. Care must be taken in

the sharing of Wire objects with other bundles.

Consumer services must be registered with their scope when they can

receive different types of objects from the Producer service. The Consumer

service should have WirePermission for each of these scope names.

producersConnected(Wire[])

16.15.3.1 public void producersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Con-

sumer service is connected. May be null if the Consumer service is not cur-
rently connected to any Wire objects.

� Update the list of Wire objects to which this Consumer service is connected.

This method is called when the Consumer service is first registered and sub-

sequently whenever a Wire associated with this Consumer service becomes
connected, is modified or becomes disconnected.

The Wire Admin service must call this method asynchronously. This

implies that implementors of Consumer can be assured that the callback

will not take place during registration when they execute the registration in

a synchronized method.

updated(Wire,Object)

16.15.3.2 public void updated(Wire wire, Object value)

wire The Wire object which is delivering the updated value.

value The updated value. The value should be an instance of one of the types spec-

ified by the Wi re. getF lavo rs [p.353] method.

� Update the value. This Consumer service is called by the Wire object with an

updated value from the Producer service.

Note: This method may be called by a Wire object prior to this object being

notified that it is connected to that Wire object (via the

pro duc ers Co nnec ted [p.349] method).
OSGi Service-Platform Release 3 349-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
When the Consumer service can receive Envelope objects, it must have reg-
istered all scope names together with the service object, and each of those

names must be permitted by the bundle’s WirePermission. If an Envelope

object is delivered with the updated method, then the Consumer service

should assume that the security check has been performed.

Envelope

16.15.4 public interface Envelope

Identifies a contained value. An Envelope object combines a status value, an

identification object and a scope name. The Envelope object allows the use

of standard Java types when a Producer service can produce more than one

kind of object. The Envelope object allows the Consumer service to recog-

nize the kind of object that is received. For example, a door lock could be
represented by a Boolean object. If the Producer service would send such a

Boolean object, then the Consumer service would not know what door the

Boolean object represented. The Envelope object contains an identification

object so the Consumer service can discriminate between different kinds of

values. The identification object may be a simple String object, but it can

also be a domain specific object that is mutually agreed by the Producer and
the Consumer service. This object can then contain relevant information

that makes the identification easier.

The scope name of the envelope is used for security. The Wire object must

verify that any Envelope object send through the update method or coming

from the poll method has a scope name that matches the permissions of
both the Producer service and the Consumer service involved. The wiread-

min package also contains a class BasicEnvelope that implements the

methods of this interface.

See Also WirePermission[p.365] , BasicEnvelope[p.348]
getIdenti f icati on()

16.15.4.1 public Object getIdentification()

� Return the identification of this Envelope object. An identification may be

of any Java type. The type must be mutually agreed between the Consumer

and Producer services.

Returns an object which identifies the status item in the address space of the compos-

ite producer, must not be null.
getScope()

16.15.4.2 public String getScope()

� Return the scope name of this Envelope object. Scope names are used to
restrict the communication between the Producer and Consumer services.

Only Envelopes objects with a scope name that is permitted for the Pro-

ducer and the Consumer services must be passed through a Wire object.

Returns the security scope for the status item, must not be null.
getValue()

16.15.4.3 public Object getValue()

� Return the value associated with this Envelope object.

Returns the value of the status item, or null when no item is associated with this ob-

ject.
Producer
350-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
16.15.5 public interface Producer

Data Producer, a service that can generate values to be used by

Co nsume r [p.348] services.

Service objects registered under the Producer interface are expected to pro-

duce values (internally generated or from external sensors). The value can

be of different types. When delivering a value to a Wire object, the Producer

service should coerce the value to be an instance of one of the types speci-

fied by W ir e.ge tFla vo rs [p.353] . The classes are specified in order of prefer-
ence.

When the data represented by the Producer object changes, this object

should send the updated value by calling the update method on each of

Wire objects passed in the most recent call to this object’s

co nsumer sCo nne cted [p.351] method. These Wire objects will pass the
value on to the associated Consumer service object.

The Producer service may use the information in the Wire object’s proper-

ties to schedule the delivery of values to the Wire object.

Producer service objects must register with a service.pid and a
Wi reC o nstants. WIR EADMIN_PR O DUC ER_F LAVO RS [p.364] property. It is

recommended that a Producer service object also registers with a

service.description property. Producer service objects must register

with a W ire Co nstan ts .W IREADM IN_PRO DU CER _FIL TER S [p.363] property if

the Producer service will be performing filtering instead of the Wire object.

If an exception is thrown by a Producer object method, a WireAdminEvent of
type Wi reAdmi nEve nt.PR O DUC ER_EXC EPTIO N [p.358] is broadcast by the

Wire Admin service.

Security Considerations. Data producing bundles will require

ServicePermission[REGISTER,Producer] to register a Producer service. In

general, only the Wire Admin service should have
ServicePermission[GET,Producer]. Thus only the Wire Admin service

may directly call a Producer service. Care must be taken in the sharing of

Wire objects with other bundles.

Producer services must be registered with scope names when they can send

different types of objects (composite) to the Consumer service. The Producer
service should have WirePermission for each of these scope names.

consumersConnected(Wire[])

16.15.5.1 public void consumersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Pro-
ducer service is connected. May be null if the Producer is not currently con-

nected to any Wire objects.

� Update the list of Wire objects to which this Producer object is connected.

This method is called when the Producer service is first registered and subse-
quently whenever a Wire associated with this Producer becomes connected,

is modified or becomes disconnected.
OSGi Service-Platform Release 3 351-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
The Wire Admin service must call this method asynchronously. This
implies that implementors of a Producer service can be assured that the call-

back will not take place during registration when they execute the registra-

tion in a synchronized method.

pol led(Wire)

16.15.5.2 public Object polled(Wire wire)

wire The Wire object which is polling this service.

� Return the current value of this Producer object.

This method is called by a Wire object in response to the Consumer service
calling the Wire object’s poll method. The Producer should coerce the value

to be an instance of one of the types specified by W ire .getF lavo rs [p.353] .

The types are specified in order of of preference. The returned value should

be as new or newer than the last value furnished by this object.

Note: This method may be called by a Wire object prior to this object being
notified that it is connected to that Wire object (via the

co nsumers Co nnec ted [p.351] method).

If the Producer service returns an Envelope object that has an unpermitted

scope name, then the Wire object must ignore (or remove) the transfer.

If the Wire object has a scope set, the return value must be an array of

Envelope objects (Envelope[]). The Wire object must have removed any

Envelope objects that have a scope name that is not in the Wire object’s

scope.

Returns The current value of the Producer service or null if the value cannot be co-

erced into a compatible type. Or an array of Envelope objects.
Wire

16.15.6 public interface Wire

A connection between a Producer service and a Consumer service.

A Wire object connects a Producer service to a Consumer service. Both the
Producer and Consumer services are identified by their unique

service.pid values. The Producer and Consumer services may communi-

cate with each other via Wire objects that connect them. The Producer ser-

vice may send updated values to the Consumer service by calling the

update [p.355] method. The Consumer service may request an updated

value from the Producer service by calling the po l l [p.355] method.

A Producer service and a Consumer service may be connected through mul-

tiple Wire objects.

Security Considerations. Wire objects are available to Producer and Con-

sumer services connected to a given Wire object and to bundles which can
access the WireAdmin service. A bundle must have

ServicePermission[GET,WireAdmin] to get the WireAdmin service to

access all Wire objects. A bundle registering a Producer service or a Con-

sumer service must have the appropriate ServicePermission[REGISTER,
Consumer|Producer] to register the service and will be passed Wire objects

when the service object’s consumersConnected or producersConnected
method is called.
352-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
Scope. Each Wire object can have a scope set with the setScope method.
This method should be called by a Consumer service when it assumes a Pro-

ducer service that is composite (supports multiple information items). The

names in the scope must be verified by the Wire object before it is used in

communication. The semantics of the names depend on the Producer ser-

vice and must not be interpreted by the Wire Admin service.

getF lavors ()

16.15.6.1 public Class[] getFlavors()

� Return the list of data types understood by the Consumer service connected

to this Wire object. Note that subclasses of the classes in this list are accept-

able data types as well.

The list is the value of the

Wi reC o nstants. WIR EADMIN_C O NSU MER_F LAVO RS [p.362] service prop-

erty of the Consumer service object connected to this object. If no such prop-

erty was registered or the type of the property value is not Class[], this

method must return null.

Returns An array containing the list of classes understood by the Consumer service

or null if the Wire is not connected, or the consumer did not register a

Wi reC o nstants. WIR EADMIN_C O NSU MER_F LAVO RS [p.362] property or the

value of the property is not of type Class[].
getLastValue()

16.15.6.2 public Object getLastValue()

� Return the last value sent through this Wire object.

The returned value is the most recent, valid value passed to the

upda te [p.355] method or returned by the po l l [p.355] method of this object.

If filtering is performed by this Wire object, this methods returns the last
value provided by the Producer service. This value may be an Envelope[]

when the Producer service uses scoping. If the return value is an Envelope

object (or array), it must be verified that the Consumer service has the

proper WirePermission to see it.

Returns The last value passed though this Wire object or null if no valid values have
been passed or the Consumer service has no permission.
getProperti es()

16.15.6.3 public Dictionary getProperties()

� Return the wire properties for this Wire object.

Returns The properties for this Wire object. The returned Dictionary must be read

only.
getScope()

16.15.6.4 public String[] getScope()

� Return the calculated scope of this Wire object. The purpose of the Wire
object’s scope is to allow a Producer and/or Consumer service to produce/

consume different types over a single Wire object (this was deemed neces-

sary for efficiency reasons). Both the Consumer service and the Producer ser-

vice must set an array of scope names (their scope) with the service

registration property WIREADMIN_PRODUCER_SCOPE, or

WIREADMIN_CONSUMER_SCOPE when they can produce multiple types. If a
Producer service can produce different types, it should set this property to
OSGi Service-Platform Release 3 353-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
the array of scope names it can produce, the Consumer service must set the
array of scope names it can consume. The scope of a Wire object is defined as

the intersection of permitted scope names of the Producer service and Con-

sumer service.

If neither the Consumer, or the Producer service registers scope names with

its service registration, then the Wire object’s scope must be null.

The Wire object’s scope must not change when a Producer or Consumer ser-

vices modifies its scope.

A scope name is permitted for a Producer service when the registering bun-

dle has WirePermission[PRODUCE], and for a Consumer service when the
registering bundle has WirePermission[CONSUME].

If either Consumer service or Producer service has not set a

WIREADMIN_*_SCOPE property, then the returned value must be null.

If the scope is set, the Wire object must enforce the scope names when
Envelope objects are used as a parameter to update or returned from the

poll method. The Wire object must then remove all Envelope objects with a

scope name that is not permitted.

Returns A list of permitted scope names or null if the Produce or Consumer service

has set no scope names.
hasScope(String)

16.15.6.5 public boolean hasScope(String name)

name The scope name

� Return true if the given name is in this Wire object’s scope.

Returns true if the name is listed in the permitted scope names
isConnected ()

16.15.6.6 public boolean isConnected()

� Return the connection state of this Wire object.

A Wire is connected after the Wire Admin service receives notification that

the Producer service and the Consumer service for this Wire object are both

registered. This method will return true prior to notifying the Producer and

Consumer services via calls to their respective consumersConnected and

producersConnected methods.

A WireAdminEvent of type Wir eAdminEvent. WI RE_CO NNEC TED [p.359]

must be broadcast by the Wire Admin service when the Wire becomes con-

nected.

A Wire object is disconnected when either the Consumer or Producer ser-

vice is unregistered or the Wire object is deleted.

A WireAdminEvent of type Wir eAdminEvent. WI RE_DISC O NNECTED [p.359]

must be broadcast by the Wire Admin service when the Wire becomes dis-

connected.

Returns true if both the Producer and Consumer for this Wire object are connected
to the Wire object; false otherwise.
isVali d()

16.15.6.7 public boolean isValid()

� Return the state of this Wire object.

A connected Wire must always be disconnected before becoming invalid.
354-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
Returns false if this Wire object is invalid because it has been deleted via
Wi reAdmin .del eteW ire [p.357] ; true otherwise.
po ll ()

16.15.6.8 public Object poll()

� Poll for an updated value.

This methods is normally called by the Consumer service to request an

updated value from the Producer service connected to this Wire object. This

Wire object will call the Pr odu cer .po l le d [p.352] method to obtain an

updated value. If this Wire object is not connected, then the Producer service

must not be called.

If this Wire object has a scope, then this method must return an array of

Envelope objects. The objects returned must match the scope of this object.

The Wire object must remove all Envelope objects with a scope name that is

not in the Wire object’s scope. Thus, the list of objects returned must only

contain Envelope objects with a permitted scope name. If the array becomes

empty, null must be returned.

A WireAdminEvent of type Wi reAdmin Eve nt.W IRE_TRAC E [p.359] must be

broadcast by the Wire Admin service after the Producer service has been

successfully called.

Returns A value whose type should be one of the types returned by ge tFla vo rs [p.353]

, Envelope[], or null if the Wire object is not connected, the Producer service
threw an exception, or the Producer service returned a value which is not an

instance of one of the types returned by getF lavo rs [p.353] .
update(Ob ject)

16.15.6.9 public void update(Object value)

value The updated value. The value should be an instance of one of the types re-
turned by getF lavo rs [p.353] .

� Update the value.

This methods is called by the Producer service to notify the Consumer ser-

vice connected to this Wire object of an updated value.

If the properties of this Wire object contain a

Wi reC o nstants. WIR EADMIN_F ILTER [p.362] property, then filtering is per-

formed. If the Producer service connected to this Wire object was registered

with the service property

Wi reC o nstants. WIR EADMIN_PR O DUC ER_F ILTERS [p.363] , the Producer ser-
vice will perform the filtering according to the rules specified for the filter.

Otherwise, this Wire object will perform the filtering of the value.

If no filtering is done, or the filter indicates the updated value should be

delivered to the Consumer service, then this Wire object must call the

Co nsume r.up dated [p.349] method with the updated value. If this Wire
object is not connected, then the Consumer service must not be called and

the value is ignored.

If the value is an Envelope object, and the scope name is not permitted, then

the Wire object must ignore this call and not transfer the object to the Con-

sumer service.

A WireAdminEvent of type Wi reAdmin Eve nt.W IRE_TRAC E [p.359] must be

broadcast by the Wire Admin service after the Consumer service has been

successfully called.
OSGi Service-Platform Release 3 355-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
See Also WireConstants.WIREADMIN_FILTER[p.362]
WireAdmin

16.15.7 public interface WireAdmin

Wire Administration service.

This service can be used to create Wire objects connecting a Producer service

and a Consumer service. Wire objects also have wire properties that may be
specified when a Wire object is created. The Producer and Consumer ser-

vices may use the Wire object’s properties to manage or control their inter-

action. The use of Wire object’s properties by a Producer or Consumer

services is optional.

Security Considerations. A bundle must have ServicePermission[GET,
WireAdmin] to get the Wire Admin service to create, modify, find, and delete

Wire objects.

createWire(String,String,Dicti onary)

16.15.7.1 public Wire createWire(String producerPID, String consumerPID,
Dictionary properties)

producerPID The service.pid of the Producer service to be connected to the Wire object.

consumerPID The service.pid of the Consumer service to be connected to the Wire ob-

ject.

properties The Wire object’s properties. This argument may be null if the caller does

not wish to define any Wire object’s properties.

� Create a new Wire object that connects a Producer service to a Consumer

service. The Producer service and Consumer service do not have to be regis-

tered when the Wire object is created.

The Wire configuration data must be persistently stored. All Wire connec-

tions are reestablished when the WireAdmin service is registered. A Wire can

be permanently removed by using the del eteW ire [p.357] method.

The Wire object’s properties must have case insensitive String objects as
keys (like the Framework). However, the case of the key must be preserved.

The type of the value of the property must be one of the following:

type = basetype
| vector | arrays

basetype = String | Integer | Long
| Float | Double | Byte
| Short | Character
| Boolean

primitive = long | int | short
| char | byte | double | float

arrays = primitive ‘[]’ | basetype ‘[]’

vector = Vector of basetype

The WireAdmin service must automatically add the following Wire proper-

ties:
356-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
• Wi reC o nstants. WIR EADMIN_PI D [p.363] set to the value of the Wire
object’s persistent identity (PID). This value is generated by the Wire

Admin service when a Wire object is created.

• Wi reC o nstants. WIR EADMIN_PR O DUC ER_P ID [p.364] set to the value of

Producer service’s PID.

• Wi reC o nstants. WIR EADMIN_C O NSU MER_PI D [p.362] set to the value of

Consumer service’s PID.

If the properties argument already contains any of these keys, then the

supplied values are replaced with the values assigned by the Wire Admin

service.

The Wire Admin service must broadcast a WireAdminEvent of type
Wi reAdmin Even t.WI RE_C REATED [p.359] after the new Wire object becomes

available from getW ire s [p.357] .

Returns The Wire object for this connection.

Throws IllegalArgumentException – If properties contains case variants of the
same key name.
deleteWire(Wire)

16.15.7.2 public void deleteWire(Wire wire)

wire The Wire object which is to be deleted.

� Delete a Wire object.

The Wire object representing a connection between a Producer service and a

Consumer service must be removed. The persistently stored configuration

data for the Wire object must destroyed. The Wire object’s method

Wi re. isVal i d [p.354] will return false after it is deleted.

The Wire Admin service must broadcast a WireAdminEvent of type

Wi reAdmin Even t.WI RE_DELETED [p.359] after the Wire object becomes

invalid.

getWires(String)

16.15.7.3 public Wire[] getWires(String filter) throws InvalidSyntaxException

filter Filter string to select Wire objects or null to select all Wire objects.

� Return the Wire objects that match the given filter.

The list of available Wire objects is matched against the specified filter.
Wire objects which match the filter must be returned. These Wire objects

are not necessarily connected. The Wire Admin service should not return

invalid Wire objects, but it is possible that a Wire object is deleted after it

was placed in the list.

The filter matches against the Wire object’s properties including
Wi reC o nstants. WIR EADMIN_PR O DUC ER_P ID [p.364] ,

Wi reC o nstants. WIR EADMIN_C O NSU MER_PI D [p.362] and

Wi reC o nstants. WIR EADMIN_PI D [p.363] .

Returns An array of Wire objects which match the filter or null if no Wire objects

match the filter.

Throws InvalidSyntaxException – If the specified filter has an invalid syntax.

See Also org.osgi.framework.Filter
updateWire(Wire,Dictionary)
OSGi Service-Platform Release 3 357-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
16.15.7.4 public void updateWire(Wire wire, Dictionary properties)

wire The Wire object which is to be updated.

properties The new Wire object’s properties or null if no properties are required.

� Update the properties of a Wire object. The persistently stored configuration
data for the Wire object is updated with the new properties and then the

Consumer and Producer services will be called at the respective

Co nsumer .pr odu cer sCo nne cted [p.349] and

Pro duce r . co nsumers Co nnec ted [p.351] methods.

The Wire Admin service must broadcast a WireAdminEvent of type
Wir eAdminEvent. WIR E_UP DATED [p.360] after the updated properties are

available from the Wire object.

WireAdminEvent

16.15.8 public class WireAdminEvent

A Wire Admin Event.

WireAdminEvent objects are delivered asynchronously to all registered

WireAdminListener service objects which specify an interest in the

WireAdminEvent type. However, events must be delivered in chronological

order with respect to each listener. For example, a WireAdminEvent of type

WIR E_CO NNECTED [p.359] must be delivered before a WireAdminEvent of
type WIR E_DISC O NNEC TED [p.359] for a particular Wire object.

A type code is used to identify the type of event. The following event types

are defined:

• WIR E_CR EATED [p.359]
• WIR E_CO NNECTED [p.359]

• WIR E_UPDATED [p.360]

• WIR E_TR AC E [p.359]

• WIR E_DISC O NNEC TED [p.359]

• WIR E_DELETED [p.359]

• PRO DU CER _EX CEPTIO N [p.358]
• CO NSU MER _EXC EPTIO N [p.358]

Event type values must be unique and disjoint bit values. Event types must

be defined as a bit in a 32 bit integer and can thus be bitwise OR’ed together.

Security Considerations. WireAdminEvent objects contain Wire objects. Care
must be taken in the sharing of Wire objects with other bundles.

See Also WireAdminListener[p.361]
CONSUMER_EXCEPTION

16.15.8.1 public static final int CONSUMER_EXCEPTION = 2

A Consumer service method has thrown an exception.

This WireAdminEvent type indicates that a Consumer service method has

thrown an exception. The W ir eAdminEvent.g etThro wa ble [p.360] method

will return the exception that the Consumer service method raised.

The value of CONSUMER_EXCEPTION is 0x00000002.

PRODUCER_EXCEPTION

16.15.8.2 public static final int PRODUCER_EXCEPTION = 1

A Producer service method has thrown an exception.
358-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
This WireAdminEvent type indicates that a Producer service method has
thrown an exception. The Wir eAdminEvent. getThro w able [p.360] method

will return the exception that the Producer service method raised.

The value of PRODUCER_EXCEPTION is 0x00000001.

WIRE_CONNECTED

16.15.8.3 public static final int WIRE_CONNECTED = 32

The WireAdminEvent type that indicates that an existing Wire object has

become connected. The Consumer object and the Producer object that are

associated with the Wire object have both been registered and the Wire

object is connected. See Wir e. i sCo nne cted [p.354] for a description of the
connected state. This event may come before the producersConnected and

consumersConnected method have returned or called to allow synchronous

delivery of the events. Both methods can cause other WireAdminEvents to

take place and requiring this event to be send before these methods are

returned would mandate asynchronous delivery.

The value of WIRE_CONNECTED is 0x00000020.

WIRE_CREATED

16.15.8.4 public static final int WIRE_CREATED = 4

A Wire has been created.

This WireAdminEvent type that indicates that a new Wire object has been

created. An event is broadcast when W ir eAdmin.c re ateW ire [p.356] is called.

The Wir eAdminEvent. getW ire [p.361] method will return the Wire object

that has just been created.

The value of WIRE_CREATED is 0x00000004.

WIRE_DELETED

16.15.8.5 public static final int WIRE_DELETED = 16

A Wire has been deleted.

This WireAdminEvent type that indicates that an existing wire has been

deleted. An event is broadcast when W ire Ad min.de leteW ir e [p.357] is called

with a valid wire. W ireAd mi nEve nt.ge tWir e [p.361] will return the Wire

object that has just been deleted.

The value of WIRE_DELETED is 0x00000010.

WIRE_DISCONNECTED

16.15.8.6 public static final int WIRE_DISCONNECTED = 64

The WireAdminEvent type that indicates that an existing Wire object has

become disconnected. The Consumer object or/and Producer object is/are
unregistered breaking the connection between the two. See

Wi re. isC onne cted [p.354] for a description of the connected state.

The value of WIRE_DISCONNECTED is 0x00000040.

WIRE_TRACE
OSGi Service-Platform Release 3 359-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
16.15.8.7 public static final int WIRE_TRACE = 128

The WireAdminEvent type that indicates that a new value is transferred over

the Wire object. This event is sent after the Consumer service has been noti-

fied by calling the Co nsumer .up dated [p.349] method or the Consumer ser-

vice requested a new value with the W ire .po l l [p.355] method. This is an

advisory event meaning that when this event is received, another update
may already have occurred and this the Wi re. getLa stValue [p.353] method

returns a newer value then the value that was communicated for this event.

The value of WIRE_TRACE is 0x00000080.

WIRE_UPDATED

16.15.8.8 public static final int WIRE_UPDATED = 8

A Wire has been updated.

This WireAdminEvent type that indicates that an existing Wire object has

been updated with new properties. An event is broadcast when
Wir eAdmin. upda te Wi re [p.357] is called with a valid wire. The

Wir eAdminEvent. getW ire [p.361] method will return the Wire object that

has just been updated.

The value of WIRE_UPDATED is 0x00000008.

WireAdminEvent(Serv iceReference,int,Wire,Throwable)

16.15.8.9 public WireAdminEvent(ServiceReference reference, int type, Wire
wire, Throwable exception)

reference The ServiceReference object of the Wire Admin service that created this

event.

type The event type. See getType [p.360] .

wire The Wire object associated with this event.

exception An exception associated with this event. This may be null if no exception is

associated with this event.

� Constructs a WireAdminEvent object from the given ServiceReference

object, event type, Wire object and exception.

getServiceReference()

16.15.8.10 public ServiceReference getServiceReference()

� Return the ServiceReference object of the Wire Admin service that cre-

ated this event.

Returns The ServiceReference object for the Wire Admin service that created this

event.
getThrowab le()

16.15.8.11 public Throwable getThrowable()

� Returns the exception associated with the event, if any.

Returns An exception or null if no exception is associated with this event.
getType()

16.15.8.12 public int getType()

� Return the type of this event.

The type values are:

• WIR E_CR EATED [p.359]

• WIR E_CO NNECTED [p.359]

• WIR E_UPDATED [p.360]
360-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
• WI RE_TRAC E [p.359]
• WI RE_DISC O NNECTED [p.359]

• WI RE_DELETED [p.359]

• PR ODU C ER _EXCEP TI ON [p.358]

• CO NSU MER _EXCEPTIO N [p.358]

Returns The type of this event.
getWire()

16.15.8.13 public Wire getWire()

� Return the Wire object associated with this event.

Returns The Wire object associated with this event or null when no Wire object is as-
sociated with the event.
WireAdminLi stener

16.15.9 public interface WireAdminListener

Listener for Wire Admin Events.

WireAdminListener objects are registered with the Framework service reg-
istry and are notified with a WireAdminEvent object when an event is broad-

cast.

WireAdminListener objects can inspect the received WireAdminEvent

object to determine its type, the Wire object with which it is associated, and

the Wire Admin service that broadcasts the event.

WireAdminListener objects must be registered with a service property

Wi reC o nstants. WIR EADMIN_EVENTS [p.362] whose value is a bitwise OR of

all the event types the listener is interested in receiving.

For example:

Integer mask = new Integer(WIRE_TRACE
| WIRE_CONNECTED
| WIRE_DISCONNECTED);
Hashtable ht = new Hashtable();
ht.put(WIREADMIN_EVENTS, mask);
context.registerService(

WireAdminListener.class.getName(), this, ht);

If a WireAdminListener object is registered without a service property

Wi reC o nstants. WIR EADMIN_EVENTS [p.362] , then the WireAdminListener

will receive no events.

Security Considerations. Bundles wishing to monitor WireAdminEvent

objects will require ServicePermission[REGISTER,WireAdminListener]

to register a WireAdminListener service. Since WireAdminEvent objects

contain Wire objects, care must be taken in assigning permission to register

a WireAdminListener service.

See Also WireAdminEvent[p.358]
wireAdminEvent(WireAdminEvent)

16.15.9.1 public void wireAdminEvent(WireAdminEvent event)

event The WireAdminEvent object.

� Receives notification of a broadcast WireAdminEvent object. The event

object will be of an event type specified in this WireAdminListener service’s

Wi reC o nstants. WIR EADMIN_EVENTS [p.362] service property.

WireConstants
OSGi Service-Platform Release 3 361-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
16.15.10 public interface WireConstants

Defines standard names for Wire properties, wire filter attributes, Consumer

and Producer service properties.

WIREADMIN_CONSUMER_COMPOSITE

16.15.10.1 public static final String WIREADMIN_CONSUMER_COMPOSITE =
“wireadmin.consumer.composite”

A service registration property for a Consumer service that is composite. It
contains the names of the composite Producer services it can cooperate

with. Inter-operability exists when any name in this array matches any

name in the array set by the Producer service. The type of this property must

be String[].

WIREADMIN_CONSUMER_FLAVORS

16.15.10.2 public static final String WIREADMIN_CONSUMER_FLAVORS =
“wireadmin.consumer.flavors”

Service Registration property (named wireadmin.consumer.flavors) spec-

ifying the list of data types understood by this Consumer service.

The Consumer service object must be registered with this service property.

The list must be in the order of preference with the first type being the most

preferred. The value of the property must be of type Class[].

WIREADMIN_CONSUMER_PID

16.15.10.3 public static final String WIREADMIN_CONSUMER_PID =
“wireadmin.consumer.pid”

Wire property key (named wireadmin.consumer.pid) specifying the

service.pid of the associated Consumer service.

This wire property is automatically set by the Wire Admin service. The

value of the property must be of type String.

WIREADMIN_CONSUMER_SCOPE

16.15.10.4 public static final String WIREADMIN_CONSUMER_SCOPE =
“wireadmin.consumer.scope”

Service registration property key (named wireadmin.consumer.scope)
specifying a list of names that may be used to define the scope of this Wire

object. A Consumer service should set this service property when it can pro-

duce more than one kind of value. This property is only used during regis-

tration, modifying the property must not have any effect of the Wire object’s

scope. Each name in the given list mist have WirePermission[CONSUME] or

else is ignored. The type of this service registration property must be
String[].

See Also Wire.getScope[p.353] , WIREADMIN_PRODUCER_SCOPE[p.364]
WIREADMIN_EVENTS

16.15.10.5 public static final String WIREADMIN_EVENTS = “wireadmin.events”

Service Registration property (named wireadmin.events) specifying the

WireAdminEvent type of interest to a Wire Admin Listener service. The

value of the property is a bitwise OR of all the WireAdminEvent types the

Wire Admin Listener service wishes to receive and must be of type Integer.

See Also WireAdminEvent[p.358]
WIREADMIN_FILTER
362-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
16.15.10.6 public static final String WIREADMIN_FILTER = “wireadmin.filter”

Wire property key (named wireadmin.filter) specifying a filter used to

control the delivery rate of data between the Producer and the Consumer

service.

This property should contain a filter as described in the Filter class. The fil-
ter can be used to specify when an updated value from the Producer service

should be delivered to the Consumer service. In many cases the Consumer

service does not need to receive the data with the same rate that the Pro-

ducer service can generate data. This property can be used to control the

delivery rate.

The filter can use a number of pre-defined attributes that can be used to con-

trol the delivery of new data values. If the filter produces a match upon the

wire filter attributes, the Consumer service should be notifed of the updated

data value.

If the Producer service was registered with the
WI READMI N_P RO DU CER _F ILTER S [p.363] service property indicating that

the Producer service will perform the data filtering then the Wire object will

not perform data filtering. Otherwise, the Wire object must perform basic

filtering. Basic filtering includes supporting the following standard wire fil-

ter attributes:

• WI REVALU E_C U RR ENT [p.364] - Current value
• WI REVALU E_P REVIO U S [p.365] - Previous value

• WI REVALU E_DEL TA_AB SO LUTE [p.364] - Absolute delta

• WI REVALU E_DEL TA_R ELATI VE [p.365] - Relative delta

• WI REVALU E_EL APSED [p.365] - Elapsed time

See Also org.osgi.framework.Filter
WIREADMIN_PID

16.15.10.7 public static final String WIREADMIN_PID = “wireadmin.pid”

Wire property key (named wireadmin.pid) specifying the persistent iden-

tity (PID) of this Wire object.

Each Wire object has a PID to allow unique and persistent identification of a

specific Wire object. The PID must be generated by the Wi reAdmin [p.356]

service when the Wire object is created.

This wire property is automatically set by the Wire Admin service. The

value of the property must be of type String.

WIREADMIN_PRODUCER_COMPOSITE

16.15.10.8 public static final String WIREADMIN_PRODUCER_COMPOSITE =
“wireadmin.producer.composite”

A service registration property for a Producer service that is composite. It
contains the names of the composite Consumer services it can inter-operate

with. Inter-operability exists when any name in this array matches any

name in the array set by the Consumer service. The type of this property

must be String[].

WIREADMIN_PRODUCER_FILTERS

16.15.10.9 public static final String WIREADMIN_PRODUCER_FILTERS =
OSGi Service-Platform Release 3 363-588

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
“wireadmin.producer.filters”

Service Registration property (named wireadmin.producer.filters). A

Producer service registered with this property indicates to the Wire Admin

service that the Producer service implements at least the filtering as

described for the WI READMI N_FILTER [p.362] property. If the Producer ser-

vice is not registered with this property, the Wire object must perform the
basic filtering as described in WI READMI N_F ILTER [p.362] .

The type of the property value is not relevant. Only its presence is relevant.

WIREADMIN_PRODUCER_FLAVORS

16.15.10.10 public static final String WIREADMIN_PRODUCER_FLAVORS =
“wireadmin.producer.flavors”

Service Registration property (named wireadmin.producer.flavors) spec-

ifying the list of data types available from this Producer service.

The Producer service object should be registered with this service property.

The value of the property must be of type Class[].

WIREADMIN_PRODUCER_PID

16.15.10.11 public static final String WIREADMIN_PRODUCER_PID =
“wireadmin.producer.pid”

Wire property key (named wireadmin.producer.pid) specifying the

service.pid of the associated Producer service.

This wire property is automatically set by the WireAdmin service. The

value of the property must be of type String.

WIREADMIN_PRODUCER_SCOPE

16.15.10.12 public static final String WIREADMIN_PRODUCER_SCOPE =
“wireadmin.producer.scope”

Service registration property key (named wireadmin.producer.scope)

specifying a list of names that may be used to define the scope of this Wire
object. A Producer service should set this service property when it can pro-

duce more than one kind of value. This property is only used during regis-

tration, modifying the property must not have any effect of the Wire object’s

scope. Each name in the given list mist have WirePermission[PRODUCE,
name] or else is ignored. The type of this service registration property must

be String[].

See Also Wire.getScope[p.353] , WIREADMIN_CONSUMER_SCOPE[p.362]
WIREADMIN_SCOPE_ALL

16.15.10.13 public static final String WIREADMIN_SCOPE_ALL

Matches all scope names.

WIREVALUE_CURRENT

16.15.10.14 public static final String WIREVALUE_CURRENT = “wirevalue.current”

Wire object’s filter attribute (named wirevalue.current) representing the

current value.

WIREVALUE_DELTA_ABSOLUTE

16.15.10.15 public static final String WIREVALUE_DELTA_ABSOLUTE =
“wirevalue.delta.absolute”

Wire object’s filter attribute (named wirevalue.delta.absolute) repre-
senting the absolute delta. The absolute (always positive) difference

between the last update and the current value (only when numeric). This

attribute must not be used when the values are not numeric.
364-588 OSGi Service-Platform Release 3

Wire Admin Service Specif ication Version 1.0 org.osgi.service.wireadmin
WIREVALUE_DELTA_RELATIVE

16.15.10.16 public static final String WIREVALUE_DELTA_RELATIVE =
“wirevalue.delta.relative”

Wire object’s filter attribute (named wirevalue.delta.relative) repre-

senting the relative delta. The relative difference is (current - previous) /

current (only when numeric). This attribute must not be used when the
values are not numeric.

WIREVALUE_ELAPSED

16.15.10.17 public static final String WIREVALUE_ELAPSED = “wirevalue.elapsed”

Wire object’s filter attribute (named wirevalue.elapsed) representing the
elapsed time, in ms, between this filter evaluation and the last update of the

Consumer service.

WIREVALUE_PREVIOUS

16.15.10.18 public static final String WIREVALUE_PREVIOUS = “wirevalue.previous”

Wire object’s filter attribute (named wirevalue.previous) representing the

previous value.

WirePermiss ion

16.15.11 public final class WirePermission
extends BasicPermission

Permission for the scope of a Wire object. When a Envelope object is used

for communication with the poll or update method, and the scope is set,

then the Wire object must verify that the Consumer service has
WirePermission[name,CONSUME] and the Producer service has

WirePermission[name,PRODUCE] for all names in the scope.

The names are compared with the normal rules for permission names. This

means that they may end with a “*” to indicate wildcards. E.g. Door.* indi-

cates all scope names starting with the string “Door”. The last period is
required due to the implementations of the BasicPermission class.

CONSUME

16.15.11.1 public static final String CONSUME = “consume”

The action string for the CONSUME action: value is “consume”.

PRODUCE

16.15.11.2 public static final String PRODUCE = “produce”

The action string for the PRODUCE action: value is “produce”.

WirePermiss ion(String,String)

16.15.11.3 public WirePermission(String name, String actions)

� Create a new WirePermission with the given name (may be wildcard) and

actions.

equal s(Ob ject)

16.15.11.4 public boolean equals(Object obj)

obj The object to test for equality.

� Determines the equalty of two WirePermission objects. Checks that speci-
fied object has the same name and actions as this WirePermission object.

Returns true if obj is a WirePermission, and has the same name and actions as this

WirePermission object; false otherwise.
getActions()
OSGi Service-Platform Release 3 365-588

References Wire Admin Service Specification Version 1.0
16.15.11.5 public String getActions()

� Returns the canonical string representation of the actions. Always returns

present actions in the following order: produce, consume.

Returns The canonical string representation of the actions.
hashCode()

16.15.11.6 public int hashCode()

� Returns the hash code value for this object.

Returns Hash code value for this object.
imp li es (Permi ssi on)

16.15.11.7 public boolean implies(Permission p)

p The permission to check against.

� Checks if this WirePermission object implies the specified permission.

More specifically, this method returns true if:

• p is an instanceof the WirePermission class,

• p‘s actions are a proper subset of this object’s actions, and

• p‘s name is implied by this object’s name. For example, java.* implies

java.home.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissi onCo llection()

16.15.11.8 public PermissionCollection newPermissionCollection()

� Returns a new PermissionCollection object for storing WirePermission

objects.

Returns A new PermissionCollection object suitable for storing WirePermission

objects.
toStr ing()

16.15.11.9 public String toString()

� Returns a string describing this WirePermission. The convention is to spec-

ify the class name, the permission name, and the actions in the following

format: ‘(org.osgi.service.wireadmin.WirePermission “name” “actions”)’.

Returns information about this Permission object.

16.16 References

[48] Design Patterns

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Addison

Wesley, ISBN 0-201-63361
366-588 OSGi Service-Platform Release 3

XML Parser Service Specif ication Version 1.0 Introduction
17 XML Parser Service

Specification

Version 1.0

17.1 Introduction

The Extensible Markup Language (XML) has become a popular method of
describing data. As more bundles use XML to describe their data, a common

XML Parser becomes necessary in an embedded environment in order to

reduce the need for space. Not all XML Parsers are equivalent in function,

however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [52]
JAXP for Java 2 Standard Edition and Enterprise Edition. This specification

addresses how the classes defined in JAXP can be used in an OSGi Service

Platform. It defines how:

• Implementations of XML parsers can become available to other bundles

• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

17.1.1 Essentials

• Standards – Leverage existing standards in Java based XML parsing: JAXP,

SAX and DOM
• Unmodified JAXP code – Run unmodified JAXP code

• Simple – It should be easy to provide a SAX or DOM parser as well as easy

to find a matching parser

• Multiple – It should be possible to have multiple implementations of

parsers available

• Extendable – It is likely that parsers will be extended in the future with
more functionality

17.1.2 Entities

• XMLParserActivator – A utility class that registers a parser factory from

declarative information in the Manifest file.

• SAXParserFactory – A class that can create an instance of a SAXP ars er
class.

• DocumentBuilderFactory – A class that can create an instance of a

Doc umentB ui lde r class.

• SAXParser – A parser, instantiated by a Sa xP ars erF ac tor y object, that

parses according to the SAX specifications.

• DocumentBuilder – A parser, instantiated by a Doc umentB ui lde rFa cto ry ,
that parses according to the DOM specifications.
OSGi Service-Platform Release 3 367-588

JAXP XML Parser Service Specification Version 1.0
Figure 61 XML Parsing diagram

17.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a

SAXPar ser Fa cto ry and/or a Do cume ntBui l der Fac tor y service object with the

Framework. Service registration properties describe the features of the

parsers to other bundles. A bundle that needs an XML parser will get a

SAXPar ser Fa cto ry or Do cumentB ui lde rF acto ry service object from the
Framework service registry. This object is then used to instantiate the

requested parsers according to their specifications.

17.2 JAXP

XML has become very popular in the last few years because it allows the

interchange of complex information between different parties. Though

only a single XML standard exists, there are multiple APIs to XML parsers,

primarily of two types:

• The Simple API for XML (SAX1 and SAX2)

• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by

different vendors.

A given XML Parser implementation may support either or both of these

parser types by implementing the o rg. w3 c.do m and/or or g.xml.s ax pack-

ages. In addition, parsers have characteristics such as whether they are vali-

dating or non-validating parsers and whether or not they are name-space

aware.

SAXParser
Factory

Document
Builder
Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation

Bundle

getsgets

0..* 0..*

0..*0..*

0..* 0..*

0..*0..*

0,1 0,1

0,10,1

0..* 1 0..*1
368-588 OSGi Service-Platform Release 3

XML Parser Service Specif ication Version 1.0 XML Parser service
An application which uses a specific XML Parser must code to that specific
parser and become coupled to that specific implementation. If the parser

has implemented [52] JAXP, however, the application developer can code

against SAX or DOM and let the runtime environment decide which parser

implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts
the creation of another object. JAXP defines a Doc umentBu i lder Fa cto ry and

a SAXPar ser Fa cto ry class for this purpose.

JAXP is implemented in the java x. xml .pa rser s package and provides an

abstraction layer between an application and a specific XML Parser imple-

mentation. Using JAXP, applications can choose to use any JAXP compliant
parser without changing any code, simply by changing a System property

which specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the

SAXPa rse rFa cto ry or Do cumentB ui ld erF ac tor y class. This method will

inspect the associated System property and create a new instance of that
class.

17.3 XML Parser service

The current specification of JAXP has the limitation that only one of each

type of parser factories can be registered. This specification specifies how

multiple SAXPa rser Fa cto ry objects and Doc ume ntBui lder Fa cto ry objects

can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi ser-
vice registry under the factory class name. Service properties are used to

describe whether the parser:

• Is validating

• Is name-space aware

• Has additional features

With this functionality, bundles can query the OSGi service registry for

parsers supporting the specific functionality that they require.

17.4 Properties

Parsers must be registered with a number of properties that qualify the ser-

vice. In this specification, the following properties are specified:

• PARS ER_NAMESP ACEAW ARE – The registered parser is aware of name-
spaces. Name-spaces allow an XML document to consist of indepen-

dently developed DTDs. In an XML document, they are recognized by the

xmlns attribute and names prefixed with an abbreviated name-space

identifier, like: <xsl : i f . . .> . The type is a Bo o lean object that must be tru e

when the parser supports name-spaces. All other values, or the absence

of the property, indicate that the parser does not implement name-
spaces.

• PARS ER_VALIDATING – The registered parser can read the DTD and can

validate the XML accordingly. The type is a B oo lea n object that must
OSGi Service-Platform Release 3 369-588

Getting a Parser Factory XML Parser Service Specification Version 1.0
tr ue when the parser is validating. All other values, or the absence of the
property, indicate that the parser does not validate.

17.5 Getting a Parser Factory

Getting a parser factory requires a bundle to get the appropriate factory

from the service registry. In a simple case in which a non-validating, non-

name-space aware parser would suffice, it is best to use

getSe rvice Ref ere nce (S tr ing) .

Doc umentBui lder ge tPar ser (B undle Co ntext co ntext)
th ro ws Excep ti on {

Ser vic eR efe renc e ref = c on text .getS ervic eR efe renc e(

Doc umentBui lder Fa cto ry.c lass . getName ());

if (ref == null)
return null;

return (DocumentBuilder) context.getService(ref);
}

In a more demanding case, the filtered version allows the bundle to select a

parser that is validating and name-space aware:

SAXPar ser ge tPar ser (B undle Co ntext co ntext)
th ro ws Excep ti on {

Ser vic eR efe renc e ref s[] = co ntext . getSe rvice Ref er ence s(

SAXPar ser Fa cto ry.c l ass . getName () ,

"(&(pa rser .na me spac eAw ar e=true)"

+ "(par ser . val id at ing=tru e))") ;

if (refs == null)
return null;

return (SAXParser) context.getService(refs[O]);
}

17.6 Adapting a JAXP Parser to OSGi

If an XML Parser supports JAXP, then it can be converted to an OSGi aware

bundle by adding a B undle Activato r class which registers an XML Parser

Service. The utility o rg. osg i .ut i l .xml .XM LPar ser Act ivato r class provides this

function and can be added (copied, not referenced) to any XML Parser bun-
dle, or it can be extended and customized if desired.

17.6.1 JAR Based Services

Its functionality is based on the definition of the [53] JAR File specification, ser-

vices directory. This specification defines a concept for service providers. A
JAR file can contain an implementation of an abstractly defined service. The

class (or classes) implementing the service are designated from a file in the

META- INF /servic es directory. The name of this file is the same as the

abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by
new lines. White space is ignored and the number sign (’#’ or \u0023) is the

comment character.
370-588 OSGi Service-Platform Release 3

XML Parser Service Specif ication Version 1.0 Adapting a JAXP Parser to OSGi
JAXP uses this service provider mechanism. It is therefore likely that ven-
dors will place these service files in the M ETA- INF /servic es directory.

17.6.2 XMLParserActivator

To support this mechanism, the XML Parser service provides a utility class

that should be normally delivered with the OSGi Service Platform imple-

mentation. This class is a Bundle Activator and must start when the bundle
is started. This class is copied into the parser bundle, and not imported.

The start method of the utlity Bu ndleAc tivato r class will look in the META-

INF/s ervic es service provider directory for the files

java x. xml.pa rser s .S AXPar ser Fac tor y (SAXF ACTO RY NAME) or

java x. xml.pa rser s .Do cume ntBui l der Fac tor y (DO MFAC TO RY NAME). The
full path name is specified in the constants SAXC LASSF ILE and DO MC LASS-

FI LE respectively.

If either of these files exist, the utility B undle Activato r class will parse the

contents according to the specification. A service provider file can contain

multiple class names. Each name is read and a new instance is created. The
following example shows the possible content of such a file:

ACME example SAXParserFactory file
com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates

Both the javax. xml .pa rser s .S AX Par serF ac tor y and the

java x. xml.pa rser s .Do cume ntBui l der Fac tor y provide methods that describe

the features of the parsers they can create. The XMLPa rse rAct i va tor activa-

tor will use these methods to set the values of the properties, as defined in

Properties on page 369, that describe the instances.

17.6.3 Adapting an Existing JAXP Compatible Parser

 To incorporate this bundle activator into a XML Parser Bundle, do the fol-

lowing:

• If SAX parsing is supported, create a /META- INF/se rvice s/
java x. xml.pa rser s .S AXPar ser Fac tor y resource file containing the class

names of the S AXPar serF ac tor y classes.

• If DOM parsing is supported, create a /M ETA- INF/se rvice s/

java x. xml.pa rser s .Do cume ntBui l der Fac tor y file containing the fully

qualified class names of the Doc ume ntBui lder Fa cto ry classes.

• Create manifest file which imports the packages o rg. w3 c.d om ,
or g.xml. sax , and ja va x.xml.pa rse rs .

• Add a Bundle-Activator header to the manifest pointing to the

XMLP ars erAc t ivato r , the sub-class that was created, or a fully custom

one.

• If the parsers support attributes, properties, or features that should be

registered as properties so they can be searched, extend the
XMLP ars erAc t ivato r class and override setSAXP ro p-

ert i es(java x. xml .pa rser s .S AXPar ser Fac tor y,H ashta ble) and se tDOM -

Pro pe rt ies(ja vax.xml.p ars ers . Doc umentB ui lde rFa cto ry,H as htable) .

• Ensure that custom properties are put into the H ash ta ble object. JAXP

does not provide a way for XMLPa rse rAct i va tor to query the parser to

find out what properties were added.
OSGi Service-Platform Release 3 371-588

Usage of JAXP XML Parser Service Specification Version 1.0
• Bundles that extend the XMLP ars erAc t ivato r class must call the original
methods via super to correctly initialize the XML Parser Service prop-

erties.

• Compile this class into the bundle.

• Install the new XML Parser Service bundle.

• Ensure that the o r g.o sgi . ut i l .xml . XMLP arse rAc ti va tor class is is con-

tained in the bundle.

17.7 Usage of JAXP

A single bundle should export the JAXP, SAX, and DOM APIs. The version of
contained packages must be appropriately labeled. JAXP 1.1 or later is

required which references SAX 2 and DOM 2. See [52] JAXP for the exact ver-

sion dependencies.

This specification is related to related packages as defined in the JAXP 1.1

document. Table 24 contains the expected minimum versions.

The Xerces project from the Apache group, [54] Xerces 2 Java Parser, contains
a number libraries that implement the necessary APIs. These libraries can

be wrapped in a bundle to provide the relevant packages.

17.8 Security

A centralized XML parser is likely to see sensitive information from other

bundles. Provisioning an XML parser should therefore be limited to trusted

bundles. This security can be achieved by providing

Servic ePe rmissi on[R EG ISTER, java x. xml.pa rser s .Do cume ntBui l der Fac tor y |
javax. xml. par ser s .SAXF ac tor y] to only trusted bundles.

Using an XML parser is a common function, and Se rvice Per mi ssio n[GET,

javax. xml. par ser s .DO MPa rse rF acto ry | java x.xml.pa rse rs .S AXFa cto ry]

should not be restricted.

The XML parser bundle will need Fi lePe rmiss i on[<<AL L F ILES>>,R EAD] for
parsing of files because it is not known beforehand where those files will be

located. This requirement further implies that the XML parser is a system

bundle that must be fully trusted.

Package Minimum Version

javax.xml.parsers 1.1

org.xml.sax 2.0

org.xml.sax.helpers 2.0

org.xsml.sax.ext 1.0

org.w3c.dom 2.0

Table 24 JAXP 1.1 minimum package versions
372-588 OSGi Service-Platform Release 3

XML Parser Service Specif ication Version 1.0 org.osgi.uti l.xml
17.9 org.osgi.util.xml

The OSGi XML Parser service Package. Specification Version 1.0.

XMLParserActivator

17.9.1 public class XMLParserActivator
implements BundleActivator , ServiceFactory

A BundleActivator class that allows any JAXP compliant XML Parser to reg-

ister itself as an OSGi parser service. Multiple JAXP compliant parsers can

concurrently register by using this BundleActivator class. Bundles who

wish to use an XML parser can then use the framework’s service registry to

locate available XML Parsers with the desired characteristics such as validat-
ing and namespace-aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory (SAXF ACTO R YNAME [p.374])

• javax.xml.parsers.DocumentBuilderFactory(
DO MFAC TO RY NAME [p.373])

The algorithm to find the implementations of the abstract parsers is derived

from the JAR file specifications, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the
factory classes in the following files:

• /META-INF/services/javax.xml.parsers.SAXParserFactory is a file

contained in a jar available to the runtime which contains the imple-

mentation class name(s) of the SAXParserFactory.

• /META-INF/services/javax.xml.parsers.DocumentBuilderFactory
is a file contained in a jar available to the runtime which contains the

implementation class name(s) of the DocumentBuilderFactory

If either of the files does not exist, XMLParserActivator assumes that the

parser does not support that parser type.

XMLParserActivator attempts to instantiate both the SAXParserFactory

and the DocumentBuilderFactory. It registers each factory with the frame-

work along with service properties:

• PARS ER_VALIDATING [p.374] - indicates if this factory supports vali-

dating parsers. It’s value is a Boolean.
• PARS ER_NAMESP ACEAW ARE [p.374] - indicates if this factory supports

namespace aware parsers It’s value is a Boolean.

Individual parser implementations may have additional features, proper-

ties, or attributes which could be used to select a parser with a filter. These

can be added by extending this class and overriding the setSAXProperties
and setDOMProperties methods.

DOMCLASSFILE

17.9.1.1 public static final String DOMCLASSFILE = “/META-INF/services/
javax.xml.parsers.DocumentBuilderFactory”

Fully qualified path name of DOM Parser Factory Class Name file

DOMFACTORYNAME

17.9.1.2 public static final String DOMFACTORYNAME =
OSGi Service-Platform Release 3 373-588

org.osgi.util .xml XML Parser Service Specification Version 1.0
“javax.xml.parsers.DocumentBuilderFactory”

Filename containing the DOM Parser Factory Class name. Also used as the

basis for the SERVICE_PID registration property.

PARSER_NAMESPACEAWARE

17.9.1.3 public static final String PARSER_NAMESPACEAWARE =
“parser.namespaceAware”

Service property specifying if factory is configured to support namespace

aware parsers. The value is of type Boolean.

PARSER_VALIDATING

17.9.1.4 public static final String PARSER_VALIDATING = “parser.validating”

Service property specifying if factory is configured to support validating

parsers. The value is of type Boolean.

SAXCLASSFILE

17.9.1.5 public static final String SAXCLASSFILE = “/META-INF/services/
javax.xml.parsers.SAXParserFactory”

Fully qualified path name of SAX Parser Factory Class Name file

SAXFACTORYNAME

17.9.1.6 public static final String SAXFACTORYNAME =
“javax.xml.parsers.SAXParserFactory”

Filename containing the SAX Parser Factory Class name. Also used as the

basis for the SERVICE_PID registration property.
XMLParserActivator()

17.9.1.7 public XMLParserActivator()
getService(Bundle,ServiceRegistration)

17.9.1.8 public Object getService(Bundle bundle, ServiceRegistration
registration)

bundle The bundle using the service.

registration The ServiceRegistration object for the service.

� Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating

and namespace aware support as specified in the service properties of the

specified ServiceRegistration object. This method can be overridden to con-

figure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error

was encountered
setDOMProperti es(javax.xml .parsers.DocumentBui lderFactory,Hashtable)

17.9.1.9 public void setDOMProperties(DocumentBuilderFactory factory,
Hashtable props)

factory - the DocumentBuilderFactory object

props - Hashtable of service properties.

� Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a

namespaceaware parser to determine if the parser can support those fea-

tures. The appropriate properties are then set in the specified props object.
374-588 OSGi Service-Platform Release 3

XML Parser Service Specif ication Version 1.0 org.osgi.uti l.xml
This method can be overridden to add additional DOM2 features and prop-
erties. If you want to be able to filter searches of the OSGi service registry,

this method must put a key, value pair into the properties object for each

feature or property. For example, properties.put(”http://www.acme.com/fea-

tures/foo”, Boolean.TRUE);

setSAXProperti es(javax.xml .parsers.SAXParserFactory,Hashtab le)

17.9.1.10 public void setSAXProperties(SAXParserFactory factory, Hashtable
properties)

factory - the SAXParserFactory object

properties - the properties object for the service

� Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a

namespaceaware parser to determine if the parser can support those fea-

tures. The appropriate properties are then set in the specified properties
object.

This method can be overridden to add additional SAX2 features and proper-

ties. If you want to be able to filter searches of the OSGi service registry, this

method must put a key, value pair into the properties object for each feature

or property. For example, properties.put(”http://www.acme.com/features/
foo”, Boolean.TRUE);

start(BundleContext)

17.9.1.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

� Called when this bundle is started so the Framework can perform the bun-

dle-specific activities necessary to start this bundle. This method can be

used to register services or to allocate any resources that this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Frame-

work’s service registry.

Throws Exception – If this method throws an exception, this bundle is marked as

stopped and the Framework will remove this bundle’s listeners, unregister

all services registered by this bundle, and release all services used by this bun-
dle.

See Also Bundle.start
stop (Bund leContext)

17.9.1.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

� This method has nothing to do as all open service registrations will auto-

matically get unregistered when the bundle stops.

Throws Exception – If this method throws an exception, the bundle is still marked
as stopped, and the Framework will remove the bundle’s listeners, unregister

all services registered by the bundle, and release all services used by the bun-

dle.

See Also Bundle.stop
ungetService(Bundle,ServiceReg istration,Object)

17.9.1.13 public void ungetService(Bundle bundle, ServiceRegistration
OSGi Service-Platform Release 3 375-588

References XML Parser Service Specification Version 1.0
registration, Object service)

bundle The bundle releasing the service.

registration The ServiceRegistration object for the service.

service The XML Parser Factory object returned by a previous call to the getService
method.

� Releases a XML Parser Factory object.

17.10 References

[49] XML

http://www.w3.org/XML

[50] SAX

http://www.saxproject.org/

[51] DOM Java Language Binding

http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[52] JAXP

http://java.sun.com/xml/jaxp

[53] JAR File specification, services directory

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

[54] Xerces 2 Java Parser

http://xml.apache.org/xerces2-j
376-588 OSGi Service-Platform Release 3

Metatype Specif ication Version 1.0 Introduction
18 Metatype Specification

Version 1.0

18.1 Introduction

The Metatype specification defines interfaces that allow bundle developers

to describe attribute types in a computer readable form using so-called meta-

data.

The purpose of this specification is to allow services to specify the type

information of data that they can use as arguments. The data is based on

attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the

choice of using the language constructs to exchange data or using a tech-

nique based on attributes/properties that are based on key/value pairs.

Attributes provide an escape from the rigid type-safety requirements of

modern programming languages.

Type-safety works very well for software development environments in

which multiple programmers work together on large applications or sys-

tems, but often lacks the flexibility needed to receive structured data from

the outside world.

The attribute paradigm has several characteristics that make this approach
suitable when data needs to be communicated between different entities

which “speak” different languages. Attributes are uncomplicated, resilient

to change, and allow the receiver to dynamically adapt to different types of

data.

As an example, the OSGi Service Platform Specifications define several
attribute types which are used in a Framework implementation, but which

are also used and referenced by other OSGi specifications such as the Config-

uration Admin Service Specification on page 181. A Configuration Admin ser-

vice implementation deploys attributes (key/value pairs) as configuration

properties.

During the development of the Configuration Admin service, it became

clear that the Framework attribute types needed to be described in a com-

puter readable form. This information (the metadata) could then be used to

automatically create user interfaces for management systems or could be

translated into management information specifications such as CIM, SNMP,

and the like.

18.1.1 Essentials

• Conceptual model – The specification must have a conceptual model for

how classes and attributes are organized.
OSGi Service-Platform Release 3 377-588

Introduction Metatype Specif ication Version 1.0
• Standards – The specification should be aligned with appropriate stan-
dards, and explained in situations where the specification is not aligned

with, or cannot be mapped to, standards.

• Remote Management – Remote management should be taken into

account.

• Size – Minimal overhead in size for a bundle using this specification is

required.
• Localization – It must be possible to use this specification with different

languages at the same time. This ability allows servlets to serve infor-

mation in the language selected in the browser.

• Type information – The definition of an attribution should contain the

name (if it is required), the cardinality, a label, a description, labels for

enumerated values, and the Java class that should be used for the values.
• Validation – It should be possible to validate the values of the attributes.

18.1.2 Entities

• Attribute – A key/value pair.

• AttributeDefinition – Defines a description, name, help text, and type

information of an attribute.
• ObjectClassDefinition – Defines the type of a datum. It contains a

description and name of the type plus a set of Attr i buteDef init io n

objects.

• MetaTypeProvider – Provides access to the object classes that are available

for this object. Access uses the PID and a locale to find the best

Ob jectC la ssDef i nit io n object.

Figure 62 Class Diagram Meta Typing, org.osgi.service.metatyping

18.1.3 Operation

This specification starts with an object that implements the
Meta Type Pro vider interface. It is not specified how this object is obtained,

and there are several possibilities. Often, however, this object is a service

registered with the Framework.

A M etaTypeP ro vi der object provides access to O bj ectC las sDef i nit io n

objects. These objects define all the information for a specific object class. An
object class is a some descriptive information and a set of named attributes

(which are key/value pairs).

provides <<interface>>
ObjectClass
Definition

<<interface>>
MetaType
Provider

<<interface>>
Attribute
Definition

locale&

1

PID

0..n

0..n

1

contains
1

378-588 OSGi Service-Platform Release 3

Metatype Specif ication Version 1.0 Attributes Model
Access to object classes is qualified by a locale and a Persistent IDentity
(PID). The locale is a Str i ng object that defines for which language the

O bjec tCla ssDef init io n is intended, allowing for localized user interfaces.

The PID is used when a single Meta Type Pro vider object can provide

O bjec tCla ssDef init io n objects for multiple purposes. The context in which

the M etaTypePr o vi der object is used should make this clear.

Attributes have global scope. Two object classes can consist of the same

attributes, and attributes with the same name should have the same defini-

tion. This global scope is unlike languages like Java that scope instance vari-

ables within a class, but it is similar to the Lightweight Directory Access

Protocol (LDAP) (SNMP also uses a global attribute name-space).

Attribute Definition objects provide sufficient localized information to gen-

erate user interfaces.

18.2 Attributes Model

The Framework uses the LDAP filter syntax for searching the Framework

registry. The usage of the attributes in this specification and the Framework

specification closely resemble the LDAP attribute model. Therefore, the

names used in this specification have been aligned with LDAP. Conse-

quently, the interfaces which are defined by this Specification are:

• Attr ibu te Defi nit io n

• O bjec tCla ssDef init io n

• Meta Type Pro vider

These names correspond to the LDAP attribute model. For further informa-
tion on ASN.1-defined attributes and X.500 object classes and attributes, see

[56] Understanding and Deploying LDAP Directory services.

The LDAP attribute model assumes a global name-space for attributes, and

object classes consist of a number of attributes. So, if an object class inherits

the same attribute from different parents, only one copy of the attribute
must become part of the object class definition. This name-space implies

that a given attribute, for example cn , should always be the common name

and the type must always be a S tr ing . An attribute cn cannot be an Integ er

in another object class definition. In this respect, the OSGi approach

towards attribute definitions is comparable with the LDAP attribute model.

18.3 Object Class Definition

The Ob jectC la ssDef init io n interface is used to group the attributes which

are defined in Attr ibu te Defi nit io n objects.

An O bje ctC lassDe f ini ti on object contains the information about the over-

all set of attributes and has the following elements:

• A name which can be returned in different locales.

• A global name-space in the registry, which is the same condition as
LDAP/X.500 object classes. In these standards the OSI Object Identifier

(OID) is used to uniquely identify object classes. If such an OID exists,

(which can be requested at several standard organizations, and many
OSGi Service-Platform Release 3 379-588

Attribute Definition Metatype Specif ication Version 1.0
companies already have a node in the tree) it can be returned here. Oth-
erwise, a unique id should be returned. This id can be a Java class name

(reverse domain name) or can be generated with a GUID algorithm. All

LDAP-defined object classes already have an associated OID. It is strongly

advised to define the object classes from existing LDAP schemes which

provide many preexisting OIDs. Many such schemes exist ranging from

postal addresses to DHCP parameters.
• A human-readable description of the class.

• A list of attribute definitions which can be filtered as required, or

optional. Note that in X.500 the mandatory or required status of an

attribute is part of the object class definition and not of the attribute defi-

nition.

• An icon, in different sizes.

18.4 Attribute Definition

The Attr ibuteDe finit i on interface provides the means to describe the data
type of attributes.

The Attr ibuteDe finit i on interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the

Framework for the attributes, called the syntax in OSI terms, which can
be obtained with the ge tType () method.

• Attr ibute Defini t ion objects should use and ID that is similar to the OID

as described in the ID field for O bjec tCl assDe f init i on .

• A localized name intended to be used in user interfaces.

• A localized description that defines the semantics of the attribute and

possible constraints, which should be usable for tooltips.
• An indication if this attribute should be stored as a unique value, a

Ve cto r , or an array of values, as well as the maximum cardinality of the

type.

• The data type, as limited by the Framework service registry attribute

types.

• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in

GUIs, allowing the user to choose from a set.

• A default value. The return type of this is a Str ing[] . For cardinality =

zero, this return type must be an array of one Str in g object. For other car-

dinalities, the array must not contain more than the absolute value of

cardinality S tr ing objects. In that case, it may contain 0 objects.

18.5 Meta Type Provider

The M etaTypeP ro vi der interface is used to access metatype information. It
is used in management systems and run-time management. It supports

locales so that the text used in Attr ibuteDe fini t ion and

Ob jectC la ssDef i nit io n objects can be adapted to different locales.

The PI D is given as an argument with the g etO bjec tCla ssDef init io n method

so that a single M etaTypeP ro vider object can be used for different object
classes with their own PIDs.
380-588 OSGi Service-Platform Release 3

Metatype Specif ication Version 1.0 Metatype Example
Locale objects are represented in S tr ing objects because not all profiles sup-
port Locale. The Str in g holds the standard Locale presentation of:

<langu age> ["_" <co untry> [" _" <var iat io n>]]

For example, "en", "nl _BE", "e n_CA_po six".

18.6 Metatype Example

Attr ibu te Defi nit io n and O bje ctCl assDe f init i on classes are intended to be

easy to use for bundles. This example shows a naive implementation for
these classes (note that the ge t methods usages are not shown). Commercial

implementations can use XML, Java serialization, or Java Properties for

implementations. This example uses plain code to store the definitions.

The example first shows that the O bjec tCl assDe f init io n interface is imple-

mented in the O CD class. The name is made very short because the class is
used to instantiate the static structures. Normally many of these objects are

instantiated very close to each other, and long names would make these lists

of instantiations very long.

class OCD implements ObjectClassDefinition {
String name;
String id;
String description;
AttributeDefinition required[];
AttributeDefinition optional[];

public OCD(
String name, String id, String description,
AttributeDefinition required[],
AttributeDefinition optional[]) {

this.name = name;
this.id = id;
this.description = description;
this.required = required;
this.optional = optional;

}
.... All the get methods

}

The second class is the AD class that implements the Attr ib uteDef init io n

interface. The name is short for the same reason as in OC D . Note the two dif-

ferent constructors to simplify the common case.

class AD implements AttributeDefinition {
String name;
String id;
String description;
int cardinality;
int syntax;
OSGi Service-Platform Release 3 381-588

Metatype Example Metatype Specif ication Version 1.0
String[] values;
String[] labels;
String[] deflt;

public AD(String name, String id, String description,
int syntax, int cardinality, String values[],
String labels[], String deflt[]) {

this.name = name;
this.id = id;
this.description = description;
this.cardinality = cardinality;
this.syntax = syntax;
this.values = values;
this.labels = labels;

}

public AD(String name, String id, String description,
int syntax)

{
this(name,id,description,syntax,0,null,null, null);

}
... All the get methods and validate method

}

The last part is the example that implements a Me taTypePr ovide r class.

Only one locale is supported, the US locale. The OIDs used in this example
are the actual OIDs as defined in X.500.

public class Example implements MetaTypeProvider {
final static AD cn = new AD(

"cn", "2.5.4.3", "Common name", AD.STRING);
final static AD sn = new AD(

"sn", "2.5.4.4", "Sur name", AD.STRING);
final static AD description = new AD(

"description", "2.5.4.13","Description", AD.STRING);
final static AD seeAlso = new AD(

"seeAlso", "2.5.4.34", "See Also", AD.STRING);
final static AD telephoneNumber = new AD(

"telephoneNumber", "2.5.4.20", "Tel nr", AD.STRING);
final static AD userPassword = new AD(

"userPassword", "2.5.4.3", "Password", AD.STRING);

final static ObjectClassDefinition person = new OCD(
"person", "2.5.6.6", "Defines a person",

new AD[] { cn, sn },
new AD[] { description, seeAlso,

telephoneNumber, userPassword}
);

public ObjectClassDefinition getObjectClassDefinition(
String pid, String locale) {
return person;

}

382-588 OSGi Service-Platform Release 3

Metatype Specif ication Version 1.0 Limitations
public String[] getLocales() {
return new String[] { "en_US" };

}
}

This code shows that the attributes are defined in AD objects as f ina l sta t ic .
The example groups a number of attributes together in an O C D object.

As can be seen from this example, the resource issues for using

Attr ibu te Defi nit io n , O bjec tCla ssDef init io n and M etaTypeP ro vi der classes

are minimized.

18.7 Limitations

The OSGi MetaType specification is intended to be used for simple applica-

tions. It does not, therefore, support recursive data types, mixed types in
arrays/vectors, or nested arrays/vectors.

18.8 Related Standards

One of the primary goals of this specification is to make metatype informa-

tion available at run-time with minimal overhead. Many related standards

are applicable to metatypes; except for Java beans, however, all other

metatype standards are based on document formats (e.g. XML). In the OSGi

Service Platform, document format standards are deemed unsuitable due to

the overhead required in the execution environment (they require a parser
during run-time).

Another consideration is the applicability of these standards. Most of these

standards were developed for management systems on platforms where

resources are not necessarily a concern. In this case, a metatype standard is

normally used to describe the data structures needed to control some other
computer via a network. This other computer, however, does not require

the metatype information as it is implementing this information.

In some traditional cases, a management system uses the metatype informa-

tion to control objects in an OSGi Service Platform. Therefore, the concepts

and the syntax of the metatype information must be mappable to these pop-
ular standards. Clearly, then, these standards must be able to describe

objects in an OSGi Service Platform. This ability is usually not a problem,

because the metatype languages used by current management systems are

very powerful.

18.8.1 Beans

The intention of the Beans packages in Java comes very close to the

metatype information needed in the OSGi Service Platform. The

java .bea ns.- packages cannot be used, however, for the following reasons:

• Beans packages require a large number of classes that are likely to be
optional for an OSGi Service Platform.
OSGi Service-Platform Release 3 383-588

Security Considerations Metatype Specif ication Version 1.0
• Beans have been closely coupled to the graphic subsystem (AWT) and
applets. Neither of these packages is available on an OSGi Service

Platform.

• Beans are closely coupled with the type-safe Java classes. The advantage

of attributes is that no type-safety is used, allowing two parties to have an

independent versioning model (no shared classes).

• Beans packages allow all possible Java objects, not the OSGi subset as
required by this specification.

• Beans have no explicit localization.

• Beans have no support for optional attributes.

18.9 Security Considerations

Special security issues are not applicable for this specification.

18.10 Changes

This specification has not been changed since the previous release.

18.11 org.osgi.service.metatype

The OSGi Metatype Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.metatype; specification-ver-
sion=1.0

18.11.1 Summary

• AttributeDefinition – An interface to describe an attribute. [p.384]

• MetaTypeProvider – Provides access to metatypes. [p.387]

• ObjectClassDefinition – Description for the data type information of an

objectclass. [p.379]
AttributeDefini tion

18.11.2 public interface AttributeDefinition

An interface to describe an attribute.

An AttributeDefinition object defines a description of the data type of a

property/attribute.

BIGDECIMAL

18.11.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL(10) type. Attributes of this type should be stored as

BigDecimalVector with BigDecimal or BigDecimal[] objects depending

on getCardinality().

BIGINTEGER
384-588 OSGi Service-Platform Release 3

Metatype Specif ication Version 1.0 org.osgi.service.metatype
18.11.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER(9) type. Attributes of this type should be stored as

BigInteger, Vector with BigInteger or BigInteger[] objects, depending

on the getCardinality() value.

BOOLEAN

18.11.2.3 public static final int BOOLEAN = 11

The BOOLEAN(11) type. Attributes of this type should be stored as Boolean,

Vector with Boolean or boolean[] objects depending on

getCardinality().

BYTE

18.11.2.4 public static final int BYTE = 6

The BYTE(6) type. Attributes of this type should be stored as Byte, Vector

with Byte or byte[] objects, depending on the getCardinality() value.

CHARACTER

18.11.2.5 public static final int CHARACTER = 5

The CHARACTER(5) type. Attributes of this type should be stored as

Character, Vector with Character or char[] objects, depending on the

getCardinality() value.

DOUBLE

18.11.2.6 public static final int DOUBLE = 7

The DOUBLE(7) type. Attributes of this type should be stored as Double,

Vector with Double or double[] objects, depending on the

getCardinality() value.

FLOAT

18.11.2.7 public static final int FLOAT = 8

The FLOAT(8) type. Attributes of this type should be stored as FloatVector

with Float or float[] objects, depending on the getCardinality() value.

INTEGER

18.11.2.8 public static final int INTEGER = 3

The INTEGER(3) type. Attributes of this type should be stored as Integer,

Vector with Integer or int[] objects, depending on the
getCardinality() value.

LONG

18.11.2.9 public static final int LONG = 2

The LONG(2) type. Attributes of this type should be stored as Long, Vector
with Long or long[] objects, depending on the getCardinality() value.

SHORT

18.11.2.10 public static final int SHORT = 4

The SHORT(4) type. Attributes of this type should be stored as Short, Vector
with Short or short[] objects, depending on the getCardinality() value.

STRING

18.11.2.11 public static final int STRING = 1

The STRING(1) type.

Attributes of this type should be stored as String, Vector with String or

String[] objects, depending on the getCardinality() value.

getCardinali ty()
OSGi Service-Platform Release 3 385-588

org.osgi.service.metatype Metatype Specif ication Version 1.0
18.11.2.12 public int getCardinality()

� Return the cardinality of this attribute. The OSGi environment handles

multi valued attributes in arrays ([]) or in Vector objects. The return value is

defined as follows:

x = Integer.MIN_VALUE no limit, but use Vector
x <0 -x = max occurrences, store in Vector
x> 0 x = max occurrences, store in array
[]
x = Integer.MAX_VALUE no limit, but use array []
x = 0 1 occurrence required

getDefaultValue()

18.11.2.13 public String[] getDefaultValue()

� Return a default for this attribute. The object must be of the appropriate

type as defined by the cardinality and getType(). The return type is a list of

String objects that can be converted to the appropriate type. The cardinal-

ity of the return array must follow the absolute cardinality of this type. E.g.
if the cardinality = 0, the array must contain 1 element. If the cardinality is 1,

it must contain 0 or 1 elements. If it is -5, it must contain from 0 to max 5 ele-

ments. Note that the special case of a 0 cardinality, meaning a single value,

does not allow arrays or vectors of 0 elements.

Returns Return a default value or null if no default exists.
getDescrip ti on()

18.11.2.14 public String getDescription()

� Return a description of this attribute. The description may be localized and

must describe the semantics of this type and any constraints.

Returns The localized description of the definition.
getID()

18.11.2.15 public String getID()

� Unique identity for this attribute. Attributes share a global namespace in

the registry. E.g. an attribute cn or commonName must always be a String and

the semantics are always a name of some object. They share this aspect with
LDAP/X.500 attributes. In these standards the OSI Object Identifier (OID) is

used to uniquely identify an attribute. If such an OID exists, (which can be

requested at several standard organisations and many companies already

have a node in the tree) it can be returned here. Otherwise, a unique id

should be returned which can be a Java class name (reverse domain name)

or generated with a GUID algorithm. Note that all LDAP defined attributes
already have an OID. It is strongly advised to define the attributes from

existing LDAP schemes which will give the OID. Many such schemes exist

ranging from postal addresses to DHCP parameters.

Returns The id or oid
getName()

18.11.2.16 public String getName()

� Get the name of the attribute. This name may be localized.

Returns The localized name of the definition.
getOptionLabel s()

18.11.2.17 public String[] getOptionLabels()

� Return a list of labels of option values.
386-588 OSGi Service-Platform Release 3

Metatype Specif ication Version 1.0 org.osgi.service.metatype
The purpose of this method is to allow menus with localized labels. It is
associated with getOptionValues. The labels returned here are ordered in

the same way as the values in that method.

If the function returns null, there are no option labels available.

This list must be in the same sequence as the getOptionValues() method.
I.e. for each index i in getOptionLabels, i in getOptionValues() should be

the associated value.

For example, if an attribute can have the value male, female, unknown, this

list can return (for dutch) new String[] { “Man”, “Vrouw”, “Onbekend”
}.

Returns A list values
getOptionValues ()

18.11.2.18 public String[] getOptionValues()

� Return a list of option values that this attribute can take.

If the function returns null, there are no option values available.

Each value must be acceptable to validate() (return “”) and must be a String

object that can be converted to the data type defined by getType() for this

attribute.

This list must be in the same sequence as getOptionLabels(). I.e. for each

index i in getOptionValues, i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this

list can return new String[] { “male”, “female”, “unknown” }.

Returns A list values
getType()

18.11.2.19 public int getType()

� Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.

STRING, LONG, INTEGER, CHAR, BYTE, DOUBLE, FLOAT, BIGINTEGER, BIGDECIMAL,

BOOLEAN.

vali date(String)

18.11.2.20 public String validate(String value)

value The value before turning it into the basic data type

� Validate an attribute in String form. An attribute might be further con-

strained in value. This method will attempt to validate the attribute accord-

ing to these constraints. It can return three different values:

null no validation present
“” no problems detected
“...” A localized description of why the
value is wrong

Returns null, “”, or another string
MetaTypeProv ider

18.11.3 public interface MetaTypeProvider

Provides access to metatypes.

getLocales()
OSGi Service-Platform Release 3 387-588

org.osgi.service.metatype Metatype Specif ication Version 1.0
18.11.3.1 public String[] getLocales()

� Return a list of locales available or null if only 1 The return parameter must

be a name that consists of language [_ country [_ variation]] as is customary

in the Locale class. This Locale class is not used because certain profiles do

not contain it.

getObjectClas sDef ini ti on(String,S tring)

18.11.3.2 public ObjectClassDefinition getObjectClassDefinition(String pid, String
locale)

pid The PID for which the type is needed or null if there is only 1

locale The locale of the definition or null for default locale

� Return the definition of this object class for a locale.

The locale parameter must be a name that consists of language [“_”

country [“_” variation]] as is customary in the Locale class. This Locale
class is not used because certain profiles do not contain it.

The implementation should use the locale parameter to match an

ObjectClassDefinition object. It should follow the customary locale

search path by removing the latter parts of the name.

Returns the ObjectClassDefinition object
ObjectClassDefinition

18.11.4 public interface ObjectClassDefinition

Description for the data type information of an objectclass.

ALL

18.11.4.1 public static final int ALL = -1

Argument for getAttributeDefinitions(int). ALL indicates that all the

definitions are returned. The value is -1.

OPTIONAL

18.11.4.2 public static final int OPTIONAL = 2

Argument for getAttributeDefinitions(int). OPTIONAL indicates that

only the optional definitions are returned. The value is 2.

REQUIRED

18.11.4.3 public static final int REQUIRED = 1

Argument for getAttributeDefinitions(int). REQUIRED indicates that

only the required definitions are returned. The value is 1.

getAttri buteDef initi ons(int)

18.11.4.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL, REQUIRED, OPTIONAL

� Return the attribute definitions.

Return a set of attributes. The filter parameter can distinguish between ALL,

REQUIRED or the OPTIONAL attributes.

Returns An array of attribute definitions or null if no attributes are selected
getDescrip ti on()

18.11.4.5 public String getDescription()

� Return a description of this object class. The description may be localized.

Returns The localized description of the definition.
getIcon(int)
388-588 OSGi Service-Platform Release 3

Metatype Specif ication Version 1.0 References
18.11.4.6 public InputStream getIcon(int size) throws IOException

sizeHint size of an icon, e.g. a 16x16 pixels icon then size = 16

� Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The
returned icon maybe larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or null
getID()

18.11.4.7 public String getID()

� Return the id of this object class.

ObjectDefintion objects share a global namespace in the registry. They

share this aspect with LDAP/X.500 attributes. In these standards the OSI
Object Identifier (OID) is used to uniquely identify object classes. If such an

OID exists, (which can be requested at several standard organisations and

many companies already have a node in the tree) it can be returned here.

Otherwise, a unique id should be returned which can be a java class name

(reverse domain name) or generated with a GUID algorithm. Note that all

LDAP defined object classes already have an OID associated. It is strongly
advised to define the object classes from existing LDAP schemes which will

give the OID for free. Many such schemes exist ranging from postal

addresses to DHCP parameters.

Returns The id or oid
getName()

18.11.4.8 public String getName()

� Return the name of this class.

Returns The name of the described class.

18.12 References

[55] LDAP.

Available at http://directory.google.com/Top/Computers/Software/Internet/

Servers/Directory/LDAP

[56] Understanding and Deploying LDAP Directory services

Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical

publishing.
OSGi Service-Platform Release 3 389-588

References Metatype Specif ication Version 1.0
390-588 OSGi Service-Platform Release 3

Service Tracker Specification Version 1.2 Introduction
19 Service Tracker

Specification

Version 1.2

19.1 Introduction

The Framework provides a powerful and very dynamic programming envi-
ronment. Bundles are installed, started, stopped, updated, and uninstalled

without shutting down the Framework. Dependencies between bundles are

monitored by the Framework, but bundles must cooperate in handling these

dependencies correctly.

An important aspect of the Framework is the service registry. Bundle devel-
opers must be careful not to use service objects that have been unregistered.

The dynamic nature of the Framework service registry makes it necessary to

track the service objects as they are registered and unregistered. It is easy to

overlook rare race conditions or boundary conditions that will lead to ran-

dom errors.

An example of a potential problem is what happens when the initial list of

services of a certain type is created when a bundle is started. When the

Ser viceL istene r object is registered before the Framework is asked for the

list of services, without special precautions, duplicates can enter the list.

When the S ervic eLis te ner object is registered after the list is made, it is pos-

sible to miss relevant events.

The specification defines a utility class, S ervic eTra cker , that makes tracking

the registration, modification, and unregistration of services much easier. A

Ser viceTr acke r class can be customized by implementing the interface or

by sub-classing the Ser viceTr ack er class.

This utility specifies a class that significantly reduces the complexity of

tracking services in the service registry.

19.1.1 Essentials

• Customizable – Allow a default implementation to be customized so that
bundle developers can start simply and later extend the implementation

to meet their needs.

• Small – Every Framework implementation should have this utility

implemented. It should therefore be very small because some

Framework implementations target minimal OSGi Service Platforms.

• Tracked set – Track a single object defined by a S ervic eR efer enc e object,

all instances of a service, or any set specified by a filter expression.

19.1.2 Operation

The fundamental tasks of a Se rvice Tr ac ker object are:
OSGi Service-Platform Release 3 391-588

ServiceTracker Class Service Tracker Specif ication Version 1.2
• To create an initial list of services as specified by its creator.
• To listen to Se rvic eEve nt instances so that services of interest to the

owner are properly tracked.

• To allow the owner to customize the tracking process through program-

matic selection of the services to be tracked, as well as to act when a

service is added or removed.

A S ervic eTra cker object populates a set of services that match a given

search criteria, and then listens to S ervic eEvent objects which correspond

to those services.

19.1.3 Entities

Figure 63 Class diagram of org.osgi.util.tracker

19.1.4 Prerequisites

This specification requires OSGi Framework version 1.1 or higher because

the Service Tracker uses the F i l te r class that was not available in version 1.0.

19.2 ServiceTracker Class

The S ervic eTra cker interface defines three constructors to create

Servic eTra cke r objects, each providing different search criteria:

• Ser vic eTra cke r(Bund leC onte xt ,Str i ng,S ervic eTrac ker Cus tomize r) –

This constructor takes a service interface name as the search criterion.

The S ervic eTra cker object must then track all services that are registered

under the specified service interface name.

• Ser vic eTra cke r(Bund leC onte xt ,F i l ter , Ser vi ceTra cke rC usto mi zer) –
This constructor uses a F i l ter object to specify the services to be tracked.

The Se rvice Tr ac ker must then track all services that match the specified

filter.

• Ser vic eTra cke r(Bund leC onte xt ,Ser viceR ef ere nce, Ser viceTr ack erC us-

to mize r) – This constructor takes a Se rvice Ref ere nce object as the

search criterion. The Ser vi ceTra cke r must then track only the service
that corresponds to the specified Ser viceR ef ere nce . Using this con-

structor, no more than one service must ever be tracked, because a

Ser vic eR efe renc e refers to a specific service.

Each of the Se rvice Tr ac ker constructors takes a Bund leC onte xt object as a

parameter. This Bund leC on te xt object must be used by a S ervic eTrac ker
object to track, get, and unget services.

A new Se rvice Tr ack er object must not begin tracking services until its op en

method is called.

Service
Tracker

customized by

Service
Tracker
Customizer

1 1
392-588 OSGi Service-Platform Release 3

Service Tracker Specification Version 1.2 Using a Service Tracker
19.3 Using a Service Tracker

Once a Se rvice Tr ac ker object is opened, it begins tracking services immedi-
ately. A number of methods are available to the bundle developer to moni-

tor the services that are being tracked. The S ervic eTra cker class defines

these methods:

• getSe rvic e() – Returns one of the services being tracked or nul l if there

are no active services being tracked.
• getSe rvic es() – Returns an array of all the tracked services. The number

of tracked services is returned by the s ize method.

• getSe rvic eRe fer enc e() – Returns a Ser vi ceR efe ren ce object for one of

the services being tracked. The service object for this service may be

returned by calling the Se rvice Tr ac ker object’s getS ervic e() method.

• getSe rvic eRe fer enc es() – Returns a list of the Se rvice Re fer ence objects
for services being tracked. The service object for a specific tracked service

may be returned by calling the Ser vi ceTra cke r object’s

getSe rvic e(Ser vic eR efe renc e) method.

• wa itFo rS ervic e(lo ng) – Allows the caller to wait until at least one

instance of a service is tracked or until the time-out expires. If the time-

out is zero, the caller must wait until at least one instance of a service is
tracked. w ai tFo rSe rvice must not used within the B undl eActiva to r

methods, as these methods are expected to complete in a short period of

time. A Framework could wait for the start method to complete before

starting the bundle that registers the service for which the caller is

waiting, creating a deadlock situation.

• remo ve(Ser viceR ef ere nce) – This method may be used to remove a spe-

cific service from being tracked by the S ervic eTrac ker object, causing
remo vedSe rvic e to be called for that service.

• clo se() – This method must remove all services being tracked by the

Ser viceTr acke r object, causing r emoved Ser vi ce to be called for all

tracked services.

• getTra cki ngCo unt() – A Service Tracker can have services added, mod-

ified, or removed at any moment in time. The g etTrac kingC o unt method
is intended to efficiently detect changes in a Service Tracker. Every time

the Service Tracker is changed, it must increase the tracking count. A

method that processes changes in a Service Tracker could get the

tracking count before it processes the changes. If the tracking count has

changed at the end of the method, the method should be repeated

because a new change occurred during processing.

19.4 Customizing the ServiceTracker class

The behavior of the Ser vi ceTra cke r class can be customized either by pro-

viding a Se rvice Tr ac ker Custo mizer object implementing the desired behav-

ior when the Ser vice Tr ack er object is constructed, or by sub-classing the

Ser viceTr acke r class and overriding the S ervic eTra cker C ustomize r meth-

ods.

The Ser vi ceTra cke rC ustomi zer interface defines these methods:
OSGi Service-Platform Release 3 393-588

Customizing Example Service Tracker Specif ication Version 1.2
• addin gSer vice(Se rvice Re fer ence) – Called whenever a service is being
added to the S ervic eTra cker object.

• mo dif iedS ervic e(Ser viceR ef ere nce, Ob jec t) – Called whenever a

tracked service is modified.

• remo vedSe rvice (S ervic eRe fer enc e,O bje ct) – Called whenever a tracked

service is removed from the Ser viceTr acke r object.

When a service is being added to the ServiceTracker object or when a

tracked service is modified or removed from the ServiceTracker object, it

must call add ingSe rvice , mo dif iedS ervic e , or re moved Ser vic e , respectively,

on the S ervic eTra cker Cu stomize r object (if specified when the

Servic eTra cke r object was created); otherwise it must call these methods on

itself.

A bundle developer may customize the action when a service is tracked.

Another reason for customizing the Ser vi ceTra cke r class is to programmati-

cally select which services are tracked. A filter may not sufficiently specify

the services that the bundle developer is interested in tracking. By imple-

menting addi ngSer vice , the bundle developer can use additional runtime
information to determine if the service should be tracked. If n ul l is returned

by the ad dingS ervic e method, the service must not be tracked.

Finally, the bundle developer can return a specialized object from

addin gSer vice that differs from the service object. This specialized object

could contain the service object and any associated information. This

returned object is then tracked instead of the service object. When the
remo vedSe rvice method is called, the object that is passed along with the

Servic eR efe renc e object is the one that was returned from the earlier call to

the ad dingS ervic e method.

19.4.1 Symmetry

If sub-classing is used to customize the Service Tracker, care must be exer-

cised in using the default implementations of the a dding Ser vi ce and

remo vedSe rvice methods. The a dding Ser vic e method will get the service

and the remo vedS ervic e method assumes it has to unget the service. Over-

riding one and not the other may thus cause unexpected results.

19.5 Customizing Example

An example of customizing the action taken when a service is tracked
might be registering a Se rvlet object with each Http Service that is tracked.

This customization could be done by sub-classing the Servic eTra cke r class

and overriding the a dding Ser vi ce and r emo ve dSer vice methods as follows:

public Object addingService(ServiceReference reference) {
Object obj = context.getService(reference);
HttpService svc = (HttpService)obj;
// Register the Servlet using svc
...
return svc;

}

394-588 OSGi Service-Platform Release 3

Service Tracker Specification Version 1.2 Security
public void removedService(ServiceReference reference,
Object obj){
HttpService svc = (HttpService)obj;
// Unregister the Servlet using svc
...
context.ungetService(reference);

}

19.6 Security

A Ser vi ceTra cke r object contains a Bund leC on te xt instance variable that is
accessible to the methods in a subclass. A Bun dleC on text object should

never be given to other bundles because it is used for security aspects of the

Framework.

The ServiceTracker implementation does not have a method to get the

Bun dleC on text object but subclasses should be careful not to provide such a
method if the Ser viceTr ack er object is given to other bundles.

The services that are being tracked are available via a Ser viceTr ack er . These

services are dependent on the B undle Co ntext as well. It is therefore neces-

sary to do a careful security analysis when Ser viceTr ack er objects are given

to other bundles.

19.7 Changes

The only change in this specification has been the addition of the
getTra ckin gCo unt method.

The implementation that is included with the interface sources has been

partially rewritten to use less synchronization.

19.8 org.osgi.util.tracker

The OSGi Service Tracker Package. Specification Version 1.2.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.tracker; specification-ver-
sion=1.2

19.8.1 Summary

• ServiceTracker – The ServiceTracker class simplifies using services

from the Framework’s service registry. [p.391]

• ServiceTrackerCustomizer – The ServiceTrackerCustomizer interface

allows a ServiceTracker object to customize the service objects that are

tracked. [p.391]
ServiceTracker
OSGi Service-Platform Release 3 395-588

org.osgi.util .tracker Service Tracker Specif ication Version 1.2
19.8.2 public class ServiceTracker
implements ServiceTrackerCustomizer

The ServiceTracker class simplifies using services from the Framework’s

service registry.

A ServiceTracker object is constructed with search criteria and a
ServiceTrackerCustomizer object. A ServiceTracker object can use the

ServiceTrackerCustomizer object to customize the service objects to be

tracked. The ServiceTracker object can then be opened to begin tracking

all services in the Framework’s service registry that match the specified

search criteria. The ServiceTracker object correctly handles all of the

details of listening to ServiceEvent objects and getting and ungetting ser-
vices.

The getServiceReferences method can be called to get references to the

services being tracked. The getService and getServices methods can be

called to get the service objects for the tracked service.

context

19.8.2.1 protected final BundleContext context

Bundle context this ServiceTracker object is tracking against.

fi lter

19.8.2.2 protected final Filter filter

Filter specifying search criteria for the services to track.

Since 1.1
Serv iceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer)

19.8.2.3 public ServiceTracker(BundleContext context, ServiceReference
reference, ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

reference ServiceReference object for the service to be tracked.

customizer The customizer object to call when services are added, modified, or removed

in this ServiceTracker object. If customizer is null, then this

ServiceTracker object will be used as the ServiceTrackerCustomizer ob-

ject and the ServiceTracker object will call the

ServiceTrackerCustomizer methods on itself.

� Create a ServiceTracker object on the specified ServiceReference object.

The service referenced by the specified ServiceReference object will be

tracked by this ServiceTracker object.

Serv iceTracker(BundleContext,String,ServiceTrackerCustomizer)

19.8.2.4 public ServiceTracker(BundleContext context, String clazz,
ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

clazz Class name of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed

in this ServiceTracker object. If customizer is null, then this

ServiceTracker object will be used as the ServiceTrackerCustomizer ob-

ject and the ServiceTracker object will call the

ServiceTrackerCustomizer methods on itself.

� Create a ServiceTracker object on the specified class name.
396-588 OSGi Service-Platform Release 3

Service Tracker Specification Version 1.2 org.osgi.uti l.tracker
Services registered under the specified class name will be tracked by this
ServiceTracker object.

ServiceTracker(Bund leContext,F ilter,ServiceTrackerCustomizer)

19.8.2.5 public ServiceTracker(BundleContext context, F ilter filter,
ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

filter Filter object to select the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed

in this ServiceTracker object. If customizer is null, then this
ServiceTracker object will be used as the ServiceTrackerCustomizer ob-

ject and the ServiceTracker object will call the

ServiceTrackerCustomizer methods on itself.

� Create a ServiceTracker object on the specified Filter object.

Services which match the specified Filter object will be tracked by this

ServiceTracker object.

Since 1.1
addingService(ServiceReference)

19.8.2.6 public Object addingService(ServiceReference reference)

reference Reference to service being added to this ServiceTracker object.

� Default implementation of the

ServiceTrackerCustomizer.addingService method.

This method is only called when this ServiceTracker object has been con-
structed with a null ServiceTrackerCustomizer argument. The default

implementation returns the result of calling getService, on the

BundleContext object with which this ServiceTracker object was created,

passing the specified ServiceReference object.

This method can be overridden in a subclass to customize the service object
to be tracked for the service being added. In that case, take care not to rely on

the default implementation of removedService that will unget the service.

Returns The service object to be tracked for the service added to this ServiceTracker

object.

See Also ServiceTrackerCustomizer[p.391]
close()

19.8.2.7 public synchronized void close()

� Close this ServiceTracker object.

This method should be called when this ServiceTracker object should end

the tracking of services.

final ize()

19.8.2.8 protected void finalize() throws Throwable

� Properly close this ServiceTracker object when finalized. This method

calls the close method to close this ServiceTracker object if it has not

already been closed.

getService(ServiceReference)

19.8.2.9 public Object getService(ServiceReference reference)

reference Reference to the desired service.
OSGi Service-Platform Release 3 397-588

org.osgi.util .tracker Service Tracker Specif ication Version 1.2
� Returns the service object for the specified ServiceReference object if the
referenced service is being tracked by this ServiceTracker object.

Returns Service object or null if the service referenced by the specified

ServiceReference object is not being tracked.
getService()

19.8.2.10 public Object getService()

� Returns a service object for one of the services being tracked by this

ServiceTracker object.

If any services are being tracked, this method returns the result of calling

getService(getServiceReference()).

Returns Service object or null if no service is being tracked.
getServiceReference()

19.8.2.11 public ServiceReference getServiceReference()

� Returns a ServiceReference object for one of the services being tracked by
this ServiceTracker object.

If multiple services are being tracked, the service with the highest ranking

(as specified in its service.ranking property) is returned.

If there is a tie in ranking, the service with the lowest service ID (as specified
in its service.id property); that is, the service that was registered first is

returned.

This is the same algorithm used by BundleContext.getServiceReference.

Returns ServiceReference object or null if no service is being tracked.

Since 1.1
getServiceReferences()

19.8.2.12 public ServiceReference[] getServiceReferences()

� Return an array of ServiceReference objects for all services being tracked

by this ServiceTracker object.

Returns Array of ServiceReference objects or null if no service are being tracked.
getServices()

19.8.2.13 public Object[] getServices()

� Return an array of service objects for all services being tracked by this
ServiceTracker object.

Returns Array of service objects or null if no service are being tracked.
getTrackingCount()

19.8.2.14 public int getTrackingCount()

� Returns the tracking count for this ServiceTracker object. The tracking

count is initialized to 0 when this ServiceTracker object is opened. Every

time a service is added or removed from this ServiceTracker object the

tracking count is incremented.

The tracking count can be used to determine if this ServiceTracker object
has added or removed a service by comparing a tracking count value previ-

ously collected with the current tracking count value. If the value has not

changed, then no service has been added or removed from this

ServiceTracker object since the previous tracking count was collected.

Returns The tracking count for this ServiceTracker object or -1 if this
ServiceTracker object is not open.

Since 1.2
398-588 OSGi Service-Platform Release 3

Service Tracker Specification Version 1.2 org.osgi.uti l.tracker
modif iedService(ServiceReference,Ob ject)

19.8.2.15 public void modifiedService(ServiceReference reference, Object service
)

reference Reference to modified service.

service The service object for the modified service.

� Default implementation of the

ServiceTrackerCustomizer.modifiedService method.

This method is only called when this ServiceTracker object has been con-

structed with a null ServiceTrackerCustomizer argument. The default
implementation does nothing.

See Also ServiceTrackerCustomizer[p.391]
open()

19.8.2.16 public synchronized void open()

� Open this ServiceTracker object and begin tracking services.

Services which match the search criteria specified when this

ServiceTracker object was created are now tracked by this

ServiceTracker object.

Throws IllegalStateException – if the BundleContext object with which this

ServiceTracker object was created is no longer valid.
remove(Serv iceReference)

19.8.2.17 public void remove(ServiceReference reference)

reference Reference to the service to be removed.

� Remove a service from this ServiceTracker object. The specified service

will be removed from this ServiceTracker object. If the specified service

was being tracked then the ServiceTrackerCustomizer.removedService

method will be called for that service.

removedService(ServiceReference,Ob ject)

19.8.2.18 public void removedService(ServiceReference reference, Object object)

reference Reference to removed service.

service The service object for the removed service.

� Default implementation of the

ServiceTrackerCustomizer.removedService method.

This method is only called when this ServiceTracker object has been con-

structed with a null ServiceTrackerCustomizer argument. The default

implementation calls ungetService, on the BundleContext object with
which this ServiceTracker object was created, passing the specified

ServiceReference object.

This method can be overridden in a subclass. If the default implementation

of addingService method was used, this method must unget the service.

See Also ServiceTrackerCustomizer[p.391]
size()

19.8.2.19 public int size()

� Return the number of services being tracked by this ServiceTracker object.

Returns Number of services being tracked.
waitForService(l ong)

19.8.2.20 public Object waitForService(long timeout) throws
OSGi Service-Platform Release 3 399-588

org.osgi.util .tracker Service Tracker Specif ication Version 1.2
InterruptedException

timeout time interval in milliseconds to wait. If zero, the method will wait indefinate-

ly.

� Wait for at least one service to be tracked by this ServiceTracker object.

It is strongly recommended that waitForService is not used during the

calling of the BundleActivator methods. BundleActivator methods are

expected to complete in a short period of time.

Returns Returns the result of getService().

Throws IllegalArgumentException – If the value of timeout is negative.
Serv iceTrackerCustomizer

19.8.3 public interface ServiceTrackerCustomizer

The ServiceTrackerCustomizer interface allows a ServiceTracker object

to customize the service objects that are tracked. The

ServiceTrackerCustomizer object is called when a service is being added
to the ServiceTracker object. The ServiceTrackerCustomizer can then

return an object for the tracked service. The ServiceTrackerCustomizer

object is also called when a tracked service is modified or has been removed

from the ServiceTracker object.

The methods in this interface may be called as the result of a ServiceEvent
being received by a ServiceTracker object. Since ServiceEvents are syn-

chronously delivered by the Framework, it is highly recommended that

implementations of these methods do not register

(BundleContext.registerService), modify

(ServiceRegistration.setProperties) or unregister

(ServiceRegistration.unregister) a service while being synchronized
on any object.

addingService(ServiceReference)

19.8.3.1 public Object addingService(ServiceReference reference)

reference Reference to service being added to the ServiceTracker object.

� A service is being added to the ServiceTracker object.

This method is called before a service which matched the search parameters

of the ServiceTracker object is added to it. This method should return the

service object to be tracked for this ServiceReference object. The returned
service object is stored in the ServiceTracker object and is available from

the getService and getServices methods.

Returns The service object to be tracked for the ServiceReference object or null if

the ServiceReference object should not be tracked.
modi fi edService(Serv iceReference,Object)

19.8.3.2 public void modifiedService(ServiceReference reference, Object service
)

reference Reference to service that has been modified.

service The service object for the modified service.

� A service tracked by the ServiceTracker object has been modified.

This method is called when a service being tracked by the ServiceTracker

object has had it properties modified.

removedService(ServiceReference,Ob ject)
400-588 OSGi Service-Platform Release 3

Service Tracker Specification Version 1.2 org.osgi.uti l.tracker
19.8.3.3 public void removedService(ServiceReference reference, Object service
)

reference Reference to service that has been removed.

service The service object for the removed service.

� A service tracked by the ServiceTracker object has been removed.

This method is called after a service is no longer being tracked by the

ServiceTracker object.
OSGi Service-Platform Release 3 401-588

org.osgi.util .tracker Service Tracker Specif ication Version 1.2
402-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 Introduction
20 Measurement and State

Specification

Version 1.0

20.1 Introduction

The Mea sure me nt class is a utility that provides a consistent way of han-
dling a diverse range of measurements for bundle developers. Its purpose is

to simplify the correct handling of measurements in OSGi Service Plat-

forms.

OSGi bundle developers from all over the world have different preferences

for measurement units, such as feet versus meters. In an OSGi environment,
bundles developed in different parts of the world can and will exchange

measurements when collaborating.

Distributing a measurement such as a simple floating point number

requires the correct and equal understanding of the measurement’s seman-

tic by both the sender and the receiver. Numerous accidents have occurred
due to misunderstandings between the sender and receiver because there

are so many different ways to represent the same value. For example, on

September 23, 1999, the Mars Polar Lander was lost because calculations

used to program the craft's trajectory were input with English units while

the operation documents specified metric units. See [62] Mars Polar Lander

failure for more information.

This Measurement and State Specification defines the norm that should be

used by all applications that execute in an OSGi Service Platform. This spec-

ification also provides utility classes.

20.1.1 Measurement Essentials

• Numerical error – All floating point measurements should be able to have

a numerical error.

• Numerical error calculations simplification – Support should be provided to

simplify measurements calculations.

• Unit conflict resolution – It must not be possible to perform addition or sub-
traction with different units when they are not compatible. For example,

it must not be possible to add meters to amperes or watts to pascals.

• Unit coercion – Multiplication and division operations involving more

than one type of measurement must result in a different unit. For

example, if meters are divided by seconds, the result must be a new unit

that represents m/s .

• Time-stamp – Measurements should contain a time-stamp so that
bundles can determine the age of a particular measurement.
OSGi Service-Platform Release 3 403-588

Introduction Measurement and State Specification Version 1.0
• Support for floating and discrete values – Both floating point values (64 bit
Java do uble floats) and discrete measurements (32 bit Java int) should be

supported.

• Consistency – The method of error calculation and handling of unit types

should be consistent.

• Presentation – The format of measurements and specified units should be

easy to read and understand.

20.1.2 Measurement Entities

• Measurement object – A Mea sure me nt object contains a doub le value, a

doub le error, and a long time-stamp. It is associated with a U nit object

that represents its type.

• State object – A State object contains a discrete measurement (int) with a
time-stamp and a name.

• Unit object – A U nit object represents a unit such as meter, second, mol, or

Pascal. A number of U nit objects are predefined and have common

names. Other Uni t objects are created as needed from the 7 basic Système

International d’Unité (SI) units. Different units are not used when a con-

version is sufficient. For example, the unit of a Me asur ement object for
length is always meters. If the length is needed in feet, then the number

of feet is calculated by multiplying the value of the Mea sure me nt object

in meters with the necessary conversion factor.

• Error – When a measurement is taken, it is never accurate. This specifi-

cation defines the error as the value that is added and subtracted to the

value to produce an interval, where the probability is 95% that the
actual value falls within this interval.

• Unit – A unit is the type of a measurement: meter, feet, liter, gallon etc.

• Base Unit – One of the 7 base units defined in the SI.

• Derived SI unit – A unit is a derived SI unit when it is a combination of

exponentiated base units. For example, a volt (V) is a derived unit

because it can be expressed as (m2×k g) / (s3 × A), where m , kg , s and A
are all base units.

• Quantitative derivation – A unit is quantitatively derived when it is con-

verted to one of the base units or derived units using a conversion

formula. For example, kilometers (k m) can be converted to meters (m),

gallons can be converted to liters, or horsepower can be converted to

watts.

Figure 64 Class Diagram, org.osgi.util.measurement

is of unit
UnitMeasurement

State

0..* 1
404-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 Measurement Object
20.2 Measurement Object

A Mea sure me nt object contains a value, an error, and a time-stamp It is
linked to a Unit object that describes the measurement unit in an SI Base

Unit or Derived SI Unit.

20.2.1 Value

The value of the Mea sure me nt object is the measured value. It is set in a

constructor. The type of the value is do uble .

20.2.2 Error

The Mea sure me nt object can contain a numerical error. This error specifies

an interval by adding and subtracting the error value from the measured

value. The type of the error is do ubl e. A valid error value indicates that the
actual measured value has a 95% chance of falling within this interval (see

Figure 2). If the error is not known it should be represented as a

Dou ble. NaN .

Figure 65 The Error Interval

20.2.3 Time-stamp

When a Mea sure ment object is created, the time-stamp can be set. A time-

stamp is a l ong value representing the number of milliseconds since the

epoch midnight of January 1, 1970, UTC (this is the value from

System.c urr entTimeMi l l is() method).

By default, a time-stamp is not set because the call to

System.c urr entTimeMi l l is() incurs overhead. If the time-stamp is not set

when the Mea sure ment object is created, then its default value is zero. If the

time-stamp is set, the creator of the M easur ement object must give the time

as an argument to the constructor. For example:

Measurement m = new Measurement(
v, e, null, System.currentTimeMillis());

measurement

|error||error|

95% chance that the actual value is in this range

+–
OSGi Service-Platform Release 3 405-588

Error Calculations Measurement and State Specification Version 1.0
20.3 Error Calculations

Once a measurement is taken, it often is used in calculations. The error
value assigned to the result of a calculation depends largely on the error val-

ues of the operands. Therefore, the M easu remen t class offers addition, sub-

traction, multiplication, and division functions for measurements and

constants. These functions take the error into account when performing the

specific operation.

The M eas ureme nt class uses absolute errors and has methods to calculate a

new absolute error when multiplication, division, addition, or subtraction is

performed. Error calculations must therefore adhere to the rules listed in

Table 25. In this table, ∆a is the absolute positive error in a value a and ∆b is

the absolute positive error in a value b. c is a constant floating point value

without an error.

20.4 Comparing Measurements

Measurement objects have a value and an error range, making comparing
these objects more complicated than normal scalars.

20.4.1 Identity and Equality

Both equ als(O bjec t) and hashC o de() methods are overridden to provide

value-based equality. Two Measurement objects are equal when the unit,
error, and value are the same. The time-stamp is not relevant for equality or

the hash code.

20.4.2 Comparing Measurement Objects

The M eas ureme nt class implements the java. lang .C ompa rab le interface

and thus implements the c ompa reTo (Ob ject) method. Comparing two
Mea sure me nt objects is not straightforward, however, due to the associated

error. The error effectively creates a range, so comparing two Me asur ement

objects is actually comparing intervals.

Calculation Function Error

a × b mul(Mea sure ment) | ∆a × b | + | a × ∆b |

a / b div(Mea sure ment) (| ∆a × b | + | a × ∆b |) / b2

a + b add (M easu remen t) ∆a + ∆b

a – b sub(Me asur ement) ∆a + ∆b

a × c mul(dou ble) | ∆a × c |

a / c div(dou ble) | ∆a / c |

a + c add (do ubl e) ∆a

a – c sub(do uble) ∆a

Tab le 25 Error Calculation Rules
406-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 Unit Object
Two Mea sure ment objects are considered to be equal when their intervals
overlap. In all other cases, the value is used in the comparison.

Figure 66 Comparing Measurement Objects

This comparison implies that the e quals (O bj ect) method may return fa ls e

while the c ompa reTo (O bj ect) method returns 0 for the same Me asur ement
object.

20.5 Unit Object

Each M easur ement object is related to a U nit object. The U nit object defines

the unit of the measurement value and error. For example, the Unit object

might define the unit of the measurement value and the error as meters (m).

For convenience, the U nit class defines a number of standard units as con-

stants. M easu remen t objects are given a specific U nit with the constructor.

The following example shows how a measurement can be associated with
meters (m):

Measurement length = new Measurement(v, 0.01, Unit.m);

Units are based on the Système International d’Unité (SI), developed after

the French Revolution. The SI consists of 7 different units that can be com-
bined in many ways to form a large series of derived units. The basic 7 units

are listed in Table 26. For more information, see [58] General SI index.

Additional units are derived in the following ways:

+–

+–

all these ranges are comparing equal

because they overlap with a

> a

a

< a

a

Description Unit name Symbol

leng th me ter m

mass k i lo gra m kg

time s eco nd s

ele ctr ic c urr ent a mper e A

ther mo dynami c te mp era ture k elv in K

amo unt o f substa nce mo le mo l

lumino us intensi ty c and ela c d

Table 26 Basic SI units.
OSGi Service-Platform Release 3 407-588

Unit Object Measurement and State Specification Version 1.0
Derived units can be a combination of exponentiated base units. For exam-
ple, H z (Hertz) is the unit for frequencies and is actually derived from the

calculation of 1/s . A more complicated derived unit is volt (V). A volt is actu-

ally:

 (m2×kg) / (s3 × A)

The SI defines various derived units with their own name, for example pas-

cal (P a), watt (W), volt (V), and many more.

The Mea sure ment class must maintain its unit by keeping track of the expo-

nents of the 7 basic SI units.

If different units are used in addition or subtraction of Mea sur ement

objects, an Arithme ticExce ption must be thrown.

Measurement length = new Measurement(v1, 0.01, Unit.m);
Measurement duration = new Measurement(v2, 0, Unit.s);
try {

Measurement r = length.add(duration);
}
catch(ArithmeticException e) {

// This must be thrown
}

When two M eas ureme nt objects are multiplied, the Unit object of the result
contains the sum of the exponents. When two Me asur ement objects are

divided, the exponents of the U nit object of the result are calculated by sub-

traction of the exponents.

The M eas ureme nt class must support exponents of -64 to +63. Overflow

must not be reported but must result in an invalid Un it object. All calcula-
tions with an invalid U nit object should result in an invalid U nit object. Typ-

ical computations generate exponents for units between +/- 4.

20.5.1 Quantitive Differences

The base and derived units can be converted to other units that are of the
same quality, but require a conversion because their scales and offsets may

differ. For example, degrees Fahrenheit, kelvin, and Celsius are all tempera-

tures and, therefore, only differ in their quantity. Kelvin and Celsius are the

same scale and differ only in their starting points. Fahrenheit differs from

kelvin in that both scale and starting point differ.

Using different U nit objects for the units that differ only in quantity can eas-

ily introduce serious software bugs. Therefore, the U nit class utilizes the SI

units. Any exchange of measurements should be done using SI units to pre-

vent these errors. When a measurement needs to be displayed, the presenta-

tion logic should perform the necessary conversions to present it in a

localized form. For example, when speed is presented in a car purchased in
the United States, it should be presented as miles instead of meters.

20.5.2 Why Use SI Units?

The adoption of the SI in the United States and the United Kingdom has met

with resistance. This issue raises the question why the SI system has to be
the preferred measurement system in the OSGi Specifications.
408-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 State Object
The SI system is utilized because it is the only measurement system that has
a consistent set of base units. The base units can be combined to create a

large number of derived units without requiring a large number of compli-

cated conversion formulas. For example, a watt is simply a combination of

meters, kilograms, and seconds (m2×kg/s3). In contrast, horsepower is not

easily related to inches, feet, fathoms, yards, furlongs, ounces, pounds,

stones, or miles. This difficulty is the reason that science has utilized the SI

for a long time. It is also the reason that the SI has been chosen as the system
used for the M easu remen t class.

The purpose of the Me asur ement class is internal, however, and should not

restrict the usability of the OSGi environment. Users should be able to use

the local measurement units when data is input or displayed. This choice is

the responsibility of the application developer.

20.6 State Object

The State object is used to represent discrete states. It contains a time-stamp
but does not contain an error or Un it object. The Mea sure me nt object is not

suitable to maintain discrete states. For example, a car door can be L OC KED,

UNL OC KED , or CH ILDLO C KED . Measuring and operating with these values

does not require error calculations, nor does it require SI units. Therefore,

the S ta te object is a simple, named object that holds an integer value.

20.7 Related Standards

20.7.1 JSR 108 Units Specification

Sun Microsystems Java Community Process (JCP) [59] JSR 108 Units Specifica-

tion addresses the same issues as this Measurement and State Specification.

At the time of the writing of this specification, no public review of the JCP

has occurred. This JSR, however, seems to be based on the [60] Unidata user

group: MetaApps project. This Unidata API overlaps this specification but has

the following issues:

• It uses a significant number of classes. Using many small classes can

create significant overhead, which is a problem for the resource-con-

strained OSGi Service Platform.

• It treats the SI units in the same way as quantitatively derived units. As

explained earlier, the purpose of the M eas ureme nt class is to prevent
confusion between units that only differ in their quantity like gallons

and liters. It is considered better to strictly separate the pr esen tat io n of

units from the units used in calculations.

• It is not yet complete as of the writing of this specification.

This JSR does not seem to move past the initial review phase.
OSGi Service-Platform Release 3 409-588

Security Considerations Measurement and State Specification Version 1.0
20.7.2 GNU Math Library in Kawa

The open source project Kawa, a scheme-based Java environment, has

included a gn u.math library that contains unit handling similar to this spec-
ification. It can be found at [61] A Math Library containing unit handling in

Kawa.

The library seems considerably more complex without offering much more

functionality than this specification. It also does not strictly separate basic

SI units such as meter from quantitatively derived units such as pica.

20.8 Security Considerations

The M eas ureme nt, U nit , and State classes have been made immutable.
Instances of these classes can be freely handed out to other bundles because

they cannot be extended, nor can the value, error, or time-stamp be altered

after the object is created.

20.9 org.osgi.util.measurement

The OSGi Measurement Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.measurement; specification-ver-
sion=1.0

20.9.1 Summary

• Measurement – Represents a value with an error, a unit and a time-

stamp. [p.410]

• State – Groups a state name, value and timestamp. [p.415]

• Unit – A unit system for measurements. [p.405]
Measurement

20.9.2 public class Measurement
implements Comparable

Represents a value with an error, a unit and a time-stamp.

A Measurement object is used for maintaining the tuple of value, error, unit

and time-stamp. The value and error are represented as doubles and the time

is measured in milliseconds since midnight, January 1, 1970 UTC.

Mathematic methods are provided that correctly calculate taking the error
into account. A runtime error will occur when two measurements are used

in an incompatible way. E.g., when a speed (m/s) is added to a distance (m).

The measurement class will correctly track changes in unit during multipli-

cation and division, always coercing the result to the most simple form. See

Unit [p.405] for more information on the supported units.

Errors in the measurement class are absolute errors. Measurement errors

should use the P95 rule. Actual values must fall in the range value +/- error

95% or more of the time.
410-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 org.osgi.util.measurement
A Measurement object is immutable in order to be easily shared.

Note: This class has a natural ordering that is inconsistent with equals. See

co mpar eTo [p.412] .

Measurement(double,double,Unit,l ong)

20.9.2.1 public Measurement(double value, double error, Unit unit, long time)

value The value of the Measurement.

error The error of the Measurement.

unit The Unit object in which the value is measured. If this argument is null,
then the unit will be set to Uni t .unity [p.418] .

time The time measured in milliseconds since midnight, January 1, 1970 UTC.

� Create a new Measurement object.

Measurement(double,double,Unit)

20.9.2.2 public Measurement(double value, double error, Unit unit)

value The value of the Measurement.

error The error of the Measurement.

unit The Unit object in which the value is measured. If this argument is null,

then the unit will be set to Uni t .unity [p.418] .

� Create a new Measurement object with a time of zero.

Measurement(double,Unit)

20.9.2.3 public Measurement(double value, Unit unit)

value The value of the Measurement.

unit The Unit in which the value is measured. If this argument is null, then the

unit will be set to U nit .un ity [p.418] .

� Create a new Measurement object with an error of 0.0 and a time of zero.

Measurement(double)

20.9.2.4 public Measurement(double value)

value The value of the Measurement.

� Create a new Measurement object with an error of 0.0, a unit of

Un it .unity [p.418] and a time of zero.

add(Measurement)

20.9.2.5 public Measurement add(Measurement m)

m The Measurement object that will be added with this object.

� Returns a new Measurement object that is the sum of this object added to the

specified object. The error and unit of the new object are computed. The
time of the new object is set to the time of this object.

Returns A new Measurement object that is the sum of this and m.

Throws ArithmeticException – If the Unit objects of this object and the specified

object cannot be added.

See Also Unit[p.405]
add(doub le,Uni t)

20.9.2.6 public Measurement add(double d, Unit u)

d The value that will be added with this object.

u The Unit object of the specified value.
OSGi Service-Platform Release 3 411-588

org.osgi.util .measurement Measurement and State Specification Version 1.0
� Returns a new Measurement object that is the sum of this object added to the
specified value.

Returns A new Measurement object that is the sum of this object added to the speci-

fied value. The unit of the new object is computed. The error and time of the

new object is set to the error and time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified

value cannot be added.

See Also Unit[p.405]
add(double)

20.9.2.7 public Measurement add(double d)

d The value that will be added with this object.

� Returns a new Measurement object that is the sum of this object added to the

specified value.

Returns A new Measurement object that is the sum of this object added to the speci-

fied value. The error, unit, and time of the new object is set to the error, Unit

and time of this object.
compareTo(Ob ject)

20.9.2.8 public int compareTo(Object obj)

obj The object to be compared.

� Compares this object with the specified object for order. Returns a negative

integer, zero, or a positive integer if this object is less than, equal to, or

greater than the specified object.

Note: This class has a natural ordering that is inconsistent with equals. For
this method, another Measurement object is considered equal if there is

some x such that

getValue()-getError() <= x<= getValue()+getError()

for both Measurement objects being compared.

Returns A negative integer, zero, or a positive integer if this object is less than, equal

to, or greater than the specified object.

Throws ClassCastException – If the specified object is not of type Measurement.

ArithmeticException – If the unit of the specified Measurement object is

not equal to the Unit object of this object.
div (Measurement)

20.9.2.9 public Measurement div(Measurement m)

m The Measurement object that will be the divisor of this object.

� Returns a new Measurement object that is the quotient of this object divided

by the specified object.

Returns A new Measurement object that is the quotient of this object divided by the

specified object. The error and unit of the new object are computed. The time
of the new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified

object cannot be divided.

See Also Unit[p.405]
div (double,Unit)
412-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 org.osgi.util.measurement
20.9.2.10 public Measurement div(double d, Unit u)

d The value that will be the divisor of this object.

u The Unit object of the specified value.

� Returns a new Measurement object that is the quotient of this object divided
by the specified value.

Returns A new Measurement that is the quotient of this object divided by the specified

value. The error and unit of the new object are computed. The time of the

new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified

object cannot be divided.

See Also Unit[p.405]
div(double)

20.9.2.11 public Measurement div(double d)

d The value that will be the divisor of this object.

� Returns a new Measurement object that is the quotient of this object divided

by the specified value.

Returns A new Measurement object that is the quotient of this object divided by the

specified value. The error of the new object is computed. The unit and time

of the new object is set to the Unit and time of this object.
equal s(Ob ject)

20.9.2.12 public boolean equals(Object obj)

obj The object to compare with this object.

� Returns whether the specified object is equal to this object. Two

Measurement objects are equal if they have same value, error and Unit.

Note: This class has a natural ordering that is inconsistent with equals. See

co mpar eTo [p.412] .

Returns true if this object is equal to the specified object; false otherwise.
getError()

20.9.2.13 public final double getError()

� Returns the error of this Measurement object. The error is always a positive
value.

Returns The error of this Measurement as a double.
getTime()

20.9.2.14 public final long getTime()

� Returns the time at which this Measurement object was taken. The time is

measured in milliseconds since midnight, January 1, 1970 UTC, or zero

when not defined.

Returns The time at which this Measurement object was taken or zero.
getUni t()

20.9.2.15 public final Unit getUnit()

� Returns the Unit object of this Measurement object.

Returns The Unit object of this Measurement object.

See Also Unit[p.405]
getValue()

20.9.2.16 public final double getValue()

� Returns the value of this Measurement object.
OSGi Service-Platform Release 3 413-588

org.osgi.util .measurement Measurement and State Specification Version 1.0
Returns The value of this Measurement object as a double.
hashCode()

20.9.2.17 public int hashCode()

� Returns a hash code value for this object.

Returns A hash code value for this object.
mul (Measurement)

20.9.2.18 public Measurement mul(Measurement m)

m The Measurement object that will be multiplied with this object.

� Returns a new Measurement object that is the product of this object multi-
plied by the specified object.

Returns A new Measurement that is the product of this object multiplied by the spec-

ified object. The error and unit of the new object are computed. The time of

the new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified

object cannot be multiplied.

See Also Unit[p.405]
mul (double,Unit)

20.9.2.19 public Measurement mul(double d, Unit u)

d The value that will be multiplied with this object.

u The Unit of the specified value.

� Returns a new Measurement object that is the product of this object multi-

plied by the specified value.

Returns A new Measurement object that is the product of this object multiplied by the

specified value. The error and unit of the new object are computed. The time

of the new object is set to the time of this object.

Throws ArithmeticException – If the units of this object and the specified value
cannot be multiplied.

See Also Unit[p.405]
mul (double)

20.9.2.20 public Measurement mul(double d)

d The value that will be multiplied with this object.

� Returns a new Measurement object that is the product of this object multi-

plied by the specified value.

Returns A new Measurement object that is the product of this object multiplied by the
specified value. The error of the new object is computed. The unit and time

of the new object is set to the unit and time of this object.
sub (Measurement)

20.9.2.21 public Measurement sub(Measurement m)

m The Measurement object that will be subtracted from this object.

� Returns a new Measurement object that is the subtraction of the specified

object from this object.

Returns A new Measurement object that is the subtraction of the specified object from

this object. The error and unit of the new object are computed. The time of
the new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified

object cannot be subtracted.
414-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 org.osgi.util.measurement
See Also Unit[p.405]
sub(double,Uni t)

20.9.2.22 public Measurement sub(double d, Unit u)

d The value that will be subtracted from this object.

u The Unit object of the specified value.

� Returns a new Measurement object that is the subtraction of the specified

value from this object.

Returns A new Measurement object that is the subtraction of the specified value from

this object. The unit of the new object is computed. The error and time of the
new object is set to the error and time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified

object cannot be subtracted.

See Also Unit[p.405]
sub(double)

20.9.2.23 public Measurement sub(double d)

d The value that will be subtracted from this object.

� Returns a new Measurement object that is the subtraction of the specified
value from this object.

Returns A new Measurement object that is the subtraction of the specified value from

this object. The error, unit and time of the new object is set to the error, Unit

object and time of this object.
toString()

20.9.2.24 public String toString()

� Returns a String object representing this Measurement object.

Returns a String object representing this Measurement object.
State

20.9.3 public class State

Groups a state name, value and timestamp.

The state itself is represented as an integer and the time is measured in milli-

seconds since midnight, January 1, 1970 UTC.

A State object is immutable so that it may be easily shared.

State(int,String ,l ong)

20.9.3.1 public State(int value, String name, long time)

value The value of the state.

name The name of the state.

time The time measured in milliseconds since midnight, January 1, 1970 UTC.

� Create a new State object.

State(int,String)

20.9.3.2 public State(int value, String name)

value The value of the state.

name The name of the state.

� Create a new State object with a time of 0.

equal s(Ob ject)
OSGi Service-Platform Release 3 415-588

org.osgi.util .measurement Measurement and State Specification Version 1.0
20.9.3.3 public boolean equals(Object obj)

obj The object to compare with this object.

� Return whether the specified object is equal to this object. Two State

objects are equal if they have same value and name.

Returns true if this object is equal to the specified object; false otherwise.
getName()

20.9.3.4 public final String getName()

� Returns the name of this State.

Returns The name of this State object.
getTime()

20.9.3.5 public final long getTime()

� Returns the time with which this State was created.

Returns The time with which this State was created. The time is measured in milli-

seconds since midnight, January 1, 1970 UTC.
getValue()

20.9.3.6 public final int getValue()

� Returns the value of this State.

Returns The value of this State object.
hashCode()

20.9.3.7 public int hashCode()

� Returns a hash code value for this object.

Returns A hash code value for this object.
toStr ing()

20.9.3.8 public String toString()

� Returns a String object representing this object.

Returns a String object representing this object.
Unit

20.9.4 public class Unit

A unit system for measurements. This class contains definitions of the most

common SI units.

This class only support exponents for the base SI units in the range -64 to

+63. Any operation which produces an exponent outside of this range will

result in a Unit object with undefined exponents.

A

20.9.4.1 public static final Unit A

The electric current unit ampere (A)

C

20.9.4.2 public static final Unit C

The electric charge unit coulomb (C).

coulomb is expressed in SI units as s· A

cd

20.9.4.3 public static final Unit cd

The luminous intensity unit candela (cd)

F

20.9.4.4 public static final Unit F

The capacitance unit farad (F).
416-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 org.osgi.util.measurement
farad is equal to C/V or is expressed in SI units as s4· A2/m2· kg

Gy

20.9.4.5 public static final Unit Gy

The absorbed dose unit gray (Gy).

Gy is equal to J/kg or is expressed in SI units as m2/s2

Hz

20.9.4.6 public static final Unit Hz

The frequency unit hertz (Hz).

hertz is expressed in SI units as 1/s

J

20.9.4.7 public static final Unit J

The energy unit joule (J).

joule is equal to N· m or is expressed in SI units as m2· kg/s2

K

20.9.4.8 public static final Unit K

The temperature unit kelvin (K)

kat

20.9.4.9 public static final Unit kat

The catalytic activity unit katal (kat).

katal is expressed in SI units as mol/s

kg

20.9.4.10 public static final Unit kg

The mass unit kilogram (kg)

lx

20.9.4.11 public static final Unit lx

The illuminance unit lux (lx).

lux is expressed in SI units as cd/m2

m

20.9.4.12 public static final Unit m

The length unit meter (m)

m2

20.9.4.13 public static final Unit m2

The area unit square meter(m2)

m3

20.9.4.14 public static final Unit m3

The volume unit cubic meter (m3)

m_s

20.9.4.15 public static final Unit m_s

The speed unit meter per second (m/s)

m_s2

20.9.4.16 public static final Unit m_s2

The acceleration unit meter per second squared (m/s2)

mol

20.9.4.17 public static final Unit mol

The amount of substance unit mole (mol)
OSGi Service-Platform Release 3 417-588

org.osgi.util .measurement Measurement and State Specification Version 1.0
N

20.9.4.18 public static final Unit N

The force unit newton (N).

N is expressed in SI units as m· kg/s2

Ohm

20.9.4.19 public static final Unit Ohm

The electric resistance unit ohm.

ohm is equal to V/A or is expressed in SI units as m2· kg/s3· A2

Pa

20.9.4.20 public static final Unit Pa

The pressure unit pascal (Pa).

Pa is equal to N/m2 or is expressed in SI units as kg/m· s2

rad

20.9.4.21 public static final Unit rad

The angle unit radians (rad)

S

20.9.4.22 public static final Unit S

The electric conductance unit siemens (S).

siemens is equal to A/V or is expressed in SI units as s3· A2/m2· kg

s

20.9.4.23 public static final Unit s

The time unit second (s)

T

20.9.4.24 public static final Unit T

The magnetic flux density unit tesla (T).

tesla is equal to Wb/m2 or is expressed in SI units as kg/s2· A

uni ty

20.9.4.25 public static final Unit unity

No Unit (Unity)

V

20.9.4.26 public static final Unit V

The electric potential difference unit volt (V).

volt is equal to W/A or is expressed in SI units as m2· kg/s3· A

W

20.9.4.27 public static final Unit W

The power unit watt (W).

watt is equal to J/s or is expressed in SI units as m2· kg/s3

Wb

20.9.4.28 public static final Unit Wb

The magnetic flux unit weber (Wb).

weber is equal to V· s or is expressed in SI units as m2· kg/s2· A

equal s(Ob ject)

20.9.4.29 public boolean equals(Object obj)

obj the Unit object that should be checked for equality
418-588 OSGi Service-Platform Release 3

Measurement and State Specif ication Version 1.0 References
� Checks whether this Unit object is equal to the specified Unit object. The
Unit objects are considered equal if their exponents are equal.

Returns true if the specified Unit object is equal to this Unit object.
hashCode()

20.9.4.30 public int hashCode()

� Returns the hash code for this object.

Returns This object’s hash code.
toString()

20.9.4.31 public String toString()

� Returns a String object representing the Unit

Returns A String object representing the Unit

20.10 References

[57] SI Units information

http://physics.nist.gov/cuu/Units

[58] General SI index

http://directory.google.com/Top/Science/Reference/Units_of_Measurement

[59] JSR 108 Units Specification

http://www.jcp.org/jsr/detail/108.jsp

[60] Unidata user group: MetaApps project

http://www.unidata.ucar.edu/community/committees/metapps/docs/ucar/

units/package-summary.html

[61] A Math Library containing unit handling in Kawa

http://www.gnu.org/software/kawa

[62] Mars Polar Lander failure

http://mars.jpl.nasa.gov/msp98/news/mco990930.html
OSGi Service-Platform Release 3 419-588

References Measurement and State Specification Version 1.0
420-588 OSGi Service-Platform Release 3

Position Specification Version 1.0 Introduction
21 Position Specification

Version 1.0

21.1 Introduction

The P osi ti on class is a utility providing bundle developers with a consistent

way of handling geographic positions in OSGi applications. The Pos it io n
class is intended to be used with the Wire Admin service but has wider

applicability.

The Pos it io n class is designed to be compatible with the Global Positioning

System (GPS). This specification will not define or explain the complexities

of positioning information. It is assumed that the reader has the appropriate
background to understand this information.

21.1.1 Essentials

• Position – Provide an information object that has well defined semantics

for a position.
• WGS-84 – Use the World Geodetic System 84 as the datum.

• Speed – Provide speed and track information.

• Errors – Position information always has certain errors or cannot be mea-

sured at all. This information must be available to the users of the infor-

mation.

• Units – Use SI units for all measurements.
• Wire Admin – This specification must work within the Wire Admin

service.

21.1.2 Entities

• Position – An object containing the different aspects of a position.

• Measurement – Contains a typed measurement made at a certain time and
with a specified error.

Figure 67 Class Diagram, org.osgi.util .position

latitude

Position Measurement

longitude

altitude

track

speed

1 1
1

1

1

11
1

1

1

OSGi Service-Platform Release 3 421-588

Positioning Posit ion Specif ication Version 1.0
21.2 Positioning

The P osi ti on class is used to give information about the position and move-
ment of a vehicle with a specified amount of uncertainty. The position is

based on WGS-84.

The Position class offers the following information:

• getLa ti tude() – The WGS-84 latitude of the current position. The unit of
a latitude must be rad (radians).

• getLo ngitud e() – The WGS-84 longitude of the current position. The

unit of a longitude must be rad (radians).

• getAlt itude () – Altitude is expressed as height in meters above the WGS-

84 ellipsoid. This value can differ from the actual height above mean sea

level depending on the place on earth where the measurement is taken
place. This value is not corrected for the geoid.

• getTra ck() – The true north course of the vehicle in radians.

• getSpe ed() – The ground speed. This speed must not include vertical

speed.

21.3 Units

Longitude and latitude are represented in radians, not degrees. This is con-

sistent with the use of the Mea sure me nt object. Radians can be converted to

degrees with the following formula, when lo nla t is the longitude or latitude:

degrees = (lonlat / π) * 180

Calculation errors are significantly reduced when all calculations are done

with a single unit system. This approach increases the complexity of presen-

tation, but presentations are usually localized and require conversion any-
way. Also, the radians are the units in the SI system and the java.lang.Math

class uses only radians for angles.

21.4 Optimizations

A P osi ti on object must be immutable. It must remain its original values

after it is created.

The P osi ti on class is not final. This approach implies that developers are

allowed to sub-class it and provide optimized implementations. For exam-
ple, it is possible that the M eas ureme nt objects are only constructed when

actually requested.

21.5 Errors

Positioning information is never exact. Even large errors can exist in certain

conditions. For this reason, the P osi t ion class returns all its measurements

as Mea sure ment objects. The M easu remen t class maintains an error value

for each measurement.
422-588 OSGi Service-Platform Release 3

Position Specification Version 1.0 Using Posit ion With Wire Admin
In certain cases it is not possible to supply a value; in those cases, the
method should return a NaN as specified in the M eas uremen t class.

21.6 Using Position With Wire Admin

The primary reason the Position is specified, is to use it with the Wire Admin

Service Specification on page 325. A bundle that needs position information

should register a Consumer service and the configuration should connect

this service to an appropriate Producer service.

21.7 Related Standards

21.7.1 JSR 179

In JCP, started [65] Location API for J2ME . This API is targeted at embedded
systems and is likely to not contain some of the features found in this API.

This API is targeted to be reviewed at Q4 of 2002. This API should be consid-

ered in a following release.

21.8 Security

The security aspects of the Po sit io n class are delegated to the security

aspects of the Wire Admin service. The P osi ti on object only carries the

information. The Wire Admin service will define what Consumer services
will receive position information from what Producer services. It is there-

fore up to the administrator of the Wire Admin service to assure that only

trusted bundles receive this information, or can supply it.

21.9 org.osgi.util.position

The OSGi Position Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.position; specification-ver-
sion=1.0
Posi tion

21.9.1 public class Position

Position represents a geographic location, based on the WGS84 System

(World Geodetic System 1984).

The org.osgi.util.measurement.Measurement class is used to represent

the values that make up a position.

A given position object may lack any of it’s components, i.e. the altitude

may not be known. Such missing values will be represented by null.
OSGi Service-Platform Release 3 423-588

References Posit ion Specif ication Version 1.0
Position does not override the implementation of either equals() or hash-
Code() because it is not clear how missing values should be handled. It is up

to the user of a position to determine how best to compare two position

objects. A Position object is immutable.

Posi ti on(Measurement,Measurement,Measurement,Measurement,Measurement)

21.9.1.1 public Position(Measurement lat, Measurement lon, Measurement alt,
Measurement speed, Measurement track)

lat a Measurement object specifying the latitude in radians, or null

lon a Measurement object specifying the longitude in radians, or null

alt a Measurement object specifying the altitude in meters, or null

speed a Measurement object specifying the speed in meters per second, or null

track a Measurement object specifying the track in radians, or null

� Contructs a Position object with the given values.

getA ltitude()

21.9.1.2 public Measurement getAltitude()

� Returns the altitude of this position in meters.

Returns a Measurement object in Unit.m representing the altitude in meters above

the ellipsoid null if the altitude is not known.
getLatitude()

21.9.1.3 public Measurement getLatitude()

� Returns the latitude of this position in radians.

Returns a Measurement object in Unit.rad representing the latitude, or null if the

latitude is not known..
getLongitude()

21.9.1.4 public Measurement getLongitude()

� Returns the longitude of this position in radians.

Returns a Measurement object in Unit.rad representing the longitude, or null if the

longitude is not known.
getSpeed ()

21.9.1.5 public Measurement getSpeed()

� Returns the ground speed of this position in meters per second.

Returns a Measurement object in Unit.m_s representing the speed, or null if the

speed is not known..
getTrack()

21.9.1.6 public Measurement getTrack()

� Returns the track of this position in radians as a compass heading. The track

is the extrapolation of previous previously measured positions to a future

position.

Returns a Measurement object in Unit.rad representing the track, or null if the track

is not known..

21.10 References

[63] World Geodetic System 84 (WGS-84)

http://www.wgs84.com
424-588 OSGi Service-Platform Release 3

Position Specification Version 1.0 References
[64] Location Interoperability Forum

http://www.locationforum.org/

[65] Location API for J2ME

http://www.jcp.org/jsr/detail/179.jsp
OSGi Service-Platform Release 3 425-588

References Posit ion Specif ication Version 1.0
426-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 Introduction
22 Execution Environment

Specification

Version 1.0

22.1 Introduction

This specification defines two different execution environments for OSGi
Server Platform Servers. One is based on a minimal environment that sup-

ports OSGi Framework and basic services implementations. The other is

derived from [71] Foundation Profile. Care has been taken to make the mini-

mum requirements a proper subset of Foundation Profile.

This chapter contains a detailed listing of the Execution Environments. This
list is the actual specification and is normative. However, this list is not

suited for tools. Therefore, the OSGi web site provides the JAR files that con-

tain all the signatures of the Execution Environments on the OSGi web site,

see [67] Downloadable Execution Environments.

Please note that the OSGi Minimum Execution Requirements do not consti-
tute a specification for a Java technology profile or platform under the Java

Community Process, but rather are a list of dependencies on certain ele-

ments of the presumed underlying Java profile(s) or platform(s).

22.1.1 Essentials

• Bundle Environment – A well defined format with handling rules for

defining the classes and methods that a bundle can rely on.

• Machine Processable – It should be easy to process the specification with

tools to verify bundles and Service Platforms.

• Standards – It should be based on standards as much as possible. It must

be compatible with [68] J2ME, Java 2 Micro Edition.

22.1.2 Entities

• Execution Environment – A collection of classes.

• Class – Contains a set of qualifiers and a set of signature for each method

and field in that class.

• Signature – A unique identifier for the type associated with a field or the
return type and argument types of a function.

• Qualifiers – A set of attributes that further define a signature.

• Profile – A SUN/JCP defined set of classes, based on a configuration.

• Configuration – A SUN/JCP defined set of classes and VM specification.
OSGi Service-Platform Release 3 427-588

About Execution Environments Execution Environment Specif ication Version 1.0
Figure 68 Entities involved in an Execution Environment

22.2 About Execution Environments

22.2.1 Signatures

An Execution Environment consists of a set of public and protected signa-

tures. A signature is defined to be a unique identifier for a field or method

with class and type information. For example, the signature of the

wa it(l ong) method in O bje ct would be:

java/lang/Object.wait(J)V

The encoding of the signature is defined in [66] The Java Virtual Machine

Specification.

For this specification, each signature includes a set of qualifiers that further

qualify the field or method. These are the access qualifiers (like p ubl ic ,

priva te , and pro tecte d), and informational qualifiers like synchr oni zed ,
vo la ti le , str ictf p, inter fa ce , na tive, and ab strac t . These informational quali-

fiers are not included in the EE listings.

An Execution Environment consists of a set of classes and interfaces with

their access qualifiers. Each class consist of a set of signatures.

22.2.2 Semantics

An Execution environment is solely based on the signatures of the methods

and fields. An OSGi Execution Environment relies on the appropriate SUN

Java documents to define the semantics of a methods or fields.

22.3 OSGi Defined Execution

Environments

This specification contains two Execution Environments. They are listed in

the following sections. Each signature is printed in the normal Java format

except that p ubl ic modifiers are not shown to save space (all fields or meth-
ods must be pub l ic or p ro tected to be included in this list).

Bundle
based on the

Execution
Environment

Class or
Interface

Signature

Qualifier

Service
Platform

intersection

provides the

union

0..*

0..*

0..*

contains

contains

qualified by

qualified by

0..*

0..*

1

1

1

0..*

0..*

1

0..*
428-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
Before each signature there are two columns.

1. O SGi/M inimum-1.0 execution requirements

2. C DC - 1. 0/Fo unda tio n-1.0 execution environment.

If the column contains a �, it means that the signature has been included in
that Execution Environment. A � indicates that the signature is missing

from the EE.

The information is included here for completeness. However, it is likely that

tools will be developed by vendors that validate the compliance of Service

Platforms and bundles in relation to an Execution Environment. For that
reason, it is possible to download a JAR file containing all the signatures as

Java class files from the OSGi web site, see [67] Downloadable Execution Envi-

ronments.

22.3.1 java.io
� � package java.io
� � class BufferedInputStream extends FilterInputStream
� � Bu ff ered In pu tSt ream(InputSt ream)
� � Bu ff ered In pu tSt ream(InputSt ream,in t)
� � int ava ilab le() th rows IO Excep t ion
� � protect ed b y te[] b u f
� � void c lose() throws IO Except ion
� � protected in t cou nt
� � v oid m ark (in t)
� � protected in t mark lim it

� � protected in t markpos
� � b oolean mar kSu p p orted ()
� � protected in t pos
� � int read () th rows IOExc ept ion
� � int read (b y te[] ,int ,in t) th rows

IOExc ept ion
� � void reset () throws IO Ex cept ion
� � long skip (lon g) throws IO Ex cep t ion

� � class BufferedOutputStream extends FilterOutputStream
� � Bu ff ered O utp utS t ream(O u tp u tSt ream)
� � Bu ff ered O utp utS t ream(O u tp u tSt ream,

int)
� � protect ed b y te[] b u f
� � protected in t cou nt

� � v oid f lu sh () th rows IOExc ept ion
� � v oid wr ite(b y te[],in t ,int) throws

IOExc ept ion
� � v oid wr ite(in t) th rows IOExc ept ion

� � class BufferedReader extends Reader
� � Bu ff ered Read er (Reader)
� � Bu ff ered Read er (Reader ,int)
� � void c lose() throws IO Except ion
� � v oid m ark (in t) th rows IOExc ept ion
� � b oolean markSu p ported()
� � int read () th rows IOExc ept ion

� � int read (c har[],in t ,int) throws
IOExc ept ion

� � Str ing read Line() th rows IOExcept ion
� � b oolean read y () th rows IOExc ept ion
� � void reset () throws IO Ex cept ion
� � long skip (lon g) throws IO Ex cep t ion

� � class BufferedWriter extends Writer
� � Bu ff ered Wr iter(Wr iter)
� � Bu ff ered Wr iter(Wr iter,in t)
� � void c lose() throws IO Except ion
� � v oid f lu sh () th rows IOExc ept ion
� � v oid n ewLin e() th rows IOExcep t ion

� � v oid wr ite(c har [] ,int ,in t) th rows
IOExc ept ion

� � v oid wr ite(in t) th rows IOExc ept ion
� � v oid wr ite(S t rin g,int ,in t) th rows

IOExc ept ion

� � class ByteArrayInputStream extends InputStream
� � By teArray InputS t ream(by te[])
� � By teArray InputS t ream(by te[],in t,in t)
� � int ava ilab le()
� � protect ed b y te[] b u f
� � void c lose() throws IO Except ion
� � protected in t cou nt
� � v oid m ark (in t)

� � protected in t mark
� � b oolean mar kSu p p orted ()
� � protected in t pos
� � int read ()
� � int read (b y te[] ,int ,in t)
� � void reset ()
� � long skip (lon g)

� � class ByteArrayOutputStream extends OutputStream
� � By teArrayOutpu tS t ream()
� � By teArray Ou tpu tS t ream(in t)
� � protect ed b y te[] b u f
� � void c lose() throws IO Except ion
� � protected in t cou nt
� � void reset ()
� � int s ize()
� � byte[] toBy teArray ()

� � Str ing toSt ring()
� � Str ing toSt ring(St r ing) throws

Un su pp or tedEn cod ingExc ept ion
� � v oid wr ite(b y te[],in t ,int)
� � v oid wr ite(in t)
� � void wr iteTo(OutputS t ream) throws

IOExc ept ion

� � class CharArrayReader extends Reader
� � Ch arArray Read er(ch ar []) � � Ch arArray Read er(ch ar [] ,int ,in t)
OSGi Service-Platform Release 3 429-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � protected ch ar [] bu f
� � void c lose()
� � protected int c ou nt
� � void mark(int) th rows IOExcep t ion
� � protected int m arked Pos
� � boolean markSuppor ted()
� � protected int p os

� � in t read () th rows IO Except ion
� � in t read (c ha r[],in t,in t) throws

IOExcep t ion
� � boolean read y () th rows IOExcept ion
� � void reset () th rows IOExc ep tion
� � long skip (lon g) th rows IO Exc ep tion

� � class CharArrayWriter extends Writer
� � Ch arAr rayWriter ()
� � Ch arAr rayWriter (in t)
� � protected ch ar [] bu f
� � void c lose()
� � protected int c ou nt
� � void f lush ()
� � void reset ()

� � in t s ize()
� � ch ar[] toCharAr ray ()
� � St r ing toSt ring()
� � void write(ch ar [] ,int ,in t)
� � void write(int)
� � void write(S tr ing,in t ,int)
� � void writeTo(Writer) throws IO Excep t ion

� � class CharConversionException extends IOException
� � Ch arConversionExcep t ion() � � Ch arConversionExcep t ion(S t rin g)

� � interface DataInput
� � ab st ract b oolean readB oolean () th rows

IOExcep t ion
� � ab st ract b y te read By te() th rows

IOExcep t ion
� � ab st ract c ha r read Ch ar() throws

IOExcep t ion
� � ab st ract double read Dou ble() throws

IOExcep t ion
� � ab st ract f loat read Float () throws

IOExcep t ion
� � ab st ract v oid readF u lly (b yte[]) throws

IOExcep t ion
� � ab st ract v oid readF u lly (b yte[],in t ,int)

th rows IO Exc ep tion
� � ab st ract in t read In t () th rows IO Excep t ion

� � ab st ract S t rin g readL ine() throws
IOExcep t ion

� � ab st ract lon g readL ong() throws
IOExcep t ion

� � ab st ract shor t readS h ort () th rows
IOExcep t ion

� � ab st ract in t readUn s ign ed By te() th rows
IOExcep t ion

� � ab st ract in t readUn s ign edShor t() throws
IOExcep t ion

� � ab st ract S t rin g readUTF() throws
IOExcep t ion

� � ab st ract in t skip By tes(in t) th rows
IOExcep t ion

� � class DataInputStream extends FilterInputStream implements DataInput
� � DataInputS t ream(InputS t ream)
� � f in al in t read (by te[]) throws IO Excep t ion
� � f in al in t read (by te[],in t, in t) throws

IOExcep t ion
� � f inal boolean readBoolean() throws

IOExcep t ion
� � f in al b y te read By te() th rows IOExc ept ion
� � f inal cha r read Ch ar() throws IO Ex cept ion
� � f inal doub le read Dou ble() throws

IOExcep t ion
� � f inal f loat read F loat () throws IO Ex cept ion
� � f in al v oid read F ully (b yte[]) throws

IOExcep t ion
� � f in al void read F ully (by te[],in t,in t) th rows

IOExcep t ion
� � f in al in t read In t () th rows IO Excep t ion

� � f in al S t rin g readL ine() th rows
IOExcep t ion

� � f in al lon g readL ong() throws IO Ex cep t ion
� � f inal shor t readShort () th rows

IOExcep t ion
� � f in al in t read Un sign ed By te() throws

IOExcep t ion
� � f inal in t read Un sign ed Sh or t() throws

IOExcep t ion
� � f in al S t rin g readUTF() th rows

IOExcep t ion
� � f inal s tat ic S t ring readUTF(Data Input)

th rows IO Exc ep tion
� � f inal in t skipBy tes(in t) th rows

IOExcep t ion

� � interface DataOutput
� � ab st ract v oid write(b y te[]) th rows

IOExcep t ion
� � ab st ract v oid write(b y te[] ,int ,in t) th rows

IOExcep t ion
� � ab st ract v oid write(in t) th rows

IOExcep t ion
� � ab st ract v oid writeBoolean (boolean)

th rows IO Exc ep tion
� � ab st ract v oid writeBy te(in t) th rows

IOExcep t ion
� � ab st ract v oid writeBy tes(S tr ing) th rows

IOExcep t ion
� � ab st ract v oid writeCh ar (in t) th rows

IOExcep t ion

� � ab st ract v oid writeCh ars(S tr ing) th rows
IOExcep t ion

� � ab st ract v oid writeDou ble(d oub le)
th rows IO Exc ep tion

� � ab st ract v oid writeFloa t(f loat) throws
IOExcep t ion

� � ab st ract void writeInt (int) th rows
IOExcep t ion

� � ab st ract v oid writeLon g(lon g) throws
IOExcep t ion

� � ab st ract v oid writeS hor t(in t) th rows
IOExcep t ion

� � ab st ract v oid writeUTF (S t rin g) throws
IOExcep t ion

� � class DataOutputStream extends FilterOutputStream implements DataOutput
� � DataOutputS t ream(Outpu tS t ream)
� � void f lush () th rows IO Excep t ion
� � f in al in t size()
� � void write(by te[],in t, in t) throws

IOExcep t ion

� � void write(int) throws IO Excep t ion
� � f in al v oid wr iteBoolean (b oolean) throws

IOExcep t ion
� � f in al v oid wr iteBy te(in t) th rows

IOExcep t ion
430-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � f in al v oid writeBy tes(S t rin g) th rows
IOExc ept ion

� � f in al v oid writeCh ar (in t) th rows
IOExc ept ion

� � f in al v oid writeCh ars(S tr ing) th rows
IOExc ept ion

� � f in al v oid writeDou b le(d oub le) throws
IOExc ept ion

� � f in al v oid writeFloa t (f loat) throws
IOExc ept ion

� � f in al v oid writeIn t(in t) th rows
IOExc ept ion

� � f in al v oid writeLon g(long) throws
IOExc ept ion

� � f in al v oid writeS hor t (in t) th rows
IOExc ept ion

� � f inal void writeUTF(S t r ing) throws
IOExc ept ion

� � protected in t wr itten

� � class EOFException extends IOException
� � EO FExc ep t ion() � � EO F Ex cep t ion(S tr ing)

� � interface Externalizable implements Serializable
� � ab st ract void read Externa l(Objec t Input)

throws IO Ex cep t ion,
ClassN otFou n dExc ept ion

� � ab st ract v oid
writeEx terna l(Ob jectOutput) throws
IOExc ept ion

� � class File implements Serializable , Comparable
� � File(File,S t rin g)
� � File(S tr ing)
� � File(S tr ing,S t rin g)
� � b oolean can Read()
� � b oolean can Write()
� � int c omp areTo(F ile)
� � int comp areTo(Ob ject)
� � b oolean createNewFile() throws

IOExc ept ion
� � stat ic File crea teTemp File(S tr ing,S t rin g)

throws IO Ex cep t ion
� � stat ic File crea teTemp File(S tr ing,S t rin g,

File) th rows IO Excep t ion
� � b oolean delete()
� � v oid d eleteO nExit ()
� � b oolean equ als (O b ject)
� � b oolean exist s ()
� � File getAb solu teF ile()
� � S tr ing getAb solutePath ()
� � File getCanonic alFile() throws

IOExc ept ion
� � S tr ing getCan onic alPath () th rows

IOExc ept ion
� � S tr ing getN ame()
� � S tr ing getPa ren t ()
� � File getPa ren tFile()

� � Str ing getPa th()
� � int hashCode()
� � b oolean isAb so lu te()
� � b oolean isDirectory()
� � b oolean isF ile()
� � b oolean isHid den ()
� � long la stM odif ied ()
� � long length()
� � Str ing[] l is t ()
� � S tr ing[] l is t (F ilenameFilter)
� � File[] l is t Files ()
� � File[] l is t Files (F ileFilter)
� � File[] l is t Files (F ilenameFilter)
� � stat ic F ile[] l is tRoots()
� � b oolean mkd ir()
� � b oolean mkd irs ()
� � f inal s tat ic S t r ing pathSep arator
� � f in al s tat ic c h ar pa th S eparatorCh ar
� � b oolean ren ameTo(F ile)
� � f inal s tat ic S t r ing separator
� � f inal s tat ic char separatorChar
� � b oolean setLastM odif ied (lon g)
� � b oolean setReadO nly ()
� � Str ing toSt ring()
� � java.n et .URL toURL() throws

jav a.n et .Ma lformed URLExc ept ion

� � final class FileDescriptor
� � FileDesc rip tor ()
� � f inal s tat ic F ileDescr iptor err
� � f inal s tat ic F ileDescr iptor in

� � f inal s tat ic F ileDescr iptor out
� � void sync () th rows SyncFa iled Except ion
� � b oolean va lid()

� � interface FileFilter
� � ab st ract boolean accept (File)

� � class FileInputStream extends InputStream
� � FileIn p utS t ream (F ile) th rows

FileN otFou nd Excep t ion
� � FileIn p utS t ream (F ileDesc rip tor)
� � FileIn p utS t ream (S t rin g) th rows

FileN otFou nd Excep t ion
� � int ava ilab le() th rows IO Excep t ion
� � void c lose() throws IO Except ion
� � protected void finalize() throws

IOExc ept ion

� � f inal F ileDescr ip tor getFD() throws
IOExc ept ion

� � int read () th rows IOExc ept ion
� � int read (b y te[]) th rows IO Exc ep tion
� � int read (b y te[] ,int ,in t) th rows

IOExc ept ion
� � long skip (lon g) throws IO Ex cep t ion

� � interface FilenameFilter
� � ab st ract boolean accept (File,S t rin g)

� � class FileNotFoundException extends IOException
� � FileNotFou nd Except ion() � � FileNotFou nd Except ion(S t ring)

� � class FileOutputStream extends OutputStream
� � FileOutputS t ream(File) throws

FileN otFou nd Excep t ion
� � FileOutputS t ream(FileDescr iptor)
� � FileOutputS t ream(St r ing) th rows

FileN otFou nd Excep t ion
� � FileOutputS t ream(St r ing,boolean)

throws F ileNotFoundExc ep tion

� � v oid c lose() throws IO Excep t ion
� � protected void finalize() throws

IOExc ept ion
� � f inal F ileDescr ip tor getFD() throws

IOExc ept ion
� � v oid wr ite(b y te[]) th rows IO Excep t ion
OSGi Service-Platform Release 3 431-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � void write(by te[],in t, in t) throws
IOExcep t ion

� � void write(int) throws IO Excep t ion

� � final class FilePermission extends java.security.Permission implements Serializable
� � FilePermiss ion(S t rin g,St r ing)
� � boolean eq u als(O bjec t)
� � St r ing getAc tion s ()
� � in t hashCode()

� � boolean implies (java.secu rit y .Permiss ion)
� � jav a.secu rit y .Perm iss ionCollec t ion

newPerm iss ionCollect ion ()

� � class FileReader extends InputStreamReader
� � FileRead er (F ile) th rows

FileNotF ou nd Excep t ion
� � FileRead er (F ileDescrip tor)

� � FileReader (S t rin g) th rows
FileNotF ou nd Excep t ion

� � class FileWriter extends OutputStreamWriter
� � FileWriter(File) th rows IO Excep t ion
� � FileWriter(FileDesc rip tor)
� � FileWriter(S tr ing) th rows IOExcep t ion

� � FileWriter(S tr ing,b oolean) throws
IOExcep t ion

� � class FilterInputStream extends InputStream
� � protected

FilterInputS t ream(InputS t ream)
� � in t av a ilable() throws IO Ex cept ion
� � void c lose() throws IO Ex cept ion
� � protected InputSt ream in
� � void mark(int)
� � boolean markSuppor ted()

� � in t read () th rows IO Except ion
� � in t read (b y te[]) th rows IOExcept ion
� � in t read (b y te[] ,in t ,in t) th rows

IOExcep t ion
� � void reset () th rows IOExc ep tion
� � long skip (lon g) th rows IO Exc ep tion

� � class FilterOutputStream extends OutputStream
� � FilterOutputSt ream(Outpu tS t ream)
� � void c lose() throws IO Ex cept ion
� � void f lush () th rows IO Excep t ion
� � protected Ou tp utS t ream out

� � void write(b yte[]) throws IO Excep t ion
� � void write(byte[],in t ,in t) throws

IOExcep t ion
� � void write(int) throws IO Excep t ion

� � abstract class FilterReader extends Reader
� � protected FilterR ead er(Read er)
� � void c lose() throws IO Ex cept ion
� � protected Read er in
� � void mark(int) th rows IOExcep t ion
� � boolean markSuppor ted()
� � in t read () throws IO Except ion

� � in t read (c ha r[],in t,in t) throws
IOExcep t ion

� � boolean read y () th rows IOExcept ion
� � void reset () th rows IOExc ep tion
� � long skip (lon g) th rows IO Exc ep tion

� � abstract class FilterWriter extends Writer
� � protected FilterWriter (Writer)
� � void c lose() throws IO Ex cept ion
� � void f lush () th rows IO Excep t ion
� � protected Wr iter ou t

� � void write(ch ar [] ,int ,in t) th rows
IOExcep t ion

� � void write(int) throws IO Excep t ion
� � void write(S tr ing,in t ,int) throws

IOExcep t ion

� � abstract class InputStream
� � InputS t ream()
� � in t av a ilable() throws IO Ex cept ion
� � void c lose() throws IO Ex cept ion
� � void mark(int)
� � boolean markSuppor ted()
� � ab st ract in t read () th rows IO Exc ep tion

� � in t read (b y te[]) th rows IOExcept ion
� � in t read (b y te[] ,in t ,in t) th rows

IOExcep t ion
� � void reset () th rows IOExc ep tion
� � long skip (lon g) th rows IO Exc ep tion

� � class InputStreamReader extends Reader
� � InputS t reamReader (In pu tS t ream)
� � InputS t reamReader (In pu tS t ream,St r ing)

th rows Un su p por tedEn cod ingExc ept ion
� � void c lose() throws IO Ex cept ion
� � St r in g getEnc od ing()

� � in t read () th rows IO Except ion
� � in t read (c ha r[],in t,in t) throws

IOExcep t ion
� � boolean read y () th rows IOExcept ion

� � class InterruptedIOException extends IOException
� � Interrup ted IOExc ept ion()
� � Interrup ted IOExc ept ion(S t ring)

� � in t by tesTransferred

� � class InvalidClassException extends ObjectStreamException
� � Invalid ClassExc ep tion (St r ing)
� � Invalid ClassExc ep tion (St r ing,S t ring)

� � St r ing c lassn ame
� � St r ing getM essage()

� � class InvalidObjectException extends ObjectStreamException
� � Inv alid Ob jec tExc ept ion (St r ing)

� � class IOException extends Exception
� � IOExcep t ion () � � IOE xcep t ion (S t rin g)

� � class LineNumberReader extends BufferedReader
� � LineN u mberRead er (Reader)
� � LineN u mberRead er (Reader ,int)
� � in t getLin eNu mb er()
� � void mark(int) th rows IOExcep t ion
� � in t read () throws IO Except ion

� � in t read (c ha r[],in t,in t) throws
IOExcep t ion

� � St r ing read Line() th rows IO Except ion
� � void reset () th rows IOExc ep tion
� � void setLin eNu mb er(int)
432-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � long skip (lon g) throws IO Ex cep t ion

� � class NotActiveException extends ObjectStreamException
� � NotAc tiv eExc ept ion () � � NotAc tiv eExc ept ion (S t rin g)

� � class NotSerializableException extends ObjectStreamException
� � NotS erializ ab leExc ep tion () � � NotS erializ ab leExc ep tion (St r ing)

� � interface ObjectInput implements DataInput
� � ab st ract in t av ailable() throws

IOExc ept ion
� � ab st ract v oid c lose() th rows IO Exc ep tion
� � ab st ract in t read() throws IO Except ion
� � ab st ract in t read(by te[]) th rows

IOExc ept ion

� � ab st ract in t read(by te[],in t ,int) th rows
IOExc ept ion

� � ab st ract Ob ject read Ob ject () throws
ClassNotFoundExcept ion , IO Ex cept ion

� � ab st ract long skip(lon g) th rows
IOExc ept ion

� � class ObjectInputStream extends InputStream implements ObjectInput , ObjectStreamConstants
� � protected Objec t InputS t ream() th rows

IOExc ept ion , S ecu rit y Excep t ion
� � Ob jec tInputS t ream(InputS t ream) th rows

S treamCorrup tedExc ept ion , IO Ex cep t ion
� � int ava ilab le() th rows IO Excep t ion
� � void c lose() throws IO Except ion
� � v oid d ef au ltR ead Ob ject () t hr ows

IOExc ept ion , ClassNotF oun d Exc ep t ion,
NotAc tiv eExc ept ion

� � protected b oolean
enableR esolv eO bjec t (b oolean) throws
S ecu rit y Ex cep t ion

� � int read () th rows IOExc ept ion
� � int read (b y te[] ,int ,in t) th rows

IOExc ept ion
� � b oolean read Boolean() throws

IOExc ept ion
� � byte read By te() th rows IO Except ion
� � ch ar readChar() th rows IOExcept ion
� � protected Objec tSt reamClass

readClassDescr iptor () th rows
IOExc ept ion , ClassNotF oun d Exc ep t ion

� � doub le readDoub le() th rows IOExc ept ion
� � Ob jec tIn p utS t ream$GetF ield readF ields ()

throws IO Ex cep t ion,
ClassN otFou n dE xc ept ion ,
NotAc tiv eExc ept ion

� � f loa t read F loat () th rows IOExc ept ion
� � v oid read Fu lly (b y te[]) th rows

IOExc ept ion
� � v oid read Fu lly (b y te[] ,int ,in t) th rows

IOExc ept ion

� � int read Int () throws IO Ex cept ion
� � Str ing read Line() th rows IOExcept ion
� � long read Lon g() th rows IOExc ept ion
� � f in al O b ject read Ob ject () th rows

Op t ion alDataExc ept ion ,
ClassNotFoundExcept ion , IO Ex cept ion

� � protected O bjec t readO b jec tOv er rid e()
throws O pt ion alDataEx cep t ion,
ClassNotFoundExcept ion , IO Ex cept ion

� � sh ort readShor t () th rows IO Except ion
� � protected v oid read S t ream Head er()

throws IO Ex cep t ion,
S treamCorrup tedExc ep tion

� � int read Un sign edB yte() throws
IOExc ept ion

� � int read Un sign edS h ort () th rows
IOExc ept ion

� � Str ing read UTF() th rows IOExcept ion
� � v oid

regis terValid at ion (O b ject Inp u tValid at ion,
int) throws NotAct iv eExcept ion,
Inv a lid O bjec tEx cep t ion

� � protected Class
resolv eClass(Objec tSt reamClass) th rows
IOExc ept ion , ClassNotF oun d Ex cep t ion

� � protected O bjec t resolv eOb ject (Ob jec t)
throws IO Ex cep t ion

� � protected Class
resolv eProxy C lass (St r ing[]) throws
IOExc ept ion , ClassNotF oun d Ex cep t ion

� � int skip By tes(int) throws IO Except ion

� � abstract class ObjectInputStream$GetField
� � Ob jec tIn p utS t ream$GetF ield()
� � ab st ract boolean defau lted (St r ing)

throws IO Ex cep t ion,
I l legalArgu men tExc ep tion

� � ab st ract by te get (S t rin g,by te) th rows
IOExc ept ion , I l legalArgu men tEx cep t ion

� � ab st ract c h ar get (S t ring,c h ar) th rows
IOExc ept ion , I l legalArgu men tEx cep t ion

� � ab st ract d ou b le get(S t rin g,dou b le)
throws IO Ex cep t ion,
I l legalArgu men tExc ep tion

� � ab st ract f loat get (S tr ing,f loat) throws
IOExc ept ion , I l legalArgu men tEx cep t ion

� � ab st ract in t get (S t rin g,in t) th rows
IOExc ept ion , I l legalArgumen tExcep t ion

� � ab st ract long get (St r ing,long) th rows
IOExc ept ion , I l legalArgumen tExcep t ion

� � ab st ract Ob ject get (St r ing,Ob jec t)
throws IO Ex cep t ion,
I l legalArgu men tExc ep tion

� � ab st ract short get (St r ing,shor t) th rows
IOExc ept ion , I l legalArgumen tExcep t ion

� � ab st ract b oolean get (S tr ing,b oolean)
throws IO Ex cep t ion,
I l legalArgu men tExc ep tion

� � ab st ract O b jectS t ream Class
getOb jectS t reamClass()

� � interface ObjectInputValidation
� � ab st ract void valid ateO bjec t () throws

Inv a lid O bjec tEx cep t ion

� � interface ObjectOutput implements DataOutput
� � ab st ract v oid c lose() th rows IO Exc ep tion
� � ab st ract void f lush() throws IO Except ion
� � ab st ract void write(by te[]) throws

IOExc ept ion
� � ab st ract v oid write(by te[],in t,in t) th rows

IOExc ept ion

� � ab st ract void write(int) throws
IOExc ept ion

� � ab st ract v oid writeO bjec t (O b ject)
throws IO Ex cep t ion

� � class ObjectOutputStream extends OutputStream implements ObjectOutput ,
OSGi Service-Platform Release 3 433-588

OSGi Defined Execution Environments Execution Environment Specification Version
ObjectStreamConstants
� � protected Ob jec tOutputSt ream() th rows

IOE xcep t ion , S ecu rit y Ex cep t ion
� � Ob jectOutputS t ream(Outpu tS tream)

th rows IO Exc ep tion
� � protected void annotateClass (C lass)

th rows IO Exc ep tion
� � protected void annotateProxyClass(Class)

th rows IO Exc ep tion
� � void c lose() throws IO Ex cept ion
� � void d ef aultWriteO bjec t () th rows

IOExcep t ion
� � protected void d rain() throws

IOExcep t ion
� � protected boolean

enab leRep lac eOb jec t(b oolean) th rows
Sec ur it yExc ep tion

� � void f lush () th rows IO Excep t ion
� � Ob jectO ut p u tS t rea m$Pu tF ield

pu tField s() throws IO Except ion
� � protected Ob jec t rep laceO b ject (Ob ject)

th rows IO Exc ep tion
� � void reset () th rows IOExc ept ion
� � void useP rotocolVersion (int) throws

IOExcep t ion
� � void write(by te[]) throws IO Excep t ion
� � void write(by te[],in t, in t) throws

IOExcep t ion
� � void write(int) throws IO Excep t ion

� � void writeBoolean(b oolean) th rows
IOExcep t ion

� � void writeBy te(int) throws IO Ex cept ion
� � void writeBy tes (S t rin g) th rows

IOExcep t ion
� � void writeChar (in t) throws IO Ex cept ion
� � void writeCh ars(S t rin g) th rows

IOExcep t ion
� � protected v oid

wr iteC lassDescr ip tor (O b jectS t reamClass)
th rows IO Exc ep tion

� � void writeDoub le(double) th rows
IOExcep t ion

� � void writeF ields () th rows IOExc ept ion
� � void wr iteFloat (floa t) throws IO Ex cep t ion
� � void writeIn t (in t) th rows IOExc ept ion
� � void writeLong(long) th rows IOExcep t ion
� � f in al v oid wr iteOb ject (O bjec t) th rows

IOExcep t ion
� � protected v oid

wr iteO b jectOverride(Ob ject) th rows
IOExcep t ion

� � void writeS h ort (in t) throws IO Exc ep t ion
� � protected v oid wr iteS t reamHead er()

th rows IO Exc ep tion
� � void writeUTF (St r ing) th rows

IOExcep t ion

� � abstract class ObjectOutputStream$PutField
� � Ob jectO ut p u tS t rea m$Pu tF ield ()
� � ab st ract void put (St r ing,by te)
� � ab st ract void put (St r ing,cha r)
� � ab st ract void put (St r ing,double)
� � ab st ract void put (St r ing,f loat)
� � ab st ract void put (St r ing,in t)

� � ab st ract void put (St r ing,long)
� � ab st ract void put (St r ing,Ob ject)
� � ab st ract void put (St r ing,short)
� � ab st ract v oid p ut (St r ing,b oolean)
� � ab st ract v oid write(O b jectO utp ut)

th rows IO Exc ep tion

� � class ObjectStreamClass implements Serializable
� � Class f orC lass()
� � Ob jectS t ream Field getField (St r ing)
� � Ob jectS t ream Field [] getField s()
� � St r in g getName()
� � long getS erialVersion UID()

� � stat ic Ob jectS t reamClass lookup (Class)
� � f in al s tat ic O b jectS treamF ield []

NO _F IELDS
� � St r ing toSt ring()

� � interface ObjectStreamConstants
� � f in al s ta t ic in t b aseWireHand le
� � f in al s ta t ic in t PRO TOCOL _ VER SIO N_ 1
� � f in al s ta t ic in t PRO TOCOL _ VER SIO N_ 2
� � f in al s ta t ic b y te S C_ BLO CK_DATA
� � f in al s ta t ic b y te S C_ EXTERNAL IZAB LE
� � f in al s ta t ic b y te S C_ S ERIAL IZABLE
� � f in al s ta t ic b y t e S C_ WR ITE_ M ETHOD
� � f inal s ta t ic shor t STREAM_MAG IC
� � f inal s ta t ic shor t STREAM_VERS ION
� � f in al s ta t ic S eria liz ab lePerm iss ion

SUB CLASS_ IMPLEMENTA TION _PER MISS IO
N

� � f in al s ta t ic S eria liz ab lePerm iss ion
SUB ST ITUTIO N_ PERMIS S IO N

� � f in al s ta t ic b y te TC_ ARR AY

� � f inal s tat ic by te TC_ BAS E
� � f in al s tat ic b y te TC_ BL OCKDATA
� � f in al s tat ic b y te TC_ BL OCKDATA LON G
� � f inal s tat ic by te TC_ CLAS S
� � f inal s tat ic by te TC_ CLASSDES C
� � f in al s tat ic b y te TC_ ENDB LO CKDATA
� � f inal s tat ic by te TC_ EXCEPTION
� � f in al s t at ic b y t e TC_ L ON GS TRIN G
� � f inal s tat ic by te TC_ MAX
� � f inal s tat ic by te TC_ NULL
� � f inal s tat ic by te TC_ OBJECT
� � f inal s tat ic by te TC_ PR OXYCLASSDESC
� � f in al s t at ic b y t e TC_ REF ER EN CE
� � f inal s tat ic by te TC_ RESET
� � f inal s tat ic by te TC_ STRING

� � abstract class ObjectStreamException extends IOException
� � protected Ob jec tS t reamExcept ion() � � protected Ob jectS t reamExcept ion(S t ring)

� � class ObjectStreamField implements Comparable
� � Ob jectS t ream Field (S t r in g,Class)
� � in t c omp areTo(O bjec t)
� � St r in g getName()
� � in t getOf f set ()
� � Class getTy p e()

� � ch ar getTyp eCod e()
� � St r ing getTy p eSt r ing()
� � boolean isPrim itiv e()
� � protected void setOf f set (int)
� � St r ing toSt ring()

� � class OptionalDataException extends ObjectStreamException
� � boolean eof � � in t len gth

� � abstract class OutputStream
� � Ou tputS tream()
� � void c lose() throws IO Ex cept ion

� � void f lush () th rows IO Excep t ion
� � void write(b yte[]) throws IO Excep t ion
434-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � v oid wr ite(b y te[],in t ,int) throws
IOExc ept ion

� � ab st ract void write(int) throws
IOExc ept ion

� � class OutputStreamWriter extends Writer
� � Ou tp utS t ream Wr iter (O u tp u tSt ream)
� � Ou tp utS t ream Wr iter (O u tp u tSt ream,

Str ing) th rows
Un su pp or ted En cod ingExc ept ion

� � void c lose() throws IO Except ion
� � v oid f lu sh () th rows IOExc ept ion

� � S tr ing getEn cod ing()
� � v oid wr ite(c har [] ,int ,in t) th rows

IOExc ept ion
� � v oid wr ite(in t) th rows IOExc ept ion
� � v oid wr ite(S t rin g,int ,in t) th rows

IOExc ept ion

� � class PipedInputStream extends InputStream
� � PipedInputS t ream()
� � Pip edIn p ut S t ream (Pip ed Ou t p ut S t ream)

throws IO Ex cep t ion
� � int ava ilab le() th rows IO Excep t ion
� � protect ed b y te[] b u ff er
� � void c lose() throws IO Except ion
� � v oid c on nec t (Pip ed Ou t p ut S t ream)

throws IO Ex cep t ion

� � protected in t in
� � protected in t out
� � f in al p ro tec ted stat ic int PIPE_ S IZE
� � int read () th rows IOExc ept ion
� � int read (b y te[] ,int ,in t) th rows

IOExc ept ion
� � protected v oid rec eive(in t) th rows

IOExc ept ion

� � class PipedOutputStream extends OutputStream
� � PipedO utputSt ream()
� � PipedO utputSt ream(Piped InputS t ream)

throws IO Ex cep t ion
� � void c lose() throws IO Except ion
� � void connec t (Piped InputSt ream) throws

IOExc ept ion

� � v oid f lu sh () th rows IOExc ept ion
� � v oid wr ite(b y te[],in t ,int) throws

IOExc ept ion
� � v oid wr ite(in t) th rows IOExc ept ion

� � class PipedReader extends Reader
� � Pip edReader ()
� � Pip edReader (Piped Writer) throws

IOExc ept ion
� � void c lose() throws IO Except ion
� � void connec t (PipedWr iter) throws

IOExc ept ion

� � int read () th rows IOExc ept ion
� � int read (c har[],in t ,int) throws

IOExc ept ion
� � b oolean read y () th rows IOExc ept ion

� � class PipedWriter extends Writer
� � Pip edWriter()
� � Pip edWriter(Pip ed Read er) throws

IOExc ept ion
� � void c lose() throws IO Except ion
� � v oid c on nec t (Pip ed Read er) th rows

IOExc ept ion

� � v oid f lu sh () th rows IOExc ept ion
� � v oid wr ite(c har [] ,int ,in t) th rows

IOExc ept ion
� � v oid wr ite(in t) th rows IOExc ept ion

� � class PrintStream extends FilterOutputStream
� � Prin tS tream(OutputS t ream)
� � Prin tS tream(OutputS t ream,boolean)
� � b oolean ch eckE r ror()
� � v oid c lose()
� � v oid f lu sh ()
� � void p r in t (char [])
� � void p r in t (char)
� � v oid p r in t (dou b le)
� � v oid p r in t (floa t)
� � void p r in t (int)
� � v oid p r in t (long)
� � void p r in t (Ob ject)
� � void p r in t (St r ing)
� � v oid p r in t (boolean)

� � v oid p r int ln ()
� � v oid p r int ln (c ha r[])
� � v oid p r int ln (c ha r)
� � v oid p r int ln (d ou ble)
� � v oid p r int ln (f loat)
� � v oid p r int ln (in t)
� � v oid p r int ln (lon g)
� � v oid p r int ln (O b jec t)
� � v oid p r int ln (S t rin g)
� � v oid p r int ln (b oolean)
� � protected void setE rror()
� � v oid wr ite(b y te[],in t ,int)
� � v oid wr ite(in t)

� � class PrintWriter extends Writer
� � Prin tWr iter (Outpu tS tream)
� � Prin tWr iter (Ou tpu tS tream,b oolean)
� � Prin tWr iter (Wr iter)
� � Prin tWr iter (Wr iter ,boolean)
� � b oolean ch eckE r ror()
� � v oid c lose()
� � v oid f lu sh ()
� � protected Writer ou t
� � void p r in t (char [])
� � void p r in t (char)
� � v oid p r in t (dou b le)
� � v oid p r in t (floa t)
� � void p r in t (int)
� � v oid p r in t (long)
� � void p r in t (Ob ject)
� � void p r in t (St r ing)

� � v oid p r int (boolean)
� � v oid p r int ln ()
� � v oid p r int ln (c ha r[])
� � v oid p r int ln (c ha r)
� � v oid p r int ln (d ou ble)
� � v oid p r int ln (f loat)
� � v oid p r int ln (in t)
� � v oid p r int ln (lon g)
� � v oid p r int ln (O b jec t)
� � v oid p r int ln (S t rin g)
� � v oid p r int ln (b oolean)
� � protected void setE rror()
� � v oid wr ite(c har [])
� � v oid wr ite(c har [] ,int ,in t)
� � v oid wr ite(in t)
� � v oid wr ite(S t rin g)
OSGi Service-Platform Release 3 435-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � void write(S tr ing,in t ,int)

� � class PushbackInputStream extends FilterInputStream
� � PushbackInputS t ream(InputS t ream)
� � PushbackInputS t ream(InputS t ream,in t)
� � in t av a ilable() throws IO Ex cept ion
� � protected by te[] b u f
� � void c lose() throws IO Ex cept ion
� � boolean markSuppor ted()
� � protected int p os
� � in t read () throws IO Except ion

� � in t read (b y te[] ,in t ,in t) th rows
IOExcep t ion

� � long skip (lon g) th rows IO Exc ep tion
� � void un read(by te[]) throws IO Except ion
� � void u n read (by te[] ,int ,in t) th rows

IOExcep t ion
� � void u n read (int) throws IO Ex cep t ion

� � class PushbackReader extends FilterReader
� � Push backReader (R ead er)
� � Push backReader (R ead er,in t)
� � void c lose() throws IO Ex cept ion
� � void mark(int) th rows IOExcep t ion
� � boolean markSuppor ted()
� � in t read () throws IO Except ion
� � in t read (c ha r[],in t,in t) throws

IOExcep t ion

� � boolean read y () th rows IOExcept ion
� � void reset () th rows IOExc ep tion
� � void u n read (ch ar[]) th rows IOExcep t ion
� � void u n read (ch ar[],in t ,int) th rows

IOExcep t ion
� � void u n read (int) throws IO Ex cep t ion

� � class RandomAccessFile implements DataInput , DataOutput
� � Random AccessFile(F ile,S t ring) throws

FileNotF ou nd Excep t ion
� � Random AccessFile(S t rin g,St r ing) throws

FileNotF ou nd Excep t ion
� � void c lose() throws IO Ex cept ion
� � f in al F ileDesc rip tor getF D() th rows

IOExcep t ion
� � long getF ilePointer () throws IO Except ion
� � long length() throws IO Except ion
� � in t read () throws IO Except ion
� � in t read (b y te[]) th rows IOExcept ion
� � in t read (b y te[], in t ,in t) th rows

IOExcep t ion
� � f inal boolean readBoolean() throws

IOExcep t ion
� � f in al b y te read By te() th rows IOExc ept ion
� � f inal cha r read Ch ar() throws IO Ex cept ion
� � f inal doub le read Dou ble() throws

IOExcep t ion
� � f inal f loat read F loat () throws IO Ex cept ion
� � f in al v oid read F ully (b yte[]) throws

IOExcep t ion
� � f in al void read F ully (by te[],in t,in t) th rows

IOExcep t ion
� � f in al in t read In t () th rows IO Excep t ion
� � f in al S t rin g readL ine() th rows

IOExcep t ion
� � f in al lon g readL ong() throws IO Ex cep t ion
� � f inal shor t readShort () th rows

IOExcep t ion
� � f in al in t read Un sign ed By te() throws

IOExcep t ion

� � f inal in t read Un sign ed Sh or t() throws
IOExcep t ion

� � f in al S t rin g readUTF() th rows
IOExcep t ion

� � void seek(long) throws IO Excep t ion
� � void setLen gth (long) th rows IO Excep t ion
� � in t skipBytes (in t) throws IO Except ion
� � void write(b yte[]) throws IO Excep t ion
� � void write(byte[],in t ,in t) throws

IOExcep t ion
� � void write(int) throws IO Excep t ion
� � f in al v oid wr iteBoolean (b oolean) throws

IOExcep t ion
� � f in al v oid wr iteBy te(in t) th rows

IOExcep t ion
� � f in al v oid wr iteBy tes(S tr ing) th rows

IOExcep t ion
� � f in al v oid wr iteCh ar(in t) th rows

IOExcep t ion
� � f inal void wr iteChars (St r ing) throws

IOExcep t ion
� � f in al v oid wr iteDou ble(d oub le) throws

IOExcep t ion
� � f in al v oid wr iteFloa t(f loat) th rows

IOExcep t ion
� � f inal void wr iteInt (int) throws

IOExcep t ion
� � f in al v oid wr iteLon g(lon g) throws

IOExcep t ion
� � f in al v oid wr iteSh or t(in t) th rows

IOExcep t ion
� � f in al v oid wr iteUTF (S t rin g) th rows

IOExcep t ion

� � abstract class Reader
� � protected Read er()
� � protected Read er(O bjec t)
� � ab st ract v oid close() th rows IOExc ept ion
� � protected Ob jec t lock
� � void mark(int) th rows IOExcep t ion
� � boolean markSuppor ted()
� � in t read () throws IO Except ion

� � in t read (c ha r[]) throws IO Ex cep t ion
� � ab st ract in t read(char [] ,int ,in t) th rows

IOExcep t ion
� � boolean read y () th rows IOExcept ion
� � void reset () th rows IOExc ep tion
� � long skip (lon g) th rows IO Exc ep tion

� � class SequenceInputStream extends InputStream
� � Seq u enc eInp u tSt ream(Inp u tSt ream,

InputS t ream)
� �

Seq u enc eInp u tSt ream(jav a.u t il. En um erat i
on)

� � in t av a ilable() throws IO Ex cept ion
� � void c lose() throws IO Ex cep t ion
� � in t read () th rows IO Except ion
� � in t read (b y te[] ,in t ,in t) th rows

IOExcep t ion

� � interface Serializable
� � final class SerializablePermission extends java.security.BasicPermission
� � Ser ializab lePermiss ion(S t rin g) � � Ser ializab lePermiss ion(S t rin g,St r ing)

� � class StreamCorruptedException extends ObjectStreamException
436-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � S treamCorrup tedExc ept ion () � � S treamCorrup tedExc ep tion (St r ing)

� � class StreamTokenizer
� � S treamTokenizer (Read er)
� � v oid c ommen tCh ar (in t)
� � v oid eolIsS ignif ican t (boolean)
� � int l in eno()
� � v oid lowerCaseMod e(b oolean)
� � int n extToken () th rows IOExc ept ion
� � doub le n va l
� � v oid ord inary Ch ar(in t)
� � void ord inaryCh ars (int ,in t)
� � v oid p ar seN um bers()
� � v oid p u sh Bac k()
� � v oid q u oteCh ar(in t)

� � void resetSyntax()
� � v oid s lashS lash Commen ts(b oolean)
� � void s lashS tarComments (boolean)
� � Str ing sval
� � Str ing toSt ring()
� � f inal s tat ic in t TT_ EOF
� � f inal s tat ic in t TT_ EOL
� � f inal s tat ic in t TT_ NUMB ER
� � f inal s tat ic in t TT_ WORD
� � int t t ype
� � v oid wh itesp ac eCh ars (int ,in t)
� � v oid wordChars (in t ,int)

� � class StringReader extends Reader
� � S tr ingR ead er(St r ing)
� � v oid c lose()
� � v oid m ark (in t) th rows IOExc ept ion
� � b oolean markSu p ported()
� � int read () th rows IOExc ept ion

� � int read (c har[],in t ,int) throws
IOExc ept ion

� � b oolean read y () th rows IOExc ept ion
� � void reset () throws IO Ex cept ion
� � long skip (lon g) throws IO Ex cep t ion

� � class StringWriter extends Writer
� � Str ingWriter()
� � Str ingWriter(in t)
� � void c lose() throws IO Except ion
� � v oid f lu sh ()
� � S tr ingBu f fer getBu ff er()

� � Str ing toSt ring()
� � v oid wr ite(c har [] ,int ,in t)
� � v oid wr ite(in t)
� � v oid wr ite(S t rin g)
� � v oid wr ite(S t rin g,int ,in t)

� � class SyncFailedException extends IOException
� � S yn c Failed E xcep t ion(S t rin g)

� � class UnsupportedEncodingException extends IOException
� � Un su pp or ted En cod ingExc ept ion () � � Un su pp or tedEn cod ingExc ept ion (S t rin g)

� � class UTFDataFormatException extends IOException
� � UTFDataF ormatExcep t ion() � � UTFDataF ormatExcep t ion(S t rin g)

� � class WriteAbortedException extends ObjectStreamException
� � WriteAbor tedExc ept ion (S t rin g,Excep t ion)
� � Ex cept ion detail

� � S tr ing getM essage()

� � abstract class Writer
� � protected Writer()
� � protected Writer(Ob jec t)
� � ab st ract v oid c lose() th rows IO Exc ep tion
� � ab st ract void f lush() throws IO Except ion
� � protected O bjec t lock
� � v oid wr ite(c har []) th rows IO Exc ep tion

� � ab st ract v oid write(ch ar [],in t ,in t) th rows
IOExc ept ion

� � v oid wr ite(in t) th rows IOExc ept ion
� � v oid wr ite(S t rin g) th rows IOExc ept ion
� � v oid wr ite(S t rin g,int ,in t) th rows

IOExc ept ion

22.3.2 java.lang
� � package java.lang
� � class AbstractMethodError extends IncompatibleClassChangeError
� � Ab st ractM eth od Error () � � Ab st ractMethod Error (St r ing)

� � class ArithmeticException extends RuntimeException
� � Arith met icExcep t ion () � � Arithmet icExcept ion(S t ring)

� � class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException
� � Array Ind exO u tO f Boun d sExc ept ion ()
� � Array Ind exO u tO f Boun d sExc ept ion (in t)

� � Array Ind exO u tO f Boun d sExc ept ion (St r in g)

� � class ArrayStoreException extends RuntimeException
� � ArrayS toreExcept ion() � � Array S toreExcep t ion(S t rin g)

� � final class Boolean implements java.io.Serializable
� � Boolean (St r ing)
� � Boolean (boolean)
� � b oolean booleanVa lue()
� � b oolean equ als (O b ject)
� � f in al s tat ic B oolean FAL S E
� � stat ic b oolean getBoolean (S t rin g)

� � int hashCode()
� � Str ing toSt ring()
� � f inal s tat ic Boolean TRUE
� � f in al s tat ic C lass TYPE
� � stat ic Boolean v alu eO f(S tr ing)

� � final class Byte extends Number implements Comparable
� � By te(b y te)
� � By te(S t rin g) th rows

Nu mb erF ormatExc ep tion
� � b yte b y teValu e()
� � int comp areTo(Byte)
� � int comp areTo(Ob ject)

� � stat ic By te decode(St r ing) throws
Nu mb erF ormatExc ep t ion

� � doub le d oub leValu e()
� � b oolean equ als (O b ject)
� � f loa t f loa tVa lue()
� � int hashCode()
� � int in tValu e()
OSGi Service-Platform Release 3 437-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � long lon gValu e()
� � f in al s ta t ic b y te MAX_ VALUE
� � f in al s ta t ic b y te MIN _ VALUE
� � stat ic by te par seBy te(St r ing) th rows

Nu mb erF ormatExc ept ion
� � stat ic by te par seBy te(St r ing,in t) th rows

Nu mb erF ormatExc ept ion
� � sh ort shor tValue()

� � St r ing toSt ring()
� � stat ic St r ing toS t rin g(b y te)
� � f inal s tat ic C lass TYPE
� � stat ic By te v alueO f (S t rin g) th rows

Nu mb erF ormatExc ept ion
� � stat ic By te v alueO f (S t rin g,int) th rows

Nu mb erF ormatExc ept ion

� � final class Character implements java.io.Serializable , Comparable
� � Ch aracter(char)
� � ch ar ch arV alue()
� � f in al s ta t ic b y te

CO MBIN ING _ SPA CING _ MAR K
� � in t c omp areTo(Charac ter)
� � in t c omp areTo(O bjec t)
� � f in al s ta t ic b y te

CO NNECTOR_ PU NCTU ATION
� � f in al s ta t ic b y te CO NTR OL
� � f inal s ta t ic by te CURREN CY_ SYMBOL
� � f in al s ta t ic b y te DAS H_ PUNCTUATIO N
� � f in al stat ic b y te DECIM AL_ DIG IT_ NU MBER
� � stat ic int d igit (c ha r,in t)
� � f in al s ta t ic b y te EN CL OS ING _ MA RK
� � f in al s ta t ic b y te EN D_ PUN CTUATION
� � boolean eq u als(O bjec t)
� � stat ic ch ar forDigit (in t ,int)
� � f in al s ta t ic b y te FO RM AT
� � stat ic int getNu mer icValue(char)
� � stat ic int getTy p e(c ha r)
� � in t hashCode()
� � stat ic boolean isDef ined (ch ar)
� � stat ic boolean isDigit (c h ar)
� � stat ic b oolean is Iden t ifier Ignorab le(c ha r)
� � stat ic boolean is IS OCont rol(c ha r)
� � stat ic boolean is Jav aId en t if ierPart (ch ar)
� � stat ic boolean is Jav aId en t if ierS tar t (c ha r)
� � stat ic boolean is Let ter(c ha r)
� � stat ic boolean is Let terO rDigit(c har)
� � stat ic boolean is LowerCase(c h ar)
� � stat ic boolean isS paceChar(ch ar)
� � stat ic boolean isTit leCase(ch ar)
� � stat ic boolean

isUn icod eId ent if ierPa rt (c h ar)

� � stat ic boo lean
isUn icod eId ent if ierS tart (ch ar)

� � stat ic boo lean isUp p erCase(ch ar)
� � stat ic boo lean isWhitespace(ch ar)
� � f inal s tat ic by te LETTER_ NUM BER
� � f in al s tat ic b y te LIN E_ S EPARATO R
� � f inal s tat ic by te LO WERCASE_LETTER
� � f inal s tat ic by te MATH_S YM BO L
� � f inal s tat ic in t MAX_RADIX
� � f inal s tat ic cha r MAX_ VAL UE
� � f inal s tat ic in t MIN_RADIX
� � f in al s tat ic c ha r M IN_ VAL UE
� � f inal s tat ic by te MO DIF IER _LETTER
� � f inal s tat ic by te MO DIF IER _SYM BO L
� � f in al s tat ic b y te NO N_ S PACIN G_ M ARK
� � f inal s tat ic by te OTHER_LETTER
� � f inal s tat ic by te OTHER_ NUMB ER
� � f inal s tat ic by te OTHER_ PU NCTU ATION
� � f inal s tat ic by te OTHER_ SYMBOL
� � f in al s tat ic b y te PARAG RAPH_ S EPARATO R
� � f inal s tat ic by te PRIVATE_US E
� � f inal s tat ic by te SPACE_SEPARATOR
� � f in al s tat ic b y te S TART_ PUN CTUATION
� � f in al s tat ic b y te S URRO GATE
� � f inal s tat ic by te TITLECASE_LETTER
� � stat ic ch ar toLowerCase(c ha r)
� � St r ing toSt ring()
� � stat ic ch ar toTit leCase(c ha r)
� � stat ic ch ar toUpp erCase(c h ar)
� � f inal s tat ic C lass TYPE
� � f inal s tat ic by te UNASS IGNED
� � f inal s tat ic by te UPPERCASE_LETTER

� � class Character$Subset
� � protected Ch aracter$Subset (St r ing)
� � f in al b oolean eq ua ls (Ob ject)

� � f in al in t hash Cod e()
� � f inal S t ring toSt r ing()

� � final class Character$UnicodeBlock extends Character$Subset
� � f in al s ta t ic Charac ter$Un icod eBloc k

ALPHABETIC_ PRES ENTATION _F O RMS
� � f in al s ta t ic Charac ter$Un icod eBloc k

ARABIC
� � f in al s ta t ic Charac ter$Un icod eBloc k

ARABIC_ PR ES ENTATIO N_ F O RMS _ A
� � f in al s ta t ic Charac ter$Un icod eBloc k

ARABIC_ PR ES ENTATIO N_ F O RMS _ B
� � f in al s ta t ic Charac ter$Un icod eBloc k

ARMEN IA N
� � f in al s ta t ic Charac ter$Un icod eBloc k

ARRO WS
� � f in al s ta t ic Charac ter$Un icod eBloc k

BAS IC_ LATIN
� � f in al s ta t ic Charac ter$Un icod eBloc k

BEN GAL I
� � f in al s ta t ic Charac ter$Un icod eBloc k

BLO CK_ ELEM EN TS
� � f in al s ta t ic Charac ter$Un icod eBloc k

BOPO M OF O
� � f in al s ta t ic Charac ter$Un icod eBloc k

BOX_ DRAWING
� � f in al s ta t ic Charac ter$Un icod eBloc k

CJK_ CO M PATIBIL ITY

� � f inal s tat ic Charac ter$Un icod eBloc k
CJK_ CO M PATIBIL ITY_ FO RM S

� � f inal s tat ic Charac ter$Un icod eBloc k
CJK_ CO M PATIBIL ITY_ IDEOG RAPHS

� � f inal s tat ic Charac ter$Un icod eBloc k
CJK_ S YM BOL S_ AN D_ PUN CTUATIO N

� � f inal s tat ic Charac ter$Un icod eBloc k
CJK_ UN IFIED_ IDEOG RAPHS

� � f inal s tat ic Charac ter$Un icod eBloc k
CO MBIN ING _ DIACRIT ICAL_ M ARKS

� � f inal s tat ic Charac ter$Un icod eBloc k
CO MBIN ING _ HALF _M ARKS

� � f inal s tat ic Charac ter$Un icod eBloc k
CO MBIN ING _ MARKS _F O R_ SYMBO LS

� � f inal s tat ic Charac ter$Un icod eBloc k
CO NTRO L_ PICTURES

� � f inal s tat ic Charac ter$Un icod eBloc k
CURR EN CY_ S YMB OL S

� � f inal s tat ic Charac ter$Un icod eBloc k
CYRIL LIC

� � f inal s tat ic Charac ter$Un icod eBloc k
DEV ANAG ARI

� � f inal s tat ic Charac ter$Un icod eBloc k
DING BATS
438-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � f inal s tat ic Character$Un icod eBloc k
EN CL OS ED_ ALPHAN UM ERICS

� � f inal s tat ic Character$Un icod eBloc k
EN CL OS ED_ CJK_ L ETTERS _ AN D_ MO NTHS

� � f inal s tat ic Character$Un icod eBloc k
GENERAL _ PUNCTUATIO N

� � f inal s tat ic Character$Un icod eBloc k
GEO METRIC_ SHAPES

� � f inal s tat ic Character$Un icod eBloc k
GEO RG IAN

� � f inal s tat ic Character$Un icod eBloc k
GR EEK

� � f inal s tat ic Character$Un icod eBloc k
GR EEK_ EXTENDED

� � f inal s tat ic Character$Un icod eBloc k
GU JARATI

� � f inal s tat ic Character$Un icod eBloc k
GU RMU KHI

� � f inal s tat ic Character$Un icod eBloc k
HALF WIDTH_A ND_ F ULL WIDTH_ F OR MS

� � f inal s tat ic Character$Un icod eBloc k
HANG UL_ COM PATIBIL ITY_ JAMO

� � f inal s tat ic Character$Un icod eBloc k
HANG UL_ JAM O

� � f inal s tat ic Character$Un icod eBloc k
HANG UL_ S YLL ABLES

� � f inal s tat ic Character$Un icod eBloc k
HEB REW

� � f inal s tat ic Character$Un icod eBloc k
HIRAG ANA

� � f inal s tat ic Character$Un icod eBloc k
IPA_ EXTENS IO NS

� � f inal s tat ic Character$Un icod eBloc k
KAN BUN

� � f inal s tat ic Character$Un icod eBloc k
KAN NADA

� � f inal s tat ic Character$Un icod eBloc k
KATAKANA

� � f inal s tat ic Character$Un icod eBloc k LA O
� � f inal s tat ic Character$Un icod eBloc k

LATIN _ 1_ S UPPL EM ENT

� � f in al s tat ic Ch aracter$Un icod eBloc k
LATIN _ EXTENDED_ A

� � f in al s tat ic Ch aracter$Un icod eBloc k
LATIN _ EXTENDED_ ADDIT IO N AL

� � f in al s tat ic Ch aracter$Un icod eBloc k
LATIN _ EXTENDED_ B

� � f in al s tat ic Ch aracter$Un icod eBloc k
LETTERLIKE_ S YM BOL S

� � f in al s tat ic Ch aracter$Un icod eBloc k
MAL AYALA M

� � f in al s tat ic Ch aracter$Un icod eBloc k
MATHEM ATICA L_ OPERATORS

� � f in al s tat ic Ch aracter$Un icod eBloc k
MIS C EL LANEO US _S YM BO LS

� � f in al s tat ic Ch aracter$Un icod eBloc k
MIS CEL LANEO US _TECHNICAL

� � f in al s tat ic Ch aracter$Un icod eBloc k
NUM BER_ F ORM S

� � stat ic Ch aracter$Unic od eBlock of(ch ar)
� � f in al s tat ic Ch aracter$Un icod eBloc k

OPTICAL_ CHARACTER_ RECOG NITIO N
� � f in al s tat ic Ch aracter$Un icod eBloc k

OR IYA
� � f in al s tat ic Ch aracter$Un icod eBloc k

PRIVATE_ US E_AR EA
� � f in al s tat ic Ch aracter$Un icod eBloc k

S MAL L_ FO RM _ VARIAN TS
� � f in al s tat ic Ch aracter$Un icod eBloc k

S PACIN G_ M ODIF IER_ LETTERS
� � f in al s tat ic Ch aracter$Un icod eBloc k

S PEC IALS
� � f in al s tat ic Ch aracter$Un icod eBloc k

S UPERS CRIPTS _ AND_ SUB SCRIPTS
� � f in al s tat ic Ch aracter$Un icod eBloc k

S URRO GATES _ AREA
� � f in al s tat ic Ch aracter$Un icod eBloc k

TAM IL
� � f in al s tat ic Ch aracter$Un icod eBloc k

TELUG U
� � f in al s tat ic Ch aracter$Un icod eBloc k THAI
� � f in al s tat ic Ch aracter$Un icod eBloc k

TIBETAN

� � final class Class implements java.io.Serializable
� � stat ic Class forName(St ring) throws

ClassN otFou n dExc ept ion
� � stat ic Class forName(S t rin g,b oolean ,

ClassL oad er) th rows
ClassN otFou n dExc ept ion

� � Class[] getC lasses ()
� � ClassL oad er getC lassLoader ()
� � Class getComp onen tTy p e()
� � Con st ruc tor getCon s t ru ctor(Class [])

throws NoSu chMethod Except ion,
S ecu rit y Ex cep t ion

� � Con st ruc tor[] getCon s truc tors () th rows
S ecu rit y Ex cep t ion

� � Class[] getDeclaredClasses () th rows
S ecu rit y Ex cep t ion

� � Con st ruc tor
getDecla red Con st ruc tor(Class[]) th rows
NoS u ch Meth od Exc ep tion ,
S ecu rit y Ex cep t ion

� � Con st ruc tor[] getDec laredCons t ructor s()
throws Secu rit yExcept ion

� � Field getDec lared F ield (S tr ing) th rows
NoS u ch Field E xcep t ion, Sec u rit y Exc ep tion

� � Field [] getDecla red Field s () throws
S ecu rit y Ex cep t ion

� � Method getDecla red Method(S t rin g,
Class[]) th rows N oS uc hM eth odExc ept ion ,
S ecu rit y Ex cep t ion

� � Method [] getDeclared Methods () th rows
S ecu rit y Ex cep t ion

� � Class getDeclar ingC lass ()
� � Field getField (St r ing) th rows

NoS u ch Field E xcep t ion, Sec u rit y Exc ep tion
� � Field [] getField s() throws

S ecu rit y Ex cep t ion
� � Class [] getIn terf ac es()
� � Method getMethod(S t rin g,Class[])

throws NoSu chMethod Except ion,
S ecu rit y Ex cep t ion

� � Method [] getMethods () th rows
S ecu rit y Ex cep t ion

� � int getM od if iers ()
� � S tr ing getN ame()
� � Pac kage getPackage()
� � jav a.secu rit y .Protec t ionDomain

getProtec tionDomain()
� � jav a.n et .URL getR esou rc e(S t rin g)
� � jav a.io.In p utS t ream

getResou rc eAsSt ream(S tr ing)
� � Ob jec t[] getS ign ers()
� � Class getSuperclass ()
� � b oolean isAr ray ()
� � b oolean isAssign ab leFrom(Class)
� � b oolean isIn stan c e(O b ject)
� � b oolean isIn terf ace()
� � b oolean isPr imit ive()
OSGi Service-Platform Release 3 439-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � Ob ject newIns tance() th rows
Illega lAcc essEx cep t ion,
Ins tant ia tion Excep t ion

� � St r ing toSt ring()

� � class ClassCastException extends RuntimeException
� � ClassCastExc ept ion () � � ClassCas tExc ept ion (S t r in g)

� � class ClassCircularityError extends LinkageError
� � ClassC ircu lar it yE rror() � � ClassC irc ular it yE r ror(S t rin g)

� � class ClassFormatError extends LinkageError
� � ClassF orm atEr ror () � � ClassF orm atEr ror (S t rin g)

� � abstract class ClassLoader
� � protected ClassL oad er()
� � protected ClassL oad er(ClassLoad er)
� � f inal p rotec ted C lass defineClass (S t ring,

by te[] ,int ,in t) th rows ClassFormatE rror
� � f inal p rotec ted C lass defineClass (S t ring,

by te[] ,int ,in t ,
jav a.sec u rit y .Protec t ionDom ain) th rows
ClassF orm atEr ror

� � protect ed Pac kage d ef in ePacka ge(S t rin g,
St r in g,S t rin g,St r ing,S t rin g,S tr ing,S t rin g,
java.n et.U RL) throws
Illega lArgu mentExc ept ion

� � protected Class findClass(S tr ing) th rows
ClassN otFou nd E xcep t ion

� � protected S tr ing f in dL ibrary (S t rin g)
� � f in al p rotec ted C lass

fin dL oad ed Class(S tr ing)
� � protected jav a.n et .URL

fin dR esou rc e(S t rin g)
� � protected jav a.u t il. En um erat ion

fin dR esou rc es(S t rin g) t h row s
jav a.io.IO Exc ep tion

� � f in al p rotec ted C lass
fin dS y s tem Class(S t rin g) th rows
ClassN otFou nd E xcep t ion

� � protected Pac kage getPackage(S t rin g)
� � protected Pac kage[] getPac kages ()
� � f in al ClassLoader getParent ()
� � jav a.n et.U RL getResou rc e(S t rin g)
� � jav a.io.In pu tS tream

getResourceAsSt ream(St r ing)
� � f in al jav a.ut il .Enu mera t ion

getResources(S t ring) th rows
jav a.io.IO Exc ep tion

� � stat ic ClassL oad er
getS y stemClassL oad er()

� � stat ic jav a.n et .URL
getS y stem Resou rc e(St r ing)

� � stat ic jav a.io.In pu tS tream
getS y stem Resou rc eAsSt ream(S tr ing)

� � stat ic jav a.u t il .En um erat ion
getS y stemResou rc es(S t rin g) th rows
jav a.io.IOExc ep tion

� � Class loadClass(S tr ing) th rows
ClassN otFou nd Exc ept ion

� � protected Class load Class(S t rin g,
boolean) throws ClassNotF oun d Ex cep t ion

� � f in al p rotec ted v oid resolv eClass (C lass)
� � f in al p rotec ted v oid setS ign ers (C lass ,

Ob ject [])

� � class ClassNotFoundException extends Exception
� � ClassN otFoundExcept ion()
� � ClassN otFou nd E xcep t ion (S t rin g)
� � ClassN otFou nd E xcep t ion (S t rin g,

Throwab le)

� � Throwab le getExc ept ion ()
� � void p rin tS tackTrac e()
� � void p rin tS tackTrac e(java .io.Prin tS tream)
� � void p rin tS tackTrac e(java .io.Prin tWr iter)

� � interface Cloneable
� � class CloneNotSupportedException extends Exception
� � Clon eNot S up p orted Exc ep tion () � � Clon eNotSupported Except ion(S tr ing)

� � interface Comparable
� � ab st ract in t com pareTo(Ob jec t)

� � final class Compiler
� � stat ic Ob ject c ommand (Ob jec t)
� � stat ic boolean comp ileClass (C lass)
� � stat ic boolean comp ileClasses(S tr ing)

� � stat ic void d isab le()
� � stat ic v oid en ab le()

� � final class Double extends Number implements Comparable
� � Doub le(doub le)
� � Doub le(S tr ing) th rows

Nu mb erF ormatExc ept ion
� � by te by teValue()
� � in t c omp areTo(Dou b le)
� � in t c omp areTo(O bjec t)
� � stat ic long doubleToLongBit s(doub le)
� � stat ic long dou b leToRawLon gBit s (d ou ble)
� � dou b le dou b leValu e()
� � boolean eq u als(O bjec t)
� � f loat f loatVa lue()
� � in t hashCode()
� � in t in tV alue()
� � boolean is Inf in ite()
� � stat ic boolean is In fin ite(d ou ble)
� � boolean isNaN()

� � stat ic boo lean isNaN(doub le)
� � stat ic dou b le longB itsToDou b le(lon g)
� � long lon gValu e()
� � f inal s tat ic double MAX_VA LUE
� � f in al s tat ic d ou ble M IN_ VAL UE
� � f inal s tat ic double NaN
� � f in al s tat ic d ou ble N EGATIVE_ INF INITY
� � stat ic dou b le p arseDou ble(S t rin g)

th rows Nu mb erF orm atEx cep t ion
� � f in al s tat ic d ou ble POS ITIVE_ INF INITY
� � sh ort shor tValue()
� � St r ing toSt ring()
� � stat ic St r ing toS t rin g(d ou b le)
� � f inal s tat ic C lass TYPE
� � stat ic Dou ble v a lu eO f(S t rin g) th rows

Nu mb erF ormatExc ept ion

� � class Error extends Throwable
� � Er ror () � � Er ror (S t rin g)

� � class Exception extends Throwable
� � Exc ep tion () � � Exception(St r ing)
440-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � class ExceptionInInitializerError extends LinkageError
� � Ex cep t ionIn Init ializ erE rror()
� � Ex cep t ionIn Init ializ erE rror(St r ing)
� � Ex cep t ionIn Init ializ erE rror(Throwab le)
� � Th row ab le getExc ep tion ()

� � v oid p r intS tackTrac e()
� � v oid pr intS tackTrac e(jav a.io.Pr intS t ream)
� � v oid p r intS tackTrac e(jav a.io.Pr in tWriter)

� � final class Float extends Number implements Comparable
� � Floa t(d ou ble)
� � Floa t(f loat)
� � Floa t(S t rin g) th rows

Nu mb erF ormatExc ep tion
� � b yte b y teValu e()
� � int c omp areTo(F loat)
� � int comp areTo(Ob ject)
� � doub le d oub leValu e()
� � b oolean equ als (O b ject)
� � stat ic int f loatToIn tBit s(f loat)
� � stat ic int f loatToR awIntBit s (f loat)
� � f loa t floa tVa lue()
� � int hashCode()
� � stat ic f loa t intBit sToFloa t (in t)
� � int in tValu e()
� � b oolean isIn fin ite()
� � stat ic b oolean isIn fin ite(f loat)

� � b oolean isN aN()
� � stat ic b oolean isN aN(f loat)
� � long lon gValu e()
� � f inal s tat ic f loat MAX_ VAL UE
� � f inal s tat ic f loat MIN_ VAL UE
� � f inal s tat ic f loat NaN
� � f in al s t at ic f loat N EG ATIVE_ INF INITY
� � stat ic f loat p arseFloa t(S t rin g) th rows

Nu mb erF ormatExc ep t ion
� � f inal s tat ic f loat POS ITIVE_ INF INITY
� � sh ort shortValue()
� � Str ing toSt ring()
� � stat ic S t rin g toS t r in g(floa t)
� � f in al s tat ic C lass TYPE
� � stat ic F loa t valueO f (S t ring) throws

Nu mb erF ormatExc ep t ion

� � class IllegalAccessError extends IncompatibleClassChangeError
� � I l legalAcc essE rror() � � I l legalAcc essE rror(St r ing)

� � class IllegalAccessException extends Exception
� � I l legalAcc essExcep t ion() � � I l legalAcc essExcep t ion(S t rin g)

� � class IllegalArgumentException extends RuntimeException
� � I l legalArgu men tExc ep tion () � � I l legalArgu men tExc ep tion (St r ing)

� � class IllegalMonitorStateException extends RuntimeException
� � I l legalMon itorS tateExcep t ion () � � I l legalMon itorS t ateExcep t ion (S t rin g)

� � class IllegalStateException extends RuntimeException
� � I l legalS ta teExc ep tion () � � I l legalS ta teExc ep tion (St r ing)

� � class IllegalThreadStateException extends IllegalArgumentException
� � I l legalTh read S tateEx cep t ion() � � I l legalTh read S tateEx cep t ion(S tr ing)

� � class IncompatibleClassChangeError extends LinkageError
� � Inc omp at ib leClassChangeError() � � Inc omp at ib leClassChangeError(S tr ing)

� � class IndexOutOfBoundsException extends RuntimeException
� � Ind exO utO f Boun d sExc ept ion () � � Ind exO u tO f Boun d sE xc ept ion (S t rin g)

� � class InheritableThreadLocal extends ThreadLocal
� � Inh eritableTh readL oca l()
� � protected O bjec t ch ildV alue(O bjec t)

� � Ob jec t get()
� � void set (Ob ject)

� � class InstantiationError extends IncompatibleClassChangeError
� � Ins tan t ia t ionE rror() � � Ins tan t iat ionE rror(S t ring)

� � class InstantiationException extends Exception
� � Ins tan t ia t ionExcept ion() � � Ins tan t iat ionExcept ion(S t ring)

� � final class Integer extends Number implements Comparable
� � Integer (in t)
� � Integer (S t rin g) th rows

Nu mb erF ormatExc ep tion
� � b yte b y teValu e()
� � int c omp areTo(In teger)
� � int comp areTo(Ob ject)
� � stat ic In teger d ecod e(St r in g) throws

Nu mb erF ormatExc ep tion
� � doub le d oub leValu e()
� � b oolean equ als (O b ject)
� � f loa t floa tVa lue()
� � stat ic In teger get Integer(S t rin g)
� � stat ic In teger get Integer(S t rin g,int)
� � stat ic In teger get Integer(S t rin g,Integer)
� � int hashCode()
� � int in tValu e()
� � long lon gValu e()
� � f inal s tat ic in t MAX_ VALUE

� � f inal s tat ic in t MIN_ VALUE
� � stat ic int par seIn t (St r ing) throws

Nu mb erF ormatExc ep t ion
� � stat ic int par seIn t (St r ing,in t) th rows

Nu mb erF ormatExc ep t ion
� � sh ort shortValue()
� � stat ic S t rin g toB ina ry S tr ing(in t)
� � stat ic S t rin g toHex St r ing(int)
� � stat ic S t rin g toO c ta lSt r ing(int)
� � Str ing toSt ring()
� � stat ic S t ring toSt r ing(int)
� � stat ic S t rin g toS t r in g(int ,in t)
� � f in al s tat ic C lass TYPE
� � stat ic In teger v alu eOf (S t r in g) throws

Nu mb erF ormatExc ep t ion
� � stat ic In teger v alu eOf (S t r in g,in t) th rows

Nu mb erF ormatExc ep t ion

� � class InternalError extends VirtualMachineError
� � Interna lEr ror () � � Interna lEr ror (S t rin g)

� � class InterruptedException extends Exception
� � Inter ruptedExcept ion() � � Inter ruptedExcept ion(S t ring)

� � class LinkageError extends Error
OSGi Service-Platform Release 3 441-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � LinkageError () � � LinkageError (St r ing)

� � final class Long extends Number implements Comparable
� � Lon g(lon g)
� � Lon g(S t rin g) th rows

Nu mb erF ormatExc ept ion
� � by te by teValue()
� � in t c omp areTo(L ong)
� � in t c omp areTo(O bjec t)
� � stat ic Lon g d ecod e(S t rin g) throws

Nu mb erF ormatExc ept ion
� � dou b le dou b leValu e()
� � boolean eq u als(O bjec t)
� � f loat f loatVa lue()
� � stat ic Lon g getLon g(S t rin g)
� � stat ic Lon g getLon g(S t rin g,long)
� � stat ic Lon g getLon g(S t rin g,Lon g)
� � in t hashCode()
� � in t in tV alue()
� � long lon gValu e()
� � f in al s ta t ic lon g M AX_ VALU E

� � f in al s tat ic lon g M IN_ VALUE
� � stat ic long p ar seL ong(S t rin g) th rows

Nu mb erF ormatExc ept ion
� � stat ic long par seL ong(S t ring,int) throws

Nu mb erF ormatExc ept ion
� � sh ort shor tValue()
� � stat ic St r ing toBin ary St r ing(long)
� � stat ic St r ing toHexS t rin g(long)
� � stat ic St r ing toOcta lS t rin g(long)
� � St r ing toSt ring()
� � stat ic St r ing toS t rin g(lon g)
� � stat ic St r ing toS t rin g(lon g,in t)
� � f inal s tat ic C lass TYPE
� � stat ic Lon g v alu eOf (S t rin g) throws

Nu mb erF ormatExc ept ion
� � stat ic Lon g v alu eOf (S t rin g,in t) th rows

Nu mb erF ormatExc ept ion

� � final class Math
� � stat ic dou b le ab s(d oub le)
� � stat ic floa t ab s(floa t)
� � stat ic int abs (in t)
� � stat ic long abs (long)
� � stat ic dou b le ac os(d oub le)
� � stat ic dou b le as in(d oub le)
� � stat ic dou b le atan (dou b le)
� � stat ic dou b le atan 2(d oub le,d ou ble)
� � stat ic dou b le ceil(d oub le)
� � stat ic dou b le cos (dou b le)
� � f in al s ta t ic d ou ble E
� � stat ic dou b le exp (d ou ble)
� � stat ic dou b le floor (dou b le)
� � stat ic dou b le IEEE rem aind er (d ou ble,

dou b le)
� � stat ic dou b le log(d ou b le)
� � stat ic dou b le max (d ou ble,d ou ble)
� � stat ic floa t max(floa t ,floa t)

� � stat ic int max(in t ,in t)
� � stat ic long m ax(long,lon g)
� � stat ic dou b le min (d ou ble,d ou b le)
� � stat ic floa t min(f loat ,floa t)
� � stat ic int min (int ,in t)
� � stat ic long m in(long,lon g)
� � f inal s tat ic double P I
� � stat ic dou b le p ow(d oub le,d oub le)
� � stat ic dou b le rand om()
� � stat ic dou b le rin t (d ou ble)
� � stat ic long r ou nd (dou b le)
� � stat ic int round(f loat)
� � stat ic dou b le sin (dou b le)
� � stat ic dou b le sq r t(d oub le)
� � stat ic dou b le t an (d ou ble)
� � stat ic dou b le toDegrees (dou b le)
� � stat ic dou b le toRad ian s(d oub le)

� � class NegativeArraySizeException extends RuntimeException
� � Negat iv eArray S izeEx cep t ion() � � Negat iv eArray S izeExcep t ion(S t rin g)

� � class NoClassDefFoundError extends LinkageError
� � NoClassDef Fou nd Error() � � NoClassDef Fou nd Error(S tr ing)

� � class NoSuchFieldError extends IncompatibleClassChangeError
� � NoS uc h Field Er ror () � � NoS uc h Field Er ror (S t rin g)

� � class NoSuchFieldException extends Exception
� � NoS uc h Field Ex cep t ion() � � NoS uc h Field Ex cep t ion(S tr ing)

� � class NoSuchMethodError extends IncompatibleClassChangeError
� � NoSuchMethodError() � � NoS uc h Meth odEr ror(S t rin g)

� � class NoSuchMethodException extends Exception
� � NoS uc h Meth odExc ept ion () � � NoSuchMethodExcept ion(St r ing)

� � class NullPointerException extends RuntimeException
� � Nu llPointerExc ept ion () � � Nu llPointerExc ep tion (St r ing)

� � abstract class Number implements java.io.Serializable
� � Nu mb er()
� � by te by teValue()
� � ab st ract d ou ble d ou b leV alue()
� � ab st ract f loat f loatValu e()

� � ab st ract in t intVa lu e()
� � ab st ract lon g lon gV alue()
� � sh ort shor tValue()

� � class NumberFormatException extends IllegalArgumentException
� � Nu mb erF ormatExc ept ion () � � Nu mb erF ormatExc ept ion (St r in g)

� � class Object
� � Ob ject ()
� � protected Ob jec t clon e() th rows

Clon eNotS up p orted Exc ep tion
� � boolean eq u als(O bjec t)
� � protected v oid f in alize() th rows

Throwab le
� � f inal Class getClass()
� � in t hashCode()
� � f in al v oid not if y ()

� � f in al v oid not if y All()
� � St r ing toSt ring()
� � f in al v oid wa it () th rows

InterruptedExcep t ion
� � f in al v oid wa it (lon g) th rows

InterruptedExcep t ion
� � f in al v oid wa it (lon g,int) th rows

InterruptedExcep t ion
442-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � class OutOfMemoryError extends VirtualMachineError
� � Ou tOfMemoryE rror() � � Ou tOfMemoryE rror(S t rin g)

� � class Package
� � S tr ing get Imp lemen tat ionT itle()
� � S tr ing get Imp lemen tat ionV end or()
� � S tr ing get Imp lemen tat ionV ers ion()
� � S tr ing getN ame()
� � stat ic Pac kage getPackage(S t rin g)
� � stat ic Pac kage[] getPackages ()
� � S tr ing getS p ecif icat ion Tit le()
� � S tr ing getS p ecif icat ion Ven dor ()

� � S tr ing getS p ecif ica tion Vers ion ()
� � int hashCode()
� � b oolean isCompat ibleWith (S tr ing)

throws Numb erFormatExcept ion
� � b oolean isS ealed ()
� � b oolean isS ealed (jav a.n et.U RL)
� � Str ing toSt ring()

� � abstract class Process
� � Proc ess ()
� � ab st ract void dest roy()
� � ab st ract in t exitValu e()
� � ab st ract java .io.Inp u tSt ream

getEr rorSt ream()

� � ab st ract jav a.io.Inp u tSt ream
get InputS t ream()

� � ab st ract jav a.io.Ou tp utS t ream
getOu tputS tream()

� � ab st ract in t wait For () th rows
Inter ruptedExcept ion

� � interface Runnable
� � ab st ract void run ()

� � class Runtime
� � v oid a dd S h ut d own Hook(Th read)
� � Process exec (S t r ing[]) throws

jav a.io.IO Ex cep t ion
� � Proc ess exec (S t r in g[] ,S t rin g[]) th rows

jav a.io.IO Ex cep t ion
� � Proc ess exec (S t r in g[] ,S t rin g[],

jav a.io.F ile) th rows jav a.io.IO Excep t ion
� � Process exec (S t r ing) throws

jav a.io.IO Ex cep t ion
� � Proc ess exec (S t r in g,S t rin g[]) th rows

jav a.io.IO Ex cep t ion
� � Proc ess exec (S t r in g,S t rin g[], jav a.io.F ile)

throws jav a .io .IOExcep t ion

� � v oid ex it(in t)
� � long freeMemory ()
� � v oid gc ()
� � stat ic Ru nt ime getR un t ime()
� � void halt (int)
� � v oid load(S t rin g)
� � v oid loadL ibrary(S t rin g)
� � b oolean remov eS h utd ownHook(Th read)
� � v oid ru nF ina liz at ion ()
� � long tota lM emory ()
� � void t raceIns t ruct ion s(boolean)
� � void t raceMethodCalls(boolean)

� � class RuntimeException extends Exception
� � Ru nt imeExc ept ion () � � Ru nt imeExc ept ion (S t rin g)

� � final class RuntimePermission extends java.security.BasicPermission
� � Ru nt imePermission (S t rin g) � � Ru nt imePermission (S t rin g,S t rin g)

� � class SecurityException extends RuntimeException
� � Secu rit yEx cept ion() � � S ecu rit y Ex cep t ion(S tr ing)

� � class SecurityManager
� � S ecu rit y Manager()
� � void checkAccep t (St r ing,in t)
� � v oid c h eckAc cess(Th rea d)
� � v oid c h eckAc cess(Th rea dG rou p)
� � v oid c h eckAwtEven tQu eu eAcc ess ()
� � void checkConnect (S t rin g, in t)
� � void checkConnect (S t rin g, in t ,Objec t)
� � v oid c h eckCreateC lassLoader ()
� � v oid c h eckDelete(S tr ing)
� � v oid c h eckExec (S t rin g)
� � v oid c h eckExit (in t)
� � v oid c h eckL ink(S t rin g)
� � v oid c h eckL isten (in t)
� � v oid c h eckM emb erAc cess(Cla ss ,int)
� � v oid

ch eckMu lt icas t (java .net .In etAd dress)
� � v oid ch eckMu lt icas t (java .net .In etAd dress ,

byte)
� � v oid c h eckPackageAcc ess (S t rin g)
� � v oid c h eckPackageDefin it ion(S t rin g)

� � v oid
ch eckPermission (jav a.secu rit y .Perm iss ion
)

� � v oid
ch eckPermission (jav a.secu rit y .Perm iss ion
,Ob jec t)

� � void checkPr int Job Ac cess()
� � v oid c h eckProp ert iesAc cess ()
� � v oid c h eckProp erty Acc ess (St r ing)
� � v oid c h eckRead(jav a. io .FileDescr iptor)
� � v oid c h eckRead(S t rin g)
� � v oid c h eckRead(S t rin g,Ob ject)
� � v oid c h eckS ec ur ity Ac cess(S t rin g)
� � v oid c h eckS etFactory()
� � v oid c h eckS y st emClipb oard Acc ess ()
� � b oolean ch eckTopL ev elWin dow(Ob ject)
� � v oid c h eckWrite(jav a.io.F ileDesc rip tor)
� � void checkWrite(St r ing)
� � protected Class [] getClassContext ()
� � Ob jec t getS ec ur ity Context ()
� � Th read G rou p getThread Group ()

� � final class Short extends Number implements Comparable
� � S hor t(S t rin g) th rows

Nu mb erF ormatExc ep tion
� � Shor t(shor t)
� � b yte b y teValu e()
� � int comp areTo(Ob ject)
� � int comp areTo(Short)
� � stat ic Shor t dec od e(S t ring) throws

Nu mb erF ormatExc ep tion

� � doub le d oub leValu e()
� � b oolean equ als (O b ject)
� � f loa t f loa tVa lue()
� � int hashCode()
� � int in tValu e()
� � long lon gValu e()
� � f inal s tat ic short MAX_ VAL UE
� � f inal s tat ic short MIN_ VAL UE
OSGi Service-Platform Release 3 443-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � stat ic sh ort par seShort (St r ing) th rows
Nu mb erF ormatExc ept ion

� � stat ic sh ort par seShort (St r ing,in t)
th rows Nu mb erF orm atEx cep t ion

� � sh ort shor tValue()
� � St r ing toSt ring()

� � stat ic St r ing toS t rin g(sh ort)
� � f inal s tat ic C lass TYPE
� � stat ic Sh or t va lueO f(S t rin g) th rows

Nu mb erF ormatExc ept ion
� � stat ic Sh or t va lueO f(S t rin g,int) throws

Nu mb erF ormatExc ept ion

� � class StackOverflowError extends VirtualMachineError
� � Stac kO v erf lowError() � � Stac kO v erf lowError(S t rin g)

� � final class StrictMath
� � stat ic dou b le ab s(d oub le)
� � stat ic floa t ab s(floa t)
� � stat ic int abs (in t)
� � stat ic long abs (long)
� � stat ic dou b le ac os(d oub le)
� � stat ic dou b le as in(d oub le)
� � stat ic dou b le atan (dou b le)
� � stat ic dou b le atan 2(d oub le,d ou ble)
� � stat ic dou b le ceil(d oub le)
� � stat ic dou b le cos (dou b le)
� � f in al s ta t ic d ou ble E
� � stat ic dou b le exp (d ou ble)
� � stat ic dou b le floor (dou b le)
� � stat ic dou b le IEEE rem aind er (d ou ble,

dou b le)
� � stat ic dou b le log(d ou b le)
� � stat ic dou b le max (d ou ble,d ou ble)
� � stat ic floa t max(floa t ,floa t)

� � stat ic int max(in t ,in t)
� � stat ic long m ax(long,lon g)
� � stat ic dou b le min (d ou ble,d ou b le)
� � stat ic floa t min(f loat ,floa t)
� � stat ic int min (int ,in t)
� � stat ic long m in(long,lon g)
� � f inal s tat ic double P I
� � stat ic dou b le p ow(d oub le,d oub le)
� � stat ic dou b le rand om()
� � stat ic dou b le rin t (d ou ble)
� � stat ic long r ou nd (dou b le)
� � stat ic int round(f loat)
� � stat ic dou b le sin (dou b le)
� � stat ic dou b le sq r t(d oub le)
� � stat ic dou b le t an (d ou ble)
� � stat ic dou b le toDegrees (dou b le)
� � stat ic dou b le toRad ian s(d oub le)

� � final class String implements java.io.Serializable , Comparable
� � St r ing()
� � St r ing(by te[])
� � St r ing(by te[],in t, in t)
� � St r ing(by te[],in t, in t ,S t ring) th rows

jav a.io.Un su p por tedEn cod in gExc ept ion
� � St r ing(by te[],S t ring) th rows

jav a.io.Un su p por tedEn cod in gExc ept ion
� � St r ing(char [])
� � St r ing(char [] ,in t ,in t)
� � St r ing(St r ing)
� � St r in g(St r ingBu f fer)
� � f in al s ta t ic jav a .ut il .Com parator

CAS E_ IN SE NS ITIVE_ O RDE R
� � ch ar ch arA t(in t)
� � in t c omp areTo(O bjec t)
� � in t c omp areTo(S t rin g)
� � in t c omp areToIgn oreCase(S t rin g)
� � St r ing conc at (St r ing)
� � stat ic St r ing c op yV alueO f (c ha r[])
� � stat ic St r ing c op yV alueO f (c ha r[],in t, in t)
� � boolean en d sWith(S tr ing)
� � boolean eq u als(O bjec t)
� � boolean eq u alsIgn oreCase(S t rin g)
� � by te[] getBy tes()
� � by te[] getBy tes(S tr ing) th rows

jav a.io.Un su p por tedEn cod in gExc ept ion
� � void getCh ars(in t,in t ,ch ar [] ,int)
� � in t hashCode()
� � in t in dexO f (in t)
� � in t in dexO f (in t ,int)
� � in t in dexO f (S t rin g)

� � in t in dex Of (S t rin g,in t)
� � St r ing in tern ()
� � in t las t Ind exOf(in t)
� � in t las t Ind exOf(in t, in t)
� � in t las t Ind exOf(S t rin g)
� � in t las t Ind exOf(S t rin g,int)
� � in t length ()
� � boolean regionM atc hes (in t ,S t rin g,in t ,in t)
� � boolean regionM atc hes (boolean,in t ,

St r ing,in t ,in t)
� � St r ing replace(ch ar ,ch ar)
� � boolean s tar tsWith (St r ing)
� � boolean s tar tsWith (St r ing,in t)
� � St r ing subs t rin g(in t)
� � St r ing subs t rin g(in t ,int)
� � ch ar[] toCharAr ray ()
� � St r ing toLowerCase()
� � St r ing toL owerCase(jav a.u til .L oca le)
� � St r ing toSt ring()
� � St r ing toUpperCase()
� � St r ing toUp p erCase(jav a.u t il .Loc ale)
� � St r ing t r im()
� � stat ic St r ing v a lu eO f(ch ar [])
� � stat ic St r ing v a lu eO f(ch ar [] ,int ,in t)
� � stat ic St r ing v a lu eO f(ch ar)
� � stat ic St r ing v a lu eO f(d oub le)
� � stat ic St r ing v a lu eO f(f loat)
� � stat ic St r ing v a lu eO f(in t)
� � stat ic St r ing v a lu eO f(lon g)
� � stat ic St r ing v a lu eO f(O bjec t)
� � stat ic St r ing v a lu eO f(b oolean)

� � final class StringBuffer implements java.io.Serializable
� � St r in gBu ff er ()
� � St r in gBu ff er (in t)
� � St r in gBu ff er (S t rin g)
� � St r in gBu ff er ap pen d (c h ar[])
� � St r in gBu ff er ap pen d (c h ar[],in t ,int)
� � St r in gBu ff er ap pen d (c h ar)
� � St r in gBu ff er ap pen d (d ou b le)
� � St r in gBu ff er ap pen d (f loat)
� � St r in gBu ff er ap pen d (in t)
� � St r in gBu ff er ap pen d (lon g)
� � St r in gBu ff er ap pen d (O b ject)

� � St r ingBu f fer ap pen d (S t rin g)
� � St r ingBu f fer ap pen d (b oolean)
� � in t capacit y ()
� � ch ar ch arA t(in t)
� � St r ingBu f fer delete(int ,in t)
� � St r ingBu f fer deleteCharAt (in t)
� � void en su reCap ac ity (in t)
� � void getCh ars(in t,in t ,ch ar [] ,int)
� � St r ingBu f fer insert (int ,c ha r[])
� � St r ingBu f fer insert (int ,c ha r[],in t,in t)
� � St r ingBu f fer insert (int ,c ha r)
444-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � S tr ingBu f fer insert (in t,d ou b le)
� � S tr ingBu f fer insert (in t,f loat)
� � S tr ingBu f fer insert (in t,in t)
� � S tr ingBu f fer insert (in t,lon g)
� � S tr ingBu f fer insert (in t,O b ject)
� � S tr ingBu f fer insert (in t,S t rin g)
� � S tr ingBu f fer insert (in t,b oolean)
� � int length()

� � Str ingB uf fer rep lac e(in t ,int ,S t ring)
� � Str ingB uf fer rever se()
� � void setCharAt (in t ,ch ar)
� � v oid setLen gth(in t)
� � Str ing subs t rin g(in t)
� � Str ing subs t rin g(in t ,int)
� � Str ing toSt ring()

� � class StringIndexOutOfBoundsException extends IndexOutOfBoundsException
� � Str ingIndexOutOf BoundsExcept ion()
� � Str ingIndexOutOf BoundsExcept ion(in t)

� �

S tr ingIn d exOu t Of Bou n ds E xcep t ion(S t rin g
)

� � final class System
� � stat ic v oid array cop y (Ob ject ,in t ,Ob ject ,

int ,in t)
� � stat ic lon g cu rrentTimeM illis()
� � f in al s tat ic jav a.io.Prin tS tream err
� � stat ic v oid exit(in t)
� � stat ic v oid gc()
� � stat ic jav a.u t il .Prop ert ies getProp ert ies ()
� � stat ic S tr ing getP rop erty (S t rin g)
� � stat ic S tr ing getP rop erty (S t rin g,S t rin g)
� � stat ic S ecu rit y Manager

getSec ur it yM an ager ()
� � stat ic int id en t it yHashCod e(Ob ject)
� � f in al s tat ic jav a.io.Inp u tSt ream in

� � stat ic v oid load (S t rin g)
� � stat ic v oid load Lib rary (S t rin g)
� � stat ic S t rin g map Lib ra ry Name(S t rin g)
� � f in al s tat ic jav a.io.Prin tS tream out
� � stat ic v oid ru nF ina lizat ion ()
� � stat ic v oid setE rr (jav a .io.Prin tSt ream)
� � stat ic v oid set In (jav a .io.Inp u tS t ream)
� � stat ic v oid setO ut (jav a.io.Pr intS t ream)
� � stat ic v oid

setProp ert ies(jav a.u t il .Prop ert ies)
� � stat ic S t ring setProper ty(S t rin g,St r ing)
� � stat ic v oid

setS ecu r it y M an ager(S ecu rit y M an ager)

� � class Thread implements Runnable
� � Th read ()
� � Th read (Run n ab le)
� � Th read (Run n ab le,S tr ing)
� � Th read (St r ing)
� � Th read (Thread Grou p,R un nable)
� � Th read (Thread Grou p,R un nable,S t rin g)
� � Th read (ThreadGroup,S t rin g)
� � stat ic int act iveCount()
� � f in al v oid c hec kAcc ess ()
� � stat ic Th read c ur ren tTh read ()
� � void des t roy ()
� � stat ic v oid du mp S tack()
� � stat ic int en u mera te(Th read[])
� � ClassL oad er getContextC lassLoader ()
� � f in al S t rin g getNam e()
� � f in al in t getPrior ity ()
� � f in al Th r ead Group getTh read G rou p ()
� � v oid in terrup t ()
� � stat ic boolean inter rupted()
� � f in al b oolean isAlive()
� � f in al b oolean isDaemon ()
� � b oolean isIn terru p ted()

� � f in al v oid join () th rows
Inter ruptedExcept ion

� � f in al v oid join (lon g) th rows
Inter ruptedExcept ion

� � f in al v oid join (lon g,int) th rows
Inter ruptedExcept ion

� � f inal s tat ic in t MAX_ PRIO RITY
� � f inal s tat ic in t MIN_ PRIO RITY
� � f inal s tat ic in t NO RM _PRIORITY
� � v oid ru n()
� � v oid setCon textClassLoad er(ClassLoad er)
� � f in al v oid setDaemon (b oolean)
� � f in al v oid setN ame(S t rin g)
� � f in al v oid setP riorit y (int)
� � stat ic v oid sleep (lon g) throws

Inter ruptedExcept ion
� � stat ic v oid sleep (lon g,in t) th rows

Inter ruptedExcept ion
� � void s tar t()
� � Str ing toSt ring()
� � stat ic v oid yield ()

� � class ThreadDeath extends Error
� � Th read Death ()

� � class ThreadGroup
� � Th read G rou p(S t rin g)
� � Th read G rou p(Th rea dG rou p ,S tr ing)
� � int act iveCou nt ()
� � int act iveGroupCount ()
� � f in al v oid c hec kAcc ess ()
� � f inal void dest roy()
� � int en u mera te(Th read[])
� � int en u mera te(Th read[],b oolean)
� � int enumera te(Th readGroup[])
� � int en u mera te(Th readG rou p [] ,boolean)
� � f in al in t getMaxPrior ity ()
� � f in al S t rin g getNam e()

� � f inal Th read Group getParent ()
� � f in al v oid in ter ru p t()
� � f in al b oolean isDaemon ()
� � b oolean isDes t roy ed ()
� � v oid l is t ()
� � f in al b oolean p ar entO f(Th readG rou p)
� � f in al v oid setDaemon (b oolean)
� � f inal void setM axPriorit y (int)
� � Str ing toSt ring()
� � v oid u n caugh tExc ep tion (Th read ,

Th rowab le)

� � class ThreadLocal
� � Th read Loc al()
� � Ob jec t get ()

� � protected O bjec t init ialVa lue()
� � void set (Ob ject)

� � class Throwable implements java.io.Serializable
� � Th rowab le()
� � Th rowab le(S t ring)
� � Th rowab le fi l l In S tackTrac e()

� � S tr ing getL ocaliz edM essage()
� � S tr ing getM essage()
� � v oid p r intS tackTrac e()
OSGi Service-Platform Release 3 445-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � void p rin tS tackTrac e(java .io.Prin tS tream)
� � void p rin tStackTrac e(java .io.Prin tWr iter)

� � St r ing toSt ring()

� � class UnknownError extends VirtualMachineError
� � Unkn own Er ror () � � Unkn own Er ror (S t rin g)

� � class UnsatisfiedLinkError extends LinkageError
� � Unsat is fied Lin kEr ror () � � Unsat is fied LinkE rror (St r ing)

� � class UnsupportedClassVersionError extends ClassFormatError
� � Unsu pp orted ClassVers ionError() � � Unsu pp orted ClassVers ionError(S t rin g)

� � class UnsupportedOperationException extends RuntimeException
� � Unsu pp orted O perat ionExc ept ion () � � Unsu pp orted O perat ionExc ept ion (St r ing)

� � class VerifyError extends LinkageError
� � Verif yE r ror() � � Verif yE r ror(S t rin g)

� � abstract class VirtualMachineError extends Error
� � Virtua lMach ineError() � � Virtua lMach ineError(S t rin g)

� � final class Void
� � f in al s ta t ic C lass TYPE

22.3.3 java.lang.ref
� � package java.lang.ref
� � class PhantomReference extends Reference
� � PhantomR eferenc e(O b ject ,

Referenc eQ ueu e)
� � Ob ject get ()

� � abstract class Reference
� � void c lear()
� � boolean en q ueu e()

� � Ob ject get ()
� � boolean isEnq u eued ()

� � class ReferenceQueue
� � Referenc eQ ueu e()
� � Referenc e p oll()
� � Referenc e remov e() th rows

Interrup tedExcep t ion

� � Referenc e remov e(lon g) throws
Illega lArgu mentExc ept ion ,
InterruptedExcep t ion

� � class SoftReference extends Reference
� � Sof tRef eren ce(Ob jec t)
� � Sof tRef eren ce(Ob jec t,Referenc eQ ueu e)

� � Ob ject get ()

� � class WeakReference extends Reference
� � WeakReferenc e(Ob ject) � � WeakReferenc e(Ob ject ,Ref erenc eQu eu e)

22.3.4 java.lang.reflect
� � package java.lang.reflect
� � class AccessibleObject
� � protected Acc ess ib leOb ject ()
� � boolean isAcc essib le()
� � stat ic vo id

setAc cessib le(Ac cess ibleO bjec t [] ,
boolean) th rows S ec ur it yExc ept ion

� � void setAcc ess ible(b oolean) th rows
Sec ur it yExc ep tion

� � final class Array
� � stat ic Ob ject get (Ob jec t, in t) throws

Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic boolean getBoolean(O bjec t ,int)
th rows IllegalArgu men tExc ep t ion,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic by te getBy te(Ob ject ,in t) th rows
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic ch ar getCh ar(O bjec t ,in t) throws
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic dou b le getDou ble(Ob jec t, in t)
th rows IllegalArgu men tExc ep t ion,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic floa t getF loat (Ob ject ,in t) th rows
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic int get In t(O bjec t ,int) throws
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic int getLength(Objec t) th rows
Illega lArgu mentExc ept ion

� � stat ic long getL ong(Ob jec t,in t) throws
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic sh ort getShort (Ob ject ,in t) th rows
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic Ob ject n ewIns tan ce(Class ,int [])
th rows Negativ eAr ray S izeExc ept ion ,
I llega lArgu mentExc ept ion

� � stat ic Ob ject n ewIns tan ce(Class ,int)
th rows Negativ eAr ray S izeExc ept ion

� � stat ic v oid set (O b ject ,in t,O b ject) throws
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic v oid setBoolean (Ob ject ,in t ,
boolean) th rows
Illega lArgu mentExc ept ion ,
Array Ind exO utO fB oun d sExcep t ion

� � stat ic v oid setBy te(O b ject ,int ,b y te)
th rows IllegalArgu men tEx cep t ion,
Array Ind exO utO fB oun d sExcep t ion
446-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � stat ic v oid setCh ar (O b ject ,in t,c h ar)
throws IllegalArgumen tExcep t ion,
Array Ind exO u tO f Boun d sExc ept ion

� � stat ic v oid setDou b le(O b jec t ,int ,d ou ble)
throws IllegalArgumen tExcep t ion,
Array Ind exO u tO f Boun d sExc ept ion

� � stat ic v oid setF loat (O b ject ,in t,f loat)
throws IllegalArgumen tExcep t ion,
Array Ind exO u tO f Boun d sExc ept ion

� � stat ic v oid set In t(O bjec t ,int ,in t) th rows
IllegalArgu men tExc ep tion ,
Array Ind exO u tO f Boun d sExc ept ion

� � stat ic v oid setLon g(Ob ject ,in t ,long)
throws IllegalArgumen tExcep t ion,
Array Ind exO u tO f Boun d sExc ept ion

� � stat ic void setShor t (Ob ject ,in t,short)
throws IllegalArgumen tExcep t ion,
Array Ind exO u tO f Boun d sExc ept ion

� � final class Constructor extends AccessibleObject implements Member
� � b oolean equ als (O b ject)
� � Class getDeclar ingC lass ()
� � Class[] getExc ept ion Ty pes ()
� � int getM odif iers ()
� � S tr ing getN ame()
� � Class[] getPa rameterTy p es()
� � int hashCode()

� � Ob jec t newIn stan ce(O bjec t []) th rows
Ins tan t iat ionExc ept ion ,
I l legalAcc essExcep t ion,
I l legalArgu men tExc ep tion ,
Inv oc at ion TargetExc ept ion

� � Str ing toSt ring()

� � final class Field extends AccessibleObject implements Member
� � b oolean equ als (O b ject)
� � Ob jec t get (Objec t) th rows

IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � b oolean getB oolean (O b jec t) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � byte getBy te(Ob ject) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � ch ar getCh ar(O bjec t) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � Class getDeclar ingC lass ()
� � doub le getDou ble(O bjec t) th rows

IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � f loa t getF loat (Ob jec t) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � int get In t (Ob jec t) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � long getL ong(O bjec t) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � int getM odif iers ()
� � S tr ing getN ame()
� � sh ort getShort (Ob ject) throws

IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � Class getType()
� � int hashCode()
� � void set (Ob ject ,Ob jec t) th rows

IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � v oid setBoolean (Ob ject ,b oolean) throws
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � v oid setBy te(O b ject ,b y te) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � void setChar (Ob ject ,char) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � v oid setDou ble(O bjec t ,dou b le) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � void setFloa t (O b jec t ,f loa t) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � void set Int (Objec t ,int) throws
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � v oid setLon g(Ob ject ,lon g) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � void setShor t (Ob jec t ,shor t) th rows
IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion

� � Str ing toSt ring()

� � interface InvocationHandler
� � ab st ract O b ject in v oke(O b ject ,M ethod ,

Ob jec t[]) th rows Throwable

� � class InvocationTargetException extends Exception
� � protected In voc at ion TargetExc ept ion ()
� � Inv oc at ion TargetExc ept ion (Th rowable)
� � Inv oc at ion TargetExc ept ion (Th rowable,

S tr ing)

� � Th rowab le getTargetExc ept ion ()
� � v oid p r intS tackTrac e()
� � v oid pr intS tackTrac e(jav a.io.Pr intS t ream)
� � v oid p r intS tackTrac e(jav a.io.Pr in tWriter)

� � interface Member
� � f inal s tat ic in t DECL ARED
� � ab st ract C lass getDec larin gClass ()
� � ab st ract in t getMod if iers ()

� � ab st ract S t rin g getName()
� � f inal s tat ic in t PUBLIC

� � final class Method extends AccessibleObject implements Member
� � b oolean equ als (O b ject)
� � Class getDeclar ingC lass ()
� � Class[] getExc ept ion Ty pes ()
� � int getM odif iers ()
� � S tr ing getN ame()
� � Class[] getPa rameterTy p es()
� � Class getR etu rnTy p e()

� � int hashCode()
� � Ob jec t in voke(Ob jec t,Ob ject []) throws

IllegalAcc essExcep t ion,
I l legalArgu men tExc ep tion ,
Inv oc at ion TargetExc ept ion

� � Str ing toSt ring()

� � class Modifier
� � Mod if ier() � � f inal s tat ic in t ABS TRACT
OSGi Service-Platform Release 3 447-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � f in al s ta t ic in t FIN AL
� � f in al s ta t ic in t INTERF ACE
� � stat ic boolean isAb st ract (int)
� � stat ic boolean is F inal(in t)
� � stat ic boolean is In ter face(in t)
� � stat ic boolean isNat iv e(in t)
� � stat ic boolean isPr iv a te(in t)
� � stat ic boolean isProtec ted (in t)
� � stat ic boolean isPu b lic (in t)
� � stat ic boolean isS tat ic(int)
� � stat ic boolean isS t rict (in t)
� � stat ic boolean isS y nc hroniz ed(in t)

� � stat ic boo lean isTran sien t(in t)
� � stat ic boo lean isVolat ile(int)
� � f inal s tat ic in t NATIVE
� � f inal s tat ic in t PRIVATE
� � f inal s tat ic in t PROTECTED
� � f inal s tat ic in t PUBL IC
� � f inal s tat ic in t STATIC
� � f inal s tat ic in t STRICT
� � f inal s tat ic in t SYNCHR ON IZED
� � stat ic St r ing toS t rin g(in t)
� � f inal s tat ic in t TRAN SIENT
� � f inal s tat ic in t VOLATILE

� � class Proxy implements java.io.Serializable
� � protected Prox y(In vocat ion Han dler)
� � stat ic Inv oc at ionHand ler

get Invoca tionHand ler(Ob ject) th rows
Illega lArgu mentExc ept ion

� � stat ic Class getProxy Class (C lassLoader ,
Class[]) th rows IllegalArgu men tEx cep t ion

� � protected Inv oc at ion Hand ler h
� � stat ic boo lean isProxy Class(Class)
� � stat ic Ob ject

newProxy In s tanc e(ClassL oad er,C lass [] ,
Inv oc at ionHand ler) th rows
Illega lArgu mentExc ept ion

� � final class ReflectPermission extends java.security.BasicPermission
� � Reflec tPermission (St r ing) � � Reflec tPermission (S tr ing,S t rin g)

� � class UndeclaredThrowableException extends RuntimeException
� �

Und ec la redThrowab leExcept ion(Th rowab l
e)

� �

Und ec la redThrowab leExcept ion(Th rowab l
e,St r ing)

� � Throwab le getUndecla red Th rowab le()
� � void p rin tS tackTrac e()
� � void p rin tS tackTrac e(java .io.Prin tS tream)
� � void p rin tS tackTrac e(java .io.Prin tWr iter)

22.3.5 java.math
� � package java.math
� � class BigInteger extends Number implements Comparable
� � BigInteger(b y te[])
� � BigInteger(in t,by te[])
� � BigInteger(in t, in t ,jav a.u t il .Ran d om)
� � BigInteger(in t, jav a.u til .Rand om)
� � BigInteger(S t rin g)
� � BigInteger(S t rin g,int)
� � BigInteger ab s()
� � BigInteger ad d(BigIn teger)
� � BigInteger an d(BigIn teger)
� � BigInteger an dN ot(BigIn teger)
� � in t b itCou nt ()
� � in t b it Len gth ()
� � BigInteger clearBit (in t)
� � in t c omp areTo(O bjec t)
� � in t c omp areTo(BigIn teger)
� � BigInteger div id e(BigIn teger)
� � BigInteger[]

div id eAnd Remaind er(BigIn teger)
� � dou b le dou b leValu e()
� � boolean eq u als(O bjec t)
� � BigInteger fl ip Bit (in t)
� � f loat f loatVa lue()
� � BigInteger gcd (B igIn teger)
� � in t getLowestSetBit ()
� � in t hashCode()
� � in t in tV alue()
� � boolean isProb ablePr ime(in t)

� � long lon gValu e()
� � BigInteger max(BigIn teger)
� � BigInteger min(BigIn teger)
� � BigInteger mod (BigIn teger)
� � BigInteger mod Inv erse(BigInteger)
� � BigInteger mod Pow(BigIn teger,

BigInteger)
� � BigInteger mult ip ly (BigIn teger)
� � BigInteger negate()
� � BigInteger not ()
� � f in al s tat ic BigIn teger O NE
� � BigInteger or(BigInteger)
� � BigInteger pow(int)
� � BigInteger rema in d er(BigIn teger)
� � BigInteger setBit (int)
� � BigInteger sh ift L eft (int)
� � BigInteger sh iftRigh t (in t)
� � in t s ignu m()
� � BigInteger su b trac t(BigIn teger)
� � boolean tes tBit (in t)
� � by te[] toBy teArray ()
� � St r ing toSt ring()
� � St r ing toSt ring(in t)
� � stat ic BigInteger v alueO f (lon g)
� � BigInteger xor(BigIn teger)
� � f in al s tat ic BigIn teger ZERO

22.3.6 java.net
� � package java.net
� � abstract class Authenticator
� � Auth ent ic ator()
� � protected PasswordAu then t ica tion

getPasswordAuthentic at ion ()
� � f in al p rotec ted in t getReq ues t in gPor t ()
� � f in al p rotec ted S t rin g

getRequ est ingPrompt ()

� � f in al p rotec ted S t rin g
getR equ est in gProtoc ol()

� � f in al p rotec ted S t rin g
getR equ est in gS ch eme()

� � f in al p rotec ted In etAd dress
getR equ est in gS ite()
448-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � stat ic PasswordAu th ent ica t ion
req u estPasswordAu th ent ica t ion(InetAd d r
ess ,int ,S t ring,S t rin g,St r ing)

� � stat ic v oid setDef au lt (Au then t ica tor)

� � class BindException extends SocketException
� � Bin dExc ept ion () � � BindExcept ion(S t ring)

� � class ConnectException extends SocketException
� � Con nec tExcept ion() � � Con n ectE xcep t ion(S t rin g)

� � abstract class ContentHandler
� � Con tentHan d ler()
� � ab st ract O b ject

getCon ten t (URLConn ec tion) throws
jav a.io.IO Ex cep t ion

� � Ob jec t getConten t (U RLConn ect ion ,
Class []) th rows jav a.io.IO Exc ep tion

� � interface ContentHandlerFactory
� � ab st ract Conten tHan dler

createCon tentHan d ler(S tr ing)

� � final class DatagramPacket
� � DatagramPacket (byte[],in t)
� � DatagramPacket (byte[],in t ,int)
� � DatagramPacket (byte[],in t ,int ,

InetAd d ress,in t)
� � DatagramPacket (b yte[],in t ,InetAd d ress,

int)
� � InetAd d ress getAd d ress()
� � b yte[] getData ()

� � int getL ength ()
� � int getO ff set()
� � int getPor t ()
� � void setAddress (InetAddress)
� � void setData (by te[])
� � void setData (by te[], in t ,in t)
� � v oid setLen gth(in t)
� � void setPort (in t)

� � class DatagramSocket
� � DatagramS oc ket () th rows

S ocketExcep t ion
� � DatagramS oc ket (in t) th rows

S ocketExcep t ion
� � DatagramS oc ket (in t ,InetAd d ress) throws

S ocketExcep t ion
� � v oid c lose()
� � v oid c on nec t (In etAd dress ,int)
� � void d iscon nec t ()
� � InetAd d ress get In etAdd ress ()
� � InetAd d ress getL ocalAd d ress()
� � int getLocalPor t ()
� � int getPor t ()
� � int getRec eiv eBuf f erS ize() th rows

S ocketExcep t ion
� � int getS en dBu f ferSiz e() th rows

S ocketExcep t ion

� � int getSoTimeou t () th rows
S ocketExcep t ion

� � void receiv e(DatagramPacket) th rows
jav a.io.IO Ex cep t ion

� � v oid sen d(Datagram Pac ket) th rows
jav a.io.IO Ex cep t ion

� � stat ic v oid
setDatagramSocket Imp lFactory(Datagra
mS ocket Imp lF ac tory) th rows
jav a.io.IO Ex cep t ion

� � v oid s et Rec eiv eB uf ferS iz e(in t) th r ows
S ocketExcep t ion

� � void setSend Bu ff erS ize(in t) th rows
S ocketExcep t ion

� � void setSoTimeou t(in t) th rows
S ocketExcep t ion

� � abstract class DatagramSocketImpl implements SocketOptions
� � DatagramS oc ket Impl()
� � ab st ract p rotec ted vo id b ind(in t,

InetAd d ress) th rows S oc ketEx cep t ion
� � ab st ract p rotec ted vo id c lose()
� � ab st ract p rotec ted vo id c rea te() throws

S ocketExcep t ion
� � protected jav a.io.F ileDescr ip tor fd
� � protected jav a.io.F ileDescr ip tor

getFileDescr iptor ()
� � protected in t getLoca lPort ()
� � ab st ract O b ject getO pt ion (in t) th rows

S ocketExcep t ion
� � ab st ract p rotec ted int getTimeToL iv e()

throws jav a .io .IOExcep t ion
� � ab st ract p rotec ted vo id join (InetAddress)

throws jav a .io .IOExcep t ion

� � ab st ract p rotec ted void
leav e(InetAd dress) throws
jav a.io.IO Ex cep t ion

� � protected in t localPor t
� � ab st ract p rotec ted int p eek(InetAd d ress)

throws jav a .io .IOExc ept ion
� � ab st ract p rotec ted void

rec eiv e(Datagram Pac ket) th rows
jav a.io.IO Ex cep t ion

� � ab st ract p rotec ted void
sen d (DatagramPac ket) th rows
jav a.io.IO Ex cep t ion

� � ab st ract void setOpt ion(int ,Ob ject)
throws S ocketExc ept ion

� � ab st ract p rotec ted void
setTimeToLiv e(in t) th rows
jav a.io.IO Ex cep t ion

� � interface DatagramSocketImplFactory
� � ab st ract DatagramSocket Imp l

createDatagramSocket Imp l()

� � interface FileNameMap
� � ab st ract S t rin g

getCon tentTy peFor (S t ring)

� � abstract class HttpURLConnection extends URLConnection
� � protect ed Ht t pUR LCon n ect ion (U RL)
� � ab st r act v oid d isc onn ec t()
� � jav a.io.In p utS t ream getE r rorS t ream()

� � stat ic b oolean getFollowRed irec ts ()
� � long getHeaderField Date(S tr ing,lon g)
� � b oolean getIn s tanc eFo llowRed irec t s()
OSGi Service-Platform Release 3 449-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � jav a.sec u rit y .Perm iss ion getPermiss ion ()
th rows jav a.io.IO Excep t ion

� � St r in g getReq u estM eth od ()
� � in t getRespon seCod e() th rows

jav a.io.IO Exc ep tion
� � St r in g getResponseMessage() th rows

jav a.io.IO Exc ep tion
� � f in al s ta t ic in t HTTP_ ACCEPTED
� � f in al s ta t ic in t HTTP_ BAD_ G ATEWAY
� � f in al s ta t ic in t HTTP_ BAD_ M ETHOD
� � f in al s ta t ic in t HTTP_ BAD_ R EQ UEST
� � f in al s ta t ic in t HTTP_ CL IEN T_ TIM EO UT
� � f in al s ta t ic in t HTTP_ CO NF LICT
� � f in al s ta t ic in t HTTP_ CR EATED
� � f in al s ta t ic in t HTTP_ ENTITY_ TO O _ LARG E
� � f in al s ta t ic in t HTTP_ F ORB IDDEN
� � f in al s ta t ic in t HTTP_ GA TEWAY_ TIM EO UT
� � f in al s ta t ic in t HTTP_ G ON E
� � f in al s ta t ic in t HTTP_ INTERN AL_ ERRO R
� � f in al s ta t ic in t HTTP_ LENG TH_ REQ UIRED
� � f in al s ta t ic in t HTTP_ M OVED_ PERM
� � f in al s ta t ic in t HTTP_ M OVED_ TEM P
� � f in al s ta t ic in t HTTP_ M ULT_ CHOICE
� � f in al s ta t ic in t HTTP_ NO _ CO NTENT
� � f in al s ta t ic in t HTTP_ NO T_ ACCEPTABLE
� � f in al s ta t ic in t

HTTP_ NO T_ AUTHO RITATIVE
� � f in al s ta t ic in t HTTP_ NO T_ F OUN D

� � f in al s tat ic in t HTTP_ NO T_ IM PLEMEN TED
� � f in al s tat ic in t HTTP_ NO T_ M ODIF IED
� � f in al s tat ic in t HTTP_ O K
� � f in al s tat ic in t HTTP_ PART IAL
� � f inal s tat ic in t

HTTP_ PAYM EN T_ REQUIR ED
� � f in al s tat ic in t HTTP_ PRECO N_ F AILED
� � f in al s tat ic in t HTTP_ PRO XY_AU TH
� � f in al s tat ic in t HTTP_ REQ _TOO _ LO NG
� � f in al s tat ic in t HTTP_ RES ET
� � f in al s tat ic in t HTTP_ S EE_ O THER
� � f in al s tat ic in t HTTP_ UN AUTHO RIZED
� � f in al s tat ic in t HTTP_ UN AVAILABL E
� � f inal s tat ic in t

HTTP_ UNS UPPORTED_ TYPE
� � f in al s tat ic in t HTTP_ US E_ PROXY
� � f in al s tat ic in t HTTP_ VERS ION
� � protected b oolean

in s tanc eF ollowRed irec t s
� � protected S tr ing m ethod
� � protected int resp on seCode
� � protected S tr ing resp on seM essage
� � stat ic v oid setFollowRed irec t s(b oolean)
� � void

set InstanceF ollowRed irect s (boolean)
� � void setRequ es tMeth od(S t rin g) th rows

Protoc olExc ep tion
� � ab st ract b oolean u sin gProx y()

� � final class InetAddress implements java.io.Serializable
� � boolean eq u als(O bjec t)
� � by te[] getAd dress ()
� � stat ic InetAd d ress[]

getAllByName(Str ing) th rows
UnknownHostExcept ion

� � stat ic InetAd d ress getBy Name(St r ing)
th rows Un known HostExc ept ion

� � St r ing getHostAd d ress()
� � St r ing getHostN ame()
� � stat ic InetAd d ress getLocalHos t () th rows

UnknownHostExcept ion
� � in t hashCode()
� � boolean isM ult icastAd d ress ()
� � St r ing toSt ring()

� � abstract class JarURLConnection extends URLConnection
� � protected JarU RLConn ect ion (URL)

th rows M alformed URLExc ep tion
� � jav a.u til . ja r.At t rib utes getAt t rib utes ()

th rows jav a.io.IO Excep t ion
� � jav a.sec u rit y .cer t. Cert if icat e[]

getCert if icates () th rows
jav a.io.IO Exc ep tion

� � St r ing getEnt ryName()
� � jav a.u til . ja r. JarEn t ry get JarEn t ry () throws

jav a.io.IO Exc ep tion

� � ab st ract jav a .ut il . jar . JarF ile get JarF ile()
th rows jav a.io.IO Excep t ion

� � URL get Ja rF ileU RL()
� � jav a.u til . ja r.At t rib utes

getM ain At t rib utes () th rows
jav a.io.IO Exc ep tion

� � jav a.u til . ja r.M an ifes t getM an if est ()
th rows jav a.io.IO Excep t ion

� � protected URL Con nec t ion
ja rF ileURLConn ec tion

� � class MalformedURLException extends java.io.IOException
� � Malf orm edU RLExcep t ion () � � Malf orm edU RLE xcep t ion (S t rin g)

� � class MulticastSocket extends DatagramSocket
� � Mu lt ic as tSoc ket () th rows

jav a.io.IO Exc ep tion
� � Mu lt ic as tSoc ket (int) throws

jav a.io.IO Exc ep tion
� � InetAd dress get In ter face() throws

Soc ketExcep t ion
� � in t getTimeToL ive() throws

jav a.io.IO Exc ep tion
� � void join Group (InetAd d ress) th rows

jav a.io.IO Exc ep tion

� � void leav eG rou p (In etAd dress) throws
jav a.io.IO Exc ep tion

� � void send (DatagramPacket ,b y te) th rows
jav a.io.IO Exc ep tion

� � void set Inter fac e(InetAd d ress) throws
Soc ketExcep t ion

� � void setTimeToLiv e(int) th rows
jav a.io.IO Exc ep tion

� � final class NetPermission extends java.security.BasicPermission
� � NetPerm iss ion(S tr ing) � � NetPerm iss ion(S tr ing,S t rin g)

� � class NoRouteToHostException extends SocketException
� � NoRou teToHostExc ept ion () � � NoRou teToHostExc ept ion (S t rin g)

� � final class PasswordAuthentication
� � PasswordAuthen t icat ion (St r ing,c ha r[])
� � ch ar[] getPassword ()

� � St r ing getUserN ame()

� � class ProtocolException extends java.io.IOException
� � Protoc olExc ep tion () � � ProtocolExc ep tion (St r ing)

� � class ServerSocket
� � ServerS ocket (int) th rows java.io.IO Exception
450-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � Serv erSocket (in t ,int) throws
jav a.io.IO Ex cep t ion

� � S erv erS oc ket (in t ,int ,In etAdd ress) th rows
jav a.io.IO Ex cep t ion

� � S ocket acc ept () th rows
jav a.io.IO Ex cep t ion

� � v oid c lose() throws java .io.IOExc ept ion
� � InetAd d ress get In etAdd ress ()
� � int getLocalPor t ()

� � int getSoTimeou t () th rows
jav a.io.IO Ex cep t ion

� � f inal p ro tec ted void imp lAc cept (S oc ket)
throws jav a .io .IOExc ept ion

� � stat ic v oid
setSoc ketF ac tory (Socket Imp lFactory)
throws jav a .io .IOExc ept ion

� � void setSoTimeou t(in t) th rows
S ocketExcep t ion

� � Str ing toSt ring()

� � class Socket
� � protected Socket ()
� � Socket (St r ing,in t) th rows

Un known HostExcep t ion ,
jav a.io.IO Ex cep t ion

� � S ocket (St r ing,in t ,InetAd d ress,in t)
throws jav a .io .IOExcep t ion

� � S ocket (InetAd d ress,in t) th rows
jav a.io.IO Ex cep t ion

� � S ocket (InetAd d ress,in t ,InetAd d ress,in t)
throws jav a .io .IOExcep t ion

� � protected Socket (Socket Imp l) throws
S ocketExcep t ion

� � v oid c lose() throws java .io.IOExc ept ion
� � InetAd d ress get In etAdd ress ()
� � java.io.InputS t ream getInputS t ream()

throws jav a .io .IOExcep t ion
� � b oolean getKeepAliv e() th rows

S ocketExcep t ion
� � InetAd d ress getL ocalAd d ress()
� � int getLocalPor t ()
� � java.io.O utputS t ream getOutputS t ream()

throws jav a .io .IOExcep t ion
� � int getPor t ()
� � int getRec eiv eBuf f erS ize() th rows

S ocketExcep t ion
� � int getS en dBu f ferSiz e() th rows

S ocketExcep t ion

� � int getS oL inger () th rows SocketExcep t ion
� � int getSoTimeou t () th rows

S ocketExcep t ion
� � b oolean getTcp NoDelay() throws

S ocketExcep t ion
� � v oid setKeep Aliv e(b oolean) throws

S ocketExcep t ion
� � v oid s et Rec eiv eB uf ferS iz e(in t) th r ows

S ocketExcep t ion
� � void setSend Bu ff erS ize(in t) th rows

S ocketExcep t ion
� � stat ic v oid

setS oc ketIm plF ac tory (Soc ket Imp lFactory
) th rows jav a.io.IO Excep t ion

� � void setSoLin ger(boolean,in t) th rows
S ocketExcep t ion

� � void setSoTimeou t(in t) th rows
S ocketExcep t ion

� � void setTcpNoDelay (boolean) th rows
S ocketExcep t ion

� � void shutdownInput () th rows
jav a.io.IO Ex cep t ion

� � void shutdownOutput() throws
jav a.io.IO Ex cep t ion

� � Str ing toSt ring()

� � class SocketException extends java.io.IOException
� � SocketExcept ion() � � S ocketE xcep t ion (S t rin g)

� � abstract class SocketImpl implements SocketOptions
� � S ocket Imp l()
� � ab st ract p rotec ted vo id

ac cep t (S oc ket Impl) th rows
jav a.io.IO Ex cep t ion

� � protected In etA dd ress ad dress
� � ab st ract p rotec ted int ava ilab le() throws

jav a.io.IO Ex cep t ion
� � ab st ract p rotec ted v oid bin d (In etAd dress ,

int) throws java .io.IOExc ept ion
� � ab st ract p rotec ted vo id c lose() throws

jav a.io.IO Ex cep t ion
� � ab st ract p rotec ted vo id c on nec t (S t rin g,

int) throws java .io.IOExc ept ion
� � ab st ract p rotec ted vo id

connect (InetAddress,in t) th rows
jav a.io.IO Ex cep t ion

� � ab st ract p rotec ted vo id c rea te(b oolean)
throws jav a .io .IOExcep t ion

� � protected jav a.io.F ileDescr ip tor fd
� � protected jav a.io.F ileDescr ip tor

getFileDescr iptor ()
� � protected In etA dd ress getIn etAd dress ()

� � ab st ract p rotec ted jav a.io.In pu tS tream
get InputS t ream() th rows
jav a.io.IO Ex cep t ion

� � protected in t getL oca lPort ()
� � ab st ract O b ject getO pt ion (in t) th rows

S ocketExcep t ion
� � ab st ract p rotec ted java.io.O utputS t ream

getOu tputS tream() throws
jav a.io.IO Ex cep t ion

� � protected in t getPort ()
� � ab st ract p rotec ted void l is ten(int)

throws jav a .io .IOExc ept ion
� � protected in t localp ort
� � protected in t por t
� � ab st ract void setOpt ion(int ,Ob ject)

throws S ocketExc ept ion
� � protected void shutdownInput () throws

jav a.io.IO Ex cep t ion
� � protected void shutdownOutput ()

throws jav a .io .IOExc ept ion
� � Str ing toSt ring()

� � interface SocketImplFactory
� � ab st ract Socket Imp l createSocket Imp l()

� � interface SocketOptions
� � ab st ract O b ject getO pt ion (in t) th rows

S ocketExcep t ion
� � f inal s tat ic in t IP_MULTICAST_IF
� � ab st ract v oid setO p t ion(int ,O b ject)

throws S ocketExc ept ion

� � f inal s tat ic in t SO_BIN DADDR
� � f inal s tat ic in t SO_KEEPAL IVE
� � f inal s tat ic in t SO_L ING ER
� � f in al s tat ic in t S O_ RCVBUF
� � f inal s tat ic in t SO_REUSEADDR
OSGi Service-Platform Release 3 451-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � f in al s ta t ic in t S O_ S NDB UF
� � f in al s ta t ic in t S O_ TIM EO UT

� � f inal s tat ic in t TCP_NODEL AY

� � final class SocketPermission extends java.security.Permission implements java.io.Serializable
� � SocketPerm iss ion(S t rin g,S t r ing)
� � boolean eq u als(O bjec t)
� � St r ing getAc tion s ()
� � in t hashCode()

� � boolean implies (java.secu rit y .Permiss ion)
� � jav a.secu rit y .Perm iss ionCollec t ion

newPerm iss ionCollect ion ()

� � class UnknownHostException extends java.io.IOException
� � UnknownHostExcept ion() � � UnknownHostExcept ion(S t ring)

� � class UnknownServiceException extends java.io.IOException
� � Unkn own Serv ic eExcep t ion() � � Unkn own Serv ic eExcep t ion(S t rin g)

� � final class URL implements java.io.Serializable
� � URL(S t rin g) th rows

Malf orm edU RLExcep t ion
� � URL(S t rin g,St r ing,in t,St r ing) throws

Malf orm edU RLExcep t ion
� � URL(S t rin g,St r ing,in t,St r ing,

URLS t reamHan dler) th rows
Malf orm edU RLExcep t ion

� � URL(S t rin g,St r ing,S t rin g) th rows
Malf orm edU RLExcep t ion

� � URL(URL ,St r ing) th rows
Malf orm edU RLExcep t ion

� � URL(URL ,St r ing,UR LS t ream Hand ler)
th rows M alformed URLExc ep tion

� � boolean eq u als(O bjec t)
� � St r ing getAu thor ity ()
� � f in al O bjec t getCon tent () th rows

jav a.io.IO Exc ep tion
� � f inal Objec t getCon tent (Class[]) th rows

jav a.io.IO Exc ep tion
� � St r ing getF ile()
� � St r ing getHost()

� � St r ing getPath ()
� � in t getPor t()
� � St r ing getProtocol()
� � St r ing getQ uery ()
� � St r ing getRef ()
� � St r ing getUserIn fo()
� � in t hashCode()
� � URLConn ec tion op en Con nec t ion()

th rows jav a.io.IO Excep t ion
� � f inal java. io. InputS t ream op enS t ream()

th rows jav a.io.IO Excep t ion
� � boolean sameF ile(URL)
� � protected void set (S t r ing,S t rin g,int ,

St r ing,S t rin g)
� � protected void set (S t r ing,S t rin g,int ,

St r ing,S t rin g,St r ing,S t rin g,S tr ing)
� � stat ic v oid

setURL St reamHan d lerF ac tory (U RLS t ream
Hand lerFac tory)

� � St r ing toExtern alForm()
� � St r ing toSt ring()

� � class URLClassLoader extends java.security.SecureClassLoader
� � URLClassLoader (U RL[])
� � URLClassLoader (U RL[],C lassLoader)
� � URLClassLoader (U RL[],C lassLoader ,

URLSt reamHandlerFactory)
� � protected v oid add URL (URL)
� � protect ed Pac kage d ef in ePacka ge(S t rin g,

jav a.u til . ja r.M an if es t,URL) th rows
Illega lArgu mentExc ept ion

� � protected Class findClass(S tr ing) th rows
ClassN otFou nd E xcep t ion

� � URL f in dR esou rc e(S t rin g)

� � jav a.u til .En um erat ion
fin dR esou rc es(S t rin g) t h row s
jav a.io.IO Exc ep tion

� � protected
jav a.secu rit y .Perm iss ionCollec t ion
getPermission s(jav a.secu r it y .CodeS ou rc e
)

� � URL[] getURL s()
� � stat ic URLC lassL oad er

newIn stan ce(URL [])
� � stat ic URLC lassL oad er

newIn stan ce(URL [] ,ClassL oad er)

� � abstract class URLConnection
� � protected URLCon nec t ion(URL)
� � protected boolean allowUser Interact ion
� � ab st ract v oid con n ect () th rows

jav a.io.IO Exc ep tion
� � protected boolean con nec ted
� � protected boolean doIn p ut
� � protected boolean doO u tp u t
� � boolean getAllowUserIn terac t ion ()
� � Ob ject getConten t() throws

jav a.io.IO Exc ep tion
� � Ob ject getConten t(C lass []) th rows

jav a.io.IO Exc ep tion
� � St r ing getCon tentEncod ing()
� � in t getCon tentL ength ()
� � St r ing getCon tentType()
� � long getDate()
� � stat ic boolean

getDefau ltAllowUser Interact ion ()
� � boolean getDef au ltUseCac hes ()
� � boolean getDoInput ()
� � boolean getDoO u tpu t ()
� � long getExp irat ion ()
� � stat ic FileN ameM ap getFileNameM ap ()
� � St r in g getHead erF ield (in t)

� � St r ing getHead erF ield (S t rin g)
� � long getHead erF ield Date(St r ing,lon g)
� � in t getHead erF ieldIn t (St r ing,in t)
� � St r ing getHead erF ield Key (in t)
� � long get If Mod if ied S inc e()
� � java.io.In pu tS tream get InputS t ream()

th rows jav a.io.IO Excep t ion
� � long getLastM odif ied ()
� � jav a.io.O utp utS t ream getO utp utS t ream()

th rows jav a.io.IO Excep t ion
� � jav a.secu rit y .Perm iss ion getPermiss ion ()

th rows jav a.io.IO Excep t ion
� � St r ing getReq u estProper ty(S t rin g)
� � URL getUR L()
� � boolean getUseCach es()
� � protected stat ic S tr ing

guessConten tTy peF rom Nam e(S t rin g)
� � stat ic St r ing

guessConten tTy peF rom St ream(jav a.io.In
pu tSt ream) th rows jav a.io.IOExc ep tion

� � protected long if M odif ied Sin ce
� � void setAllowUserIn teract ion (b oolean)
452-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � stat ic v oid
setConten tHand lerF ac tory (Con tentHan d l
erF ac to ry)

� � stat ic v oid
setDef au ltAllowU ser In teract ion (b oolean)

� � void setDef au ltUseCaches(boolean)
� � void setDoInput (boolean)
� � v oid setDoO utp u t(b oolean)

� � stat ic v oid
set F ileNam eMap (FileN ameM ap)

� � v oid set IfM od ified S inc e(lon g)
� � void setReq ues tProper ty (S tr ing,S t ring)
� � void setUseCaches (boolean)
� � Str ing toSt ring()
� � protected URL u rl
� � protect ed b oolean u seCa ch es

� � class URLDecoder
� � URL Decod er() � � stat ic S t rin g dec od e(S t rin g)

� � class URLEncoder
� � stat ic S tr ing enc ode(S t rin g)

� � abstract class URLStreamHandler
� � URL St reamHan d ler()
� � protected b oolean eq uals (URL,U RL)
� � protected in t getDefau ltPort ()
� � protected In etA dd ress

getHostAddress (URL)
� � protected in t hash Cod e(U RL)
� � protected b oolean host sEq ua l(U RL,UR L)

� � ab st ract p rotec ted URLConn ec tion
op enConn ect ion (URL) th rows
jav a.io.IO Ex cep t ion

� � protected v oid pa rseURL(URL ,S tr ing,in t ,
int)

� � protected b oolean sameF ile(URL ,URL)
� � protected v oid setURL (U RL,S t rin g,S tr ing,

int ,S t ring,S tr ing,S t ring,S t rin g,St r ing)
� � protected S t ring toExterna lForm(U RL)

� � interface URLStreamHandlerFactory
� � ab st ract U RLS t ream Han dler

createURL St reamHan d ler(St r ing)

22.3.7 java.security
� � package java.security
� � final class AccessControlContext
� �

Acc essCon t rolContext (Protec t ionDomain
[])

� �

Acc essCon t rolContext (Acc essCon t rolCon
text ,Domain Com bin er)

� � v oid c h eckPermission (Permission)
throws Ac cessCont rolExc ep t ion

� � b oolean equ als (O b ject)
� � DomainCombiner getDomain Combiner()
� � int hashCode()

� � class AccessControlException extends SecurityException
� � AccessCon t rolExcept ion(S t ring)
� � Acc essCon t rolE xc ept ion (S t rin g,

Perm iss ion)

� � Perm iss ion getPermiss ion ()

� � final class AccessController
� � stat ic v oid ch eckPermission (Permission)

throws Ac cessCont rolExc ep t ion
� � stat ic O bjec t

doPriv ileged(Pr ivileged Act ion)
� � stat ic O bjec t

doPriv ileged(Pr ivileged Act ion ,
Acc essCon t rolContext)

� � stat ic O bjec t
doPriv ileged(Pr ivileged Excep t ionAc t ion)
throws Pr iv ileged Ac tion Excep t ion

� � stat ic O bjec t
doPriv ileged(Pr ivileged Excep t ionAc t ion,
AccessCon t rolContext) throws
Priv ileged Act ion Exc ep t ion

� � stat ic Ac cessCont ro lContext
getCon tex t()

� � class AlgorithmParameterGenerator
� � protected

Algorith mParameterG en erator (A lgor ithm
ParameterG en eratorS pi,Prov ider ,St r ing)

� � f inal Algor ithmParameters
generateParameters()

� � f in al S t rin g getAlgorith m()
� � stat ic Algorith mParameterGen era tor

get Ins tan ce(St r ing) th rows
NoS u ch Algorith mEx cep t ion

� � stat ic Algorith mParameterGen era tor
get Ins tan ce(St r ing,S t rin g) th rows
NoS u ch Algorith mEx cep t ion,
NoS u ch Prov id erExc ept ion

� � f in al P rov ider getProv id er()
� � f in al v oid in it(in t)
� � f in al v oid in it(in t,S ec ureRan d om)
� � f in al v oid in it(Algorith mParameterSp ec)

throws
Inv a lid Algor ith mParam eterEx cep t ion

� � f in al v oid in it(Algorith mParameterSp ec ,
S ecu reRand om) th rows
Inv a lid Algor ith mParam eterEx cep t ion

� � abstract class AlgorithmParameterGeneratorSpi
� � Algorith mParameterG en eratorS pi()
� � ab st ract p rotec ted Algorithm Parameters

engin eG enerateParameters ()
� � ab st ract p rotec ted vo id en gineIn it (in t ,

S ecu reRand om)

� � ab st ract p rotec ted void
engin eIn it (Algorith mParameterSp ec ,
S ecu reRand om) th rows
Inv a lid Algor ith mParam eterEx cep t ion
OSGi Service-Platform Release 3 453-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � class AlgorithmParameters
� � protected

Algorithm Parameters (A lgor ithmParamete
rsSp i,Provider,St r ing)

� � f inal S t ring getAlgorithm()
� � f inal by te[] getEncod ed () th rows

jav a.io.IO Exc ep tion
� � f inal by te[] getEncod ed (S t rin g) th rows

jav a.io.IO Exc ep tion
� � stat ic Algorithm Parameters

get Instanc e(S t ring) throws
NoS uc h Algorithm Exc ep tion

� � stat ic Algorithm Parameters
get Instanc e(S t ring,S t rin g) th rows
NoS uc h Algorithm Exc ep tion ,
NoS uc h Prov id erExcep t ion

� � f in al Algor ith mParam eterS pec
getPa rameterS pec (Class) th rows
Inv alid ParameterSp ec Exc ep tion

� � f in al Prov ider getProv id er()
� � f in al v oid init (b yte[]) throws

jav a.io.IO Exc ep tion
� � f in al v oid init (b yte[],S t rin g) th rows

jav a.io.IO Exc ep tion
� � f in al v oid init (Algorith mParameterS p ec)

th rows In va lidPa ram eterS pec Excep t ion
� � f inal S t ring toSt r ing()

� � abstract class AlgorithmParametersSpi
� � Algorithm ParametersS pi()
� � ab st ract p rotec ted b y te[]

engin eGetEnc od ed() throws
jav a.io.IO Exc ep tion

� � ab st ract p rotec ted b y te[]
engin eGetEnc od ed(S t rin g) th rows
jav a.io.IO Exc ep tion

� � ab st ract p rotec ted
Algorithm ParameterS p ec
engin eGetPa ram eterS pec (C lass) throws
Inv alid ParameterSp ecExc ep tion

� � ab st ract p rotec ted v oid
engin eInit (by te[]) throws
jav a.io.IO Exc ep tion

� � ab st ract protected v oid en gineIn it (b y te[] ,
St r ing) throws java .io.IOExc ept ion

� � ab st ract p rotec ted v oid
engin eInit (Algorith mParameterS p ec)
th rows In va lidPa ram eterS pec Excep t ion

� � ab st ract p rotec ted S t rin g
engin eToS tr ing()

� � final class AllPermission extends Permission
� � AllPermission ()
� � AllPermission (St r ing,S t rin g)
� � boolean eq u als(O bjec t)
� � St r ing getAc tion s ()

� � in t hashCode()
� � boolean im plies (Permission)
� � Permission Collec t ion

newPerm iss ionCollect ion ()

� � abstract class BasicPermission extends Permission implements java.io.Serializable
� � Bas ic Permiss ion(S t rin g)
� � Bas ic Permiss ion(S t rin g,St r ing)
� � boolean eq u als(O bjec t)
� � St r ing getAc tion s ()

� � in t hashCode()
� � boolean im plies (Permission)
� � Permission Collec t ion

newPerm iss ionCollect ion ()

� � interface Certificate
� � ab st ract v oid

dec ode(jav a .io .Inp u tS t ream) throws
Key Exc ep t ion, java .io.IOExc ept ion

� � ab st ract v oid
enc ode(java. io.Ou tputS tream) th rows
Key Exc ep t ion, java .io.IOExc ept ion

� � ab st ract S t rin g getFormat ()
� � ab st ract Pr inc ip al getGu aran tor ()
� � ab st ract Pr inc ip al getPrin cip al()
� � ab st ract Pu b licKey getPu b licKey ()
� � ab st ract S t ring toStr ing(boolean)

� � class CodeSource implements java.io.Serializable
� � Cod eSource(jav a.net .URL,Cert if icate[])
� � boolean eq u als(O bjec t)
� � f inal Cer t if icate[] getCert if ica tes ()
� � f in al jav a.n et .URL getLoc at ion()

� � in t hashCode()
� � boolean im plies (CodeS ou rc e)
� � St r ing toSt ring()

� � class DigestException extends GeneralSecurityException
� � DigestExcept ion() � � DigestExcept ion(S t ring)

� � class DigestInputStream extends java.io.FilterInputStream
� � Digest InputS tream(jav a.io.InputS t ream,

MessageDigest)
� � protected MessageDigest d igest
� � MessageDigest getM essageDiges t()
� � void on (boolean)

� � in t read () th rows java .io.IOExc ept ion
� � in t read (b y te[] ,in t ,in t) th rows

jav a.io.IO Exc ep tion
� � void setMessageDigest (MessageDigest)
� � St r ing toSt ring()

� � class DigestOutputStream extends java.io.FilterOutputStream
� �

DigestOutputS t ream(java.io.OutputS t rea
m,MessageDigest)

� � protected MessageDigest d igest
� � MessageDigest getM essageDiges t()
� � void on (boolean)

� � void setMessageDigest (MessageDigest)
� � St r ing toSt ring()
� � void write(byte[],in t ,in t) throws

jav a.io.IO Exc ep tion
� � void write(int) throws

jav a.io.IO Exc ep tion

� � interface DomainCombiner
� � ab st ract Protect ion Domain []

comb in e(Protect ion Domain [] ,
Protec tion Domain[])

� � class GeneralSecurityException extends Exception
� � Gen era lS ec ur it yExc ept ion () � � Gen era lS ec ur it yExc ept ion (St r ing)
454-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � interface Guard
� � ab st ract void chec kG uard (O b ject)

throws Secu rit yExcept ion

� � class GuardedObject implements java.io.Serializable
� � Gu arded O b jec t (O b ject ,G uard) � � Ob jec t getOb ject () th rows

S ecu rit y Ex cep t ion

� � abstract class Identity implements Principal , java.io.Serializable
� � protected Id ent it y ()
� � Iden t it y (S t rin g)
� � Iden t it y (S t rin g,Iden t it ySc op e) th rows

Key M anagemen tExc ept ion
� � void addCert if icate(Cert if icate) th rows

Key M anagemen tExc ept ion
� � Cer tif ica te[] cer tif ica tes ()
� � f in al b oolean eq ua ls(O bjec t)
� � S tr ing get In fo ()
� � f in al S t rin g getNam e()
� � Pu blic Key getPu blic Key ()

� � f in al Id en t it y S cop e getS cop e()
� � int hashCode()
� � protected b oolean

iden t it yEq ua ls(Id ent it y)
� � void removeCer t if icate(Cert if icate)

throws Key M an agemen tEx cep t ion
� � void set Inf o(S tr ing)
� � v oid setPu blic Key (Pub licKey) th rows

Key M an agemen tExc ept ion
� � Str ing toSt ring()
� � S tr ing toS t rin g(boolean)

� � abstract class IdentityScope extends Identity
� � protected Id ent it y S cop e()
� � Iden t it y Sc op e(S t rin g)
� � Iden t it y Sc op e(S t rin g,Iden t it y Sc op e)

throws Key M an agemen tEx cep t ion
� � ab st r act v oid ad d Iden t it y (Id en tit y)

throws Key M an agemen tEx cep t ion
� � ab st ract Id en t ity get Id ent it y (St r ing)
� � Iden t it y getId en t ity (Princ ip al)
� � ab st ract Id en t ity get Id ent it y (Pub licKey)

� � stat ic Id ent it y Sc op e getSy s temS cop e()
� � ab st ract jav a.ut il .En umerat ion

iden t it ies()
� � ab st ract void removeIden t it y(Ident it y)

throws Key M an agemen tEx cep t ion
� � protected s ta t ic v oid

setS y stemS c ope(Id ent it y S cop e)
� � ab st ract in t s ize()
� � Str ing toSt ring()

� � class InvalidAlgorithmParameterException extends GeneralSecurityException
� � Inv a lid Algorith mParam eterEx cep t ion() � �

Inv a lid Algor ith mParam eterEx cep t ion(S t ri
ng)

� � class InvalidKeyException extends KeyException
� � Inv a lid Key Exc ept ion () � � Inva lidKey Except ion(S t ring)

� � class InvalidParameterException extends IllegalArgumentException
� � Inv a lid Pa rameterEx cep t ion() � � Inv a lid Pa ram eterEx cep t ion(S t ring)

� � interface Key implements java.io.Serializable
� � ab st ract S t rin g getAlgorith m()
� � ab st ract by te[] getEn coded ()

� � ab st ract S t rin g getF ormat()
� � f inal s tat ic long serialVersion UID

� � class KeyException extends GeneralSecurityException
� � Key Excep t ion() � � Key E xcep t ion(S t rin g)

� � class KeyFactory
� � protect ed Key F ac tory (K ey Fac t ory S p i,

Prov id er,S t rin g)
� � f in al Pr iv ateKey

generatePr iv a te(Key S p ec) throws
Inv a lid Key S p ecExc ept ion

� � f inal Pub licKey generatePub lic (KeySpec)
t hr ows In v alidK ey Sp ec Exc ep tion

� � f in al S t rin g getAlgorith m()
� � stat ic Key F actory get Ins tan ce(St r ing)

throws N oSu c hAlgor ith mExc ept ion

� � stat ic Key F actory get Ins tan ce(St r ing,
S tr ing) th rows
NoS u ch Algorith mE xcep t ion,
NoS u ch Prov id erExc ept ion

� � f inal KeySpec getKeySpec (Key,C lass)
t hr ows In v alidK ey Sp ec Exc ep tion

� � f in al P rov ider getProv id er()
� � f in al Key tran sla teKey (Key) th rows

Inv a lid Key Exc ept ion

� � abstract class KeyFactorySpi
� � Key F actoryS p i()
� � ab st ract p rotec ted Priv ateKey

engin eG eneratePriv ate(Key S p ec) throws
Inv a lid Key S p ecExc ept ion

� � ab st ract p rotec ted Pub lic Key
engin eG eneratePu blic (KeyS p ec) th rows
Inv a lid Key S p ecExc ept ion

� � ab st ract p rotec ted KeySpec
engin eG etKey Sp ec (Key,C lass) throws
Inv a lid Key S p ecExc ept ion

� � ab st ract p rotec ted Key
engin eTrans lateKey (Key) throws
Inv a lid Key Exc ept ion

� � class KeyManagementException extends KeyException
� � Key M anagemen tExc ept ion () � � Key M an agemen tExc ept ion (St r ing)

� � final class KeyPair implements java.io.Serializable
� � KeyPair (Pub licKey,P riv ateKey)
� � PrivateKey getPr ivate()

� � Pu blic Key getPu blic ()

� � abstract class KeyPairGenerator extends KeyPairGeneratorSpi
� � protected Key Pa irG enerator(S t rin g)
� � Key Pair generateKey Pa ir()
� � f in al KeyPair gen Key Pa ir()
� � S tr ing getAlgor ith m()

� � stat ic Key Pa irG enerator
get Ins tan ce(St r ing) th rows
NoS u ch Algorith mE xcep t ion
OSGi Service-Platform Release 3 455-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � stat ic Key PairGen era to r
get Instanc e(S t ring,S t rin g) th rows
NoS uc h Algorithm Exc ep tion ,
NoS uc h Prov id erExcep t ion

� � f in al Prov id er getProv id er()
� � void in it ia lize(in t)
� � void in it ia lize(in t ,S ecu reR and om)

� � void in it ia lize(Algorithm ParameterS p ec)
th rows
Inv alid Algorith mParameterExc ep tion

� � void in it ia lize(Algorithm ParameterS p ec,
Sec ureRan d om) throws
Inv alid Algorith mParameterExc ep tion

� � abstract class KeyPairGeneratorSpi
� � Key PairG en eratorS pi()
� � ab st ract KeyPa ir gen era teKey Pair()
� � ab st ract v oid init ializ e(in t ,

Sec ureRan d om)

� � void in it ia lize(Algorithm ParameterS p ec,
Sec ureRan d om) throws
Inv alid Algorith mParameterExc ep tion

� � class KeyStore
� � protected Key S tore(Key S toreS pi,

Prov id er,S t rin g)
� � f in al jav a.u t il .Enu mera t ion a liases ()

th rows Key S toreExcep t ion
� � f in al b oolean contain sAlia s(S tr ing)

th rows Key S toreExcep t ion
� � f in al v oid deleteEn try (S t rin g) th rows

KeyStoreEx cept ion
� � f inal Cer t if icate getCer tif ica te(S t ring)

th rows Key S toreExcep t ion
� � f in al S t rin g

getCert if icateAlias (Cert if icate) th rows
KeyStoreEx cept ion

� � f in al Cer t if ic ate[]
getCert if icateCh ain (St r ing) throws
KeyStoreEx cept ion

� � f in al jav a.u t il .Date
getCreat ion Date(S tr ing) th rows
KeyStoreEx cept ion

� � f in al s ta t ic S t rin g getDef aultTy p e()
� � stat ic Key S tore get Ins tan ce(S t rin g)

th rows Key S toreExcep t ion
� � stat ic KeyStore get Ins tance(St r ing,S t ring)

th rows Key S toreExcep t ion ,
NoS uc h Prov id erExcep t ion

� � f inal Key getKey(S t ring,char[]) th rows
KeyStoreEx cept ion,
NoS uc h Algorithm Exc ep tion ,
Unrecov erab leKey Ex cep t ion

� � f in al Prov ider getProv id er()
� � f inal S t ring getTy pe()
� � f in al b oolean isCert if icateEn try (S t rin g)

th rows Key S toreExcep t ion
� � f inal boolean isKeyEnt ry (St r ing) th rows

KeyStoreEx cept ion
� � f in al v oid load (java .io.Inp u tSt ream,

ch ar[]) th rows jav a.io.IO Exc ep tion ,
NoS uc h Algorithm Exc ep tion ,
Cert if icateExc ept ion

� � f inal void setCert if icateEnt ry(S t rin g,
Cert if icate) th rows Key StoreEx cep t ion

� � f in al v oid setKey En try (S t rin g,b y te[],
Cert if icate[]) th rows Key StoreExc ep tion

� � f in al v oid setKey En try (S t rin g,Key ,c ha r[] ,
Cert if icate[]) th rows Key StoreExc ep tion

� � f inal in t size() throws KeyS toreException
� � f in al v oid store(java .io.Ou tp utS t ream ,

ch ar[]) th rows Key StoreEx cep t ion,
jav a.io.IO Exc ep tion ,
NoS uc h Algorithm Exc ep tion ,
Cert if icateExc ept ion

� � class KeyStoreException extends GeneralSecurityException
� � KeyStoreEx cept ion() � � KeyStoreEx cept ion(S t ring)

� � abstract class KeyStoreSpi
� � KeyStoreSpi()
� � ab st ract jav a .ut il .Enu merat ion

engin eAliases ()
� � ab st ract b oolean

engin eCon tainsAlias (S t rin g)
� � ab st ract v oid engin eDeleteEnt ry(S t rin g)

th rows Key S toreExcep t ion
� � ab st ract Cert if ic ate

engin eGetCert if ic ate(St r ing)
� � ab st ract S t rin g

engin eGetCert if ic ateAlias (Cert if ic ate)
� � ab st ract Cert if ic ate[]

engin eGetCert if ic ateCh ain (S t rin g)
� � ab st ract jav a .ut il .Date

engin eGetCreat ion Date(St r ing)
� � ab st ract Key en gineG etKey (St r ing,c ha r[])

th rows NoSuchAlgorithmExcept ion,
Unrecov erab leKey Ex cep t ion

� � ab st ract b oolean
engin eIsCert if ic ateEnt ry(S t rin g)

� � ab st ract b oolean
engin eIsKeyEn t ry (S t rin g)

� � ab st ract v oid
engin eLoad (jav a.io.In p utS t ream ,ch ar[])
th rows jav a.io.IO Excep t ion,
NoS uc h Algorithm Exc ep tion ,
Cert if icateExc ept ion

� � ab st ract v oid
engin eSetCert if ic ateEnt ry(S t rin g,
Cert if icate) th rows Key StoreEx cep t ion

� � ab st ract v oid en gin eS etKey En t ry (S tr ing,
by te[] ,Cer t if icate[]) th rows
KeyStoreEx cept ion

� � ab st ract v oid en gin eS etKey En t ry (S tr ing,
Key ,ch ar [] ,Cert if icate[]) th rows
KeyStoreEx cept ion

� � ab st ract in t engin eS ize()
� � ab st ract v oid

engin eStore(jav a.io.Ou tp utS t ream ,
ch ar[]) th rows jav a.io.IO Exc ep tion ,
NoS uc h Algorithm Exc ep tion ,
Cert if icateExc ept ion

� � abstract class MessageDigest extends MessageDigestSpi
� � protected MessageDigest (S tr ing)
� � Ob ject c lone() throws

Clon eNotS up p orted Exc ep tion
� � by te[] d igest ()
� � by te[] d igest (by te[])

� � in t d igest (by te[],in t, in t) throws
DigestExcep t ion

� � f in al S t rin g getAlgorithm ()
� � f in al in t getD igestLen gth()
� � stat ic M essageDiges t get Ins tan ce(S tr ing)

th rows NoS u ch Algorith mE xcep t ion
456-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � stat ic M essageDiges t get In stanc e(S t rin g,
S tr ing) th rows
NoS u ch Algorith mEx cep t ion,
NoS u ch Prov id erExc ept ion

� � f in al Prov ider getProv id er()
� � stat ic b oolean isE q ua l(b y t e[],b y t e[])

� � void reset ()
� � Str ing toSt ring()
� � v oid u p d at e(b y t e[])
� � v oid u p d at e(b y t e[] ,int ,in t)
� � v oid u p d at e(b y t e)

� � abstract class MessageDigestSpi
� � MessageDigestS p i()
� � Ob jec t clon e() th rows

Clon eNotS up p orted Excep t ion
� � ab st ract p rotec ted b y te[] engin eDigest ()
� � protected int en gineDiges t(by te[],in t ,int)

throws Diges tExc ep tion

� � protected in t engin eGetDiges tLen gth ()
� � ab st ract p rotec ted v oid en gineR eset ()
� � ab st ract p rotec ted void

engin eUp d ate(b y te[] ,int ,in t)
� � ab st ract p rotec ted void

engin eUp d ate(b y te)

� � class NoSuchAlgorithmException extends GeneralSecurityException
� � NoS u ch Algorith mEx cep t ion() � � NoS u ch Algorith mE xcep t ion(S t rin g)

� � class NoSuchProviderException extends GeneralSecurityException
� � NoS u ch Prov id erExc ept ion () � � NoS u ch Prov id erExc ept ion (S t rin g)

� � abstract class Permission implements Guard , java.io.Serializable
� � Perm iss ion(S tr ing)
� � void checkGuard (Ob ject) th rows

S ecu rit y Ex cep t ion
� � ab st ract b oolean eq u als(O bjec t)
� � ab st ract S t ring getAct ion s()
� � f in al S t rin g getNam e()

� � ab st ract in t hashCode()
� � ab st ract b oolean imp lies (Permiss ion)
� � Perm iss ionCollect ion

newPermiss ion Collect ion ()
� � Str ing toSt ring()

� � abstract class PermissionCollection implements java.io.Serializable
� � Perm iss ionCollec t ion()
� � ab st ract v oid ad d (Permission)
� � ab st ract jav a.u til .En umerat ion elemen ts ()
� � ab st ract b oolean imp lies (Permiss ion)

� � b oolean isReadO n ly()
� � v oid setRead O nly ()
� � Str ing toSt ring()

� � final class Permissions extends PermissionCollection implements java.io.Serializable
� � Perm iss ions ()
� � v oid add (Perm iss ion)

� � jav a.u t il .En u merat ion elemen ts()
� � b oolean implies (Permission)

� � abstract class Policy
� � Policy ()
� � ab st ract Permission Collec tion

getPermission s (CodeS ou rc e)

� � stat ic Policy getPolic y ()
� � ab st ract void refresh ()
� � stat ic v oid setPolic y(Polic y)

� � interface Principal
� � ab st ract b oolean eq u als(O bjec t)
� � ab st ract S t rin g getName()

� � ab st ract in t hashCode()
� � ab st ract S t rin g toS t rin g()

� � interface PrivateKey implements Key
� � f inal s tat ic long serialVersion UID

� � interface PrivilegedAction
� � ab st ract Ob ject run ()

� � class PrivilegedActionException extends Exception
� � Priv ileged Act ion Exc ep t ion (Ex cep t ion)
� � Ex cep t ion getExc ept ion ()
� � v oid p r in tS tackTrac e()

� � v oid pr intS tackTrac e(jav a.io.Pr intS t ream)
� � v oid p r intS tackTrac e(jav a.io.Pr in tWriter)
� � Str ing toSt ring()

� � interface PrivilegedExceptionAction
� � ab st ract O b ject run () th rows Ex cep t ion

� � class ProtectionDomain
� � Protec t ionDom ain (CodeS ou rc e,

Perm iss ionCollec t ion)
� � f in al CodeS ou rc e getCod eS ource()

� � f in al Permission Collec tion
getPermission s ()

� � b oolean implies (Permission)
� � Str ing toSt ring()

� � abstract class Provider extends java.util.Properties
� � protected Provid er (S t rin g,dou b le,S tr ing)
� � v oid c lear ()
� � jav a.u t il .Set en t ry S et ()
� � S tr ing get In fo ()
� � S tr ing getN ame()
� � doub le getVers ion()
� � jav a.u t il .Set key S et ()

� � void load(jav a.io. InputS t ream) throws
jav a.io.IO Ex cep t ion

� � Ob jec t pu t (O b ject ,O bjec t)
� � v oid p u tAll(jav a .ut il .M ap)
� � Ob jec t remov e(Ob jec t)
� � Str ing toSt ring()
� � jav a.u t il .Collect ion v alu es()

� � class ProviderException extends RuntimeException
� � Prov id erExc ept ion () � � Prov id erExc ept ion (S t rin g)

� � interface PublicKey implements Key
� � f inal s tat ic long serialVersion UID

� � class SecureClassLoader extends ClassLoader
� � protected S ecu reC lassLoader ()
� � protected

S ecu reClassLoader (C lassLoader)

� � f in al p ro tec ted Class d ef ineC lass (St r ing,
byte[],in t ,in t ,Cod eS ou rc e)
OSGi Service-Platform Release 3 457-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � protected Perm iss ionCollec t ion
getPermission s(Cod eS ou rce)

� � class SecureRandom extends java.util.Random
� � Sec ureRan d om()
� � Sec ureRan d om(by te[])
� � protected

Sec ureRan d om(Sec u reRan d omS p i,
Prov id er)

� � by te[] gen erateS eed (in t)
� � stat ic Sec u reRand om get In stan c e(S t rin g)

th rows NoSuchAlgorithmExcept ion

� � stat ic Sec u reRand om get In stan c e(S t rin g,
St r ing) throws
NoS uc h Algorithm Exc ep tion ,
NoS uc h Prov id erExcep t ion

� � f in al Prov ider getProv id er()
� � stat ic by te[] getS eed(in t)
� � f in al p rotec ted in t n ext (in t)
� � void nextBy tes(byte[])
� � void setSeed (by te[])
� � void setSeed (long)

� � abstract class SecureRandomSpi implements java.io.Serializable
� � Sec ureRan d omS pi()
� � ab st ract p rotec ted b y te[]

engin eGen era teSeed (int)

� � ab st ract p rotec ted v oid
engin eNextBy tes(b y te[])

� � ab st ract p rotec ted v oid
engin eSetS eed (b y te[])

� � final class Security
� � stat ic int add Provid er(Prov id er)
� � stat ic St r ing getProper ty (S t rin g)
� � stat ic Prov id er getProv ider (S t rin g)
� � stat ic Prov id er[] getProvid er s()
� � stat ic Prov id er[] getProvid er s(S tr ing)

� � stat ic Prov id er[]
getProv ider s(jav a.u t il .Map)

� � stat ic int in ser tProv id erAt (Prov id er,in t)
� � stat ic v oid remov eProvid er(S t rin g)
� � stat ic v oid setProp er ty (S tr ing,S t rin g)

� � final class SecurityPermission extends BasicPermission
� � Sec ur it yPermission (St r ing) � � Sec ur it yPermission (St r ing,S t rin g)

� � abstract class Signature extends SignatureSpi
� � protected S ign atu re(S tr ing)
� � Ob ject c lone() throws

Clon eNotS up p orted Exc ep tion
� � f inal S t ring getAlgorithm()
� � stat ic Sign atu re get In stan c e(S t rin g)

th rows NoSuchAlgorithmExcept ion
� � stat ic Sign atu re get In stan c e(S t rin g,

St r ing) throws
NoS uc h Algorithm Exc ep tion ,
NoS uc h Prov id erExcep t ion

� � f in al Prov id er getProv id er()
� � f in al v oid initS ign(Pr iva teKey) th rows

Inv alid Key Excep t ion
� � f in al v oid initS ign(Pr iva teKey ,

Sec ureRan d om) throws
Inv alid Key Excep t ion

� � f in al v oid initVer ify (Cert if ica te) th rows
Inv alid Key Excep t ion

� � f in al v oid initVer ify (Pub lic Key) th rows
Inv alid Key Excep t ion

� � f in al v oid
setParameter (Algor ith mParam eterS pec)
th rows
Inv alid Algorith mParameterExc ep tion

� � f inal p rotec ted s tat ic in t S IGN
� � f in al b y te[] sign () th rows

Sign atu reExcep t ion
� � f in al in t sign (b y te[] ,int ,in t) th rows

Sign atu reExcep t ion
� � protected int s tate
� � St r ing toSt ring()
� � f in al p rotec ted s tat ic in t UN INITIAL IZED
� � f inal void update(by te[]) throws

Sign atu reExcep t ion
� � f in al v oid up d ate(by te[] ,in t,in t) th rows

Sign atu reExcep t ion
� � f inal void update(by te) throws

Sign atu reExcep t ion
� � f inal p rotec ted s tat ic in t VERIFY
� � f in al b oolean v erif y (b y t e[]) t h row s

Sign atu reExcep t ion

� � class SignatureException extends GeneralSecurityException
� � Sign atu reExcep t ion() � � Sign atu reExcep t ion (S t rin g)

� � abstract class SignatureSpi
� � Sign atu reS pi()
� � protected S ecu reRand om app Rand om
� � Ob ject c lone() throws

Clon eNotS up p orted Exc ep tion
� � ab st ract p rotec ted v oid

engin eInitS ign(Pr iva teKey) th rows
Inv alid Key Excep t ion

� � protected v oid en gin eInitS ign(Priv a teKey ,
Sec ureRan d om) throws
Inv alid Key Excep t ion

� � ab st ract p rotec ted v oid
engin eInitVer if y (Pub licKey) th rows
Inv alid Key Excep t ion

� � protected v oid
engin eSetPa ram eter(Algorithm Parameter
Sp ec) th rows
Inv alid Algorith mParameterExc ep tion

� � ab st ract p rotec ted b y te[] en gin eS ign()
th rows S ignatu reExc ept ion

� � protected int en gineS ign (b y te[] ,int ,in t)
th rows S ignatu reExc ept ion

� � ab st ract p rotec ted v oid
engin eUp date(b y te[],in t ,int) th rows
Sign atu reExcep t ion

� � ab st ract p rotec ted v oid
engin eUp date(b y te) th rows
Sign atu reExcep t ion

� � ab st ract p rotec ted b oolean
engin eVerif y (b y te[]) th rows
Sign atu reExcep t ion

� � final class SignedObject implements java.io.Serializable
� � Sign ed Ob ject (jav a.io.S eria liz ab le,

PrivateKey ,S igna ture) th rows
jav a.io.IO Exc ep tion , Inv a lid Key Exc ept ion ,
Sign atu reExcep t ion
458-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � S tr ing getAlgor ith m()
� � Ob jec t getOb ject () th rows

jav a.io.IO Ex cep t ion,
ClassN otFou n dExc ept ion

� � b yte[] getS ignatu re()
� � b oolean ver ify (Pu blic Key ,S igna tu re)

throws In v alidKey Exc ep tion ,
S ign atu reExc ept ion

� � abstract class Signer extends Identity
� � protected S igner ()
� � S ign er(S t rin g)
� � S ign er(S t rin g,Iden t it yS c ope) th rows

Key M anagemen tExc ept ion

� � Priv ateKey getP riv ateKey ()
� � f in al v oid setKey Pair(Key Pa ir) throws

Inv a lid Pa ram eterEx cep t ion, Key Exc ep tion
� � Str ing toSt ring()

� � class UnrecoverableKeyException extends GeneralSecurityException
� � Un rec overab leKey Excep t ion() � � Un rec overab leKey Excep t ion(S t rin g)

� � final class UnresolvedPermission extends Permission implements java.io.Serializable
� � Un resolved Permiss ion (S t rin g,St r ing,

S tr ing,Cert if ic ate[])
� � b oolean equ als (O b ject)
� � S tr ing getAc t ions ()
� � int hashCode()

� � b oolean implies (Permission)
� � Perm iss ionCollect ion

newPermiss ion Collect ion ()
� � Str ing toSt ring()

22.3.8 java.security.acl
� � package java.security.acl
� � interface Acl implements Owner
� � ab st ract b oolean

ad dEn t ry (jav a.secu rit y .Prin cip al,Ac lEn t ry)
throws N otO wnerEx cep t ion

� � ab st ract b oolean
ch eckPermission (jav a.secu rit y .Prin c ip al,
Perm iss ion)

� � ab st ract java .ut il .En umerat ion ent r ies()
� � ab st ract S t rin g getName()

� � ab st ract jav a.ut il .En umerat ion
getPermission s (jav a .sec ur it y.P rin cip al)

� � ab st ract b oolean
remov eEn try (java .sec u rit y .Prin cip al,
AclEn tr y) th rows NotO wnerExc ep tion

� � ab st ract v oid
set N ame(jav a.secu rit y .Pr in c ipa l,S t r in g)
throws NotO wnerExcept ion

� � ab st ract S t rin g toS t rin g()

� � interface AclEntry implements Cloneable
� � ab st ract b oolean

ad dPermission (Permission)
� � ab st ract b oolean

ch eckPermission(Permiss ion)
� � ab st ract Ob ject c lone()
� � ab st ract java .sec u rit y .Prin cip al

getPrin cip al()
� � ab st ract b oolean isNegat iv e()

� � ab st ract jav a.ut il .En umerat ion
permissions()

� � ab st ract b oolean
remov ePermission (Permission)

� � ab st ract v oid setNegat iv ePerm iss ions ()
� � ab st ract b oolean

setPr inc ipa l(java .sec ur it y. Prin cip al)
� � ab st ract S t rin g toS t rin g()

� � class AclNotFoundException extends Exception
� � AclN otFoundExc ept ion()

� � interface Group implements java.security.Principal
� � ab st ract b oolean

ad dM emb er(jav a. sec ur ity .Pr inc ip al)
� � ab st ract b oolean

isMemb er(jav a.secu rit y .Pr inc ipa l)

� � ab st ract jav a.u til .En umerat ion memb ers ()
� � ab st ract b oolean

removeMemb er(jav a.secu r it y .Pr inc ipa l)

� � class LastOwnerException extends Exception
� � Las tOwn erExc ept ion ()

� � class NotOwnerException extends Exception
� � NotO wn erExc ept ion ()

� � interface Owner
� � ab st ract b oolean

ad dO wner (jav a.sec u rit y .Prin cip al,
jav a.secu rit y .Pr in c ipa l) th rows
NotO wn erExc ept ion

� � ab st ract b oolean
deleteO wner (java .sec ur it y.P rin cip al,
jav a.secu rit y .Pr in c ipa l) th rows
NotO wn erExc ept ion , Las tOwn erExcep t ion

� � ab st ract b oolean
isO wner (java .sec ur it y. Prin cip al)

� � interface Permission
� � ab st ract b oolean eq u als(O bjec t) � � ab st ract S t rin g toS t rin g()

22.3.9 java.security.cert
� � package java.security.cert
� � abstract class Certificate implements java.io.Serializable
� � protected Cer t if icate(S t rin g)
� � b oolean equ als (O b ject)
� � ab st ract by te[] getEn coded () th rows

Cer tif ica teEn cod in gExc ep tion

� � ab st ract jav a.sec u rit y .Pub lic Key
getPub licKey ()

� � f inal S t ring getTy pe()
� � int hashCode()
� � ab st ract S t rin g toS t rin g()
OSGi Service-Platform Release 3 459-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � ab st ract v oid
ver ify (jav a.secu rit y .Pub lic Key) throws
Cert if icateExc ept ion ,
jav a.sec u rit y .NoS u ch Algorith mEx cep t ion,
jav a.sec u rit y .Inv alid Key Excep t ion ,
jav a.sec u rit y .NoS u ch Prov id erExc ept ion ,
jav a.sec u rit y .Sign atu reExc ept ion

� � ab st ract v oid
ver ify (jav a.secu rit y .Pu b lic Key ,S t rin g)
th rows Cer t ific ateEx cep t ion,
jav a.secu rit y .NoS u ch Algorith mEx cep t ion,
jav a.secu rit y .Inv alid Key Exc ept ion ,
jav a.secu rit y .NoS u ch Prov id erExc ept ion ,
jav a.secu rit y .Sign atu reExc ept ion

� � protected Ob jec t wr iteR eplace() th rows
jav a.io.O bjec tSt reamExcep t ion

� � class Certificate$CertificateRep implements java.io.Serializable
� � protected

Cert if icate$Cert ific ateRep (St r in g,b y te[])
� � protected Ob jec t read Resolv e() th rows

jav a.io.O bjec tSt reamExcep t ion

� � class CertificateEncodingException extends CertificateException
� � Cert if icateEn cod ingExc ept ion () � � Cert if icateEn cod ingExc ept ion (St r in g)

� � class CertificateException extends java.security.GeneralSecurityException
� � Cert if icateExc ept ion () � � Cert if icateExc ept ion (S t rin g)

� � class CertificateExpiredException extends CertificateException
� � Cert if icateExp ired Excep t ion() � � Cert if icateExp ired Excep t ion(S t rin g)

� � class CertificateFactory
� � protected

Cert if icateF ac tory (Cert if icateF ac tory S pi,
jav a.sec u rit y .Prov id er,S t rin g)

� � f inal Cer t if icate
generateCert if ica te(java. io. InputS t ream)
th rows Cer t if ic ateExc ep t ion

� � f in al jav a.u t il .Collec tion
gen erateCert if ica tes (jav a.io.In pu tS tream)
th rows Cer t if ic ateExc ep t ion

� � f in al CR L
generateCRL(java .io.InputSt ream)
th rows CRL Excep t ion

� � f in al jav a.ut il .Collec t ion
generateCRL s(jav a.io.In p utS t ream)
th rows CR LExcep t ion

� � f inal s tat ic Cert if ic ateF actory
getIn s tance(S t rin g) throws
Cert if icateExc ept ion

� � f inal s tat ic Cert if ic ateF actory
getIn s tanc e(S t rin g,S t rin g) th rows
Cert if icateExc ept ion ,
jav a.secu rit y .NoS u ch Prov id erExc ept ion

� � f in al jav a. sec ur ity .Prov ider getProv id er()
� � f inal S t ring getTy pe()

� � abstract class CertificateFactorySpi
� � Cert if icateF ac tory S pi()
� � ab st ract Cert if ic ate

engin eGen era teCert if icate(jav a.io.In p utS
tream) th rows Cert if icateExc ept ion

� � ab st ract jav a .ut il .Collec t ion
engin eGen era teCert if icates (jav a.io.In pu t
St ream) throws Cert if ic ateExcept ion

� � ab st ract CRL
engin eGen era teCRL(jav a .io .Inp u tS t ream)
th rows CR LExcep t ion

� � ab st ract jav a .ut il .Collec t ion
engin eGen era teCRLs (jav a.io.In pu tS t ream
) th rows CRL Ex cep t ion

� � class CertificateNotYetValidException extends CertificateException
� � Cert if icateN otYetV alidExc ept ion () � � Cert if icateN otYetValidExc ept ion (St r ing)

� � class CertificateParsingException extends CertificateException
� � Cert if icatePa rs ingExc ept ion () � � Cert if icatePa rs ingExc ept ion (S t rin g)

� � abstract class CRL
� � protect ed CRL (S t rin g)
� � f inal S t ring getTy pe()

� � ab st ract b oolean isRev oked(Ce rt if ic ate)
� � ab st ract S t rin g toS tr ing()

� � class CRLException extends java.security.GeneralSecurityException
� � CRLExc ep tion () � � CRLExc ep tion (St r ing)

� � abstract class X509Certificate extends Certificate implements X509Extension
� � protected X509Cert if icate()
� � ab st ract v oid ch ec kValid it y () th rows

Cert if icateExp ired Excep t ion,
Cert if icateN otYetV alidExc ept ion

� � ab st ract v oid
ch eckVa lidit y (jav a.u til .Date) th rows
Cert if icateExp ired Excep t ion,
Cert if icateN otYetV alidExc ept ion

� � ab st ract in t getBas icCon s train t s()
� � ab st ract jav a .ut il .S et

getCrit ica lExten sion OIDs()
� � ab st ract b y te[] getEx ten s ionVa lu e(S tr ing)
� � ab st ract jav a .sec ur ity .P rin cip al

get Is suerDN()
� � ab st ract b oolean [] get IssuerUn iqu eID()
� � ab st ract b oolean [] getKey Usage()
� � ab st ract jav a .ut il .S et

getN onCrit ica lExten sion O IDs()

� � ab st ract jav a .ut il .Date getN otAfter ()
� � ab st ract jav a .ut il .Date getN otBefore()
� � ab st ract jav a .math .BigInteger

getS er ia lNu mb er()
� � ab st ract S t rin g getSigAlgN ame()
� � ab st ract S t rin g getSigAlgO ID()
� � ab st ract b y te[] getS igAlgParams()
� � ab st ract b y te[] getS ign ature()
� � ab st ract jav a .sec ur it y.P rin cip al

getS u bjec tDN()
� � ab st ract boo lean[] getSu b jectUn iqu eID()
� � ab st ract by te[] getTBSCert if icate()

th rows Cer t ific ateEn c odin gEx cep t ion
� � ab st ract in t getVers ion()
� � ab st ract b oolean

hasUn su p portedCrit ica lEx ten s ion()

� � abstract class X509CRL extends CRL implements X509Extension
� � protected X509CRL()
� � boolean eq u als(O bjec t)

� � ab st ract jav a .ut il .S et
getCrit ica lExten sion O IDs()
460-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � ab st ract by te[] getEn coded () th rows
CRL Ex cep t ion

� � ab st ract by te[] getExtens ionVa lue(S t rin g)
� � ab st ract java .sec u rit y .Prin cip al

get IssuerDN()
� � ab st ract java .ut il .Date getN extUp date()
� � ab st ract java .ut il .S et

getNon Crit ic alExtens ionO IDs()
� � ab st ract X509CR LEnt ry

getRev okedCert if icate(jav a.math.BigIn teg
er)

� � ab st ract java .ut il .S et
getRev okedCert if icates ()

� � ab st ract S t rin g getS igAlgN ame()
� � ab st ract S t ring getS igAlgO ID()
� � ab st ract b y te[] getSigAlgPa ram s()
� � ab st ract b y te[] getSign atu re()
� � ab st ract by te[] getTBSCer tL ist () th rows

CRL Ex cep t ion

� � ab st ract jav a.ut il .Date getThisUp date()
� � ab st ract in t getVers ion()
� � int hashCode()
� � ab st ract b oolean

hasUn sup p orted Cr it ic alExtens ion()
� � ab st ract v oid

v erif y(jav a.sec ur ity .Pu b licKey) th rows
CRL Ex cep t ion,
jav a.secu rit y .NoS u ch Algorith mExcep t ion,
jav a.secu rit y .In va lidKeyExc ept ion ,
jav a.secu rit y .NoS u ch Pr ovid erExc ep tion ,
jav a.secu rit y .S igna tu reExc ept ion

� � ab st ract v oid
v erif y(jav a.sec ur ity .Pu b licKey ,S t rin g)
throws CRLExcep t ion ,
jav a.secu rit y .NoS u ch Algorith mExcep t ion,
jav a.secu rit y .In va lidKeyExc ept ion ,
jav a.secu rit y .NoS u ch Pr ovid erExc ep tion ,
jav a.secu rit y .S igna tu reExc ept ion

� � abstract class X509CRLEntry implements X509Extension
� � X509CRLEnt ry ()
� � b oolean equ als (O b ject)
� � ab st ract java .ut il .S et

getCrit ic alEx ten s ionO IDs()
� � ab st ract by te[] getEn coded () th rows

CRL Ex cep t ion
� � ab st ract by te[] getExtens ionVa lue(S t rin g)
� � ab st ract java .ut il .S et

getNon Crit ic alExtens ionO IDs()

� � ab st ract jav a.ut il .Date
getRev ocat ion Date()

� � ab st ract jav a.math .BigIn teger
getSer ialNu mb er()

� � ab st ract boolean hasEx ten s ions ()
� � int hashCode()
� � ab st ract b oolean

hasUn sup p orted Cr it ic alExtens ion()
� � ab st ract S t rin g toS t rin g()

� � interface X509Extension
� � ab st ract java .ut il .S et

getCrit ic alEx ten s ionO IDs()
� � ab st ract by te[] getExtens ionVa lue(S t rin g)

� � ab st ract jav a.ut il .S et
getNon Crit ic alExtens ionO IDs()

� � ab st ract b oolean
hasUn sup p orted Cr it ic alExtens ion()

22.3.10 java.security.interfaces
� � package java.security.interfaces
� � interface DSAKey
� � ab st ract DSAParams getParams()

� � interface DSAKeyPairGenerator
� � ab st ract v oid in itia liz e(in t ,b oolean ,

jav a.secu rit y .S ecu reRand om) th rows
jav a.secu rit y .In va lidPa ram eterExcep t ion

� � ab st ract v oid in itia lize(DSAParams,
jav a.secu rit y .S ecu reR and om) th rows
jav a.secu rit y .In va lidPa ram eterExcep t ion

� � interface DSAParams
� � ab st ract java .math .BigIn teger getG()
� � ab st ract java .math .BigIn teger getP()

� � ab st ract jav a.math .BigIn teger getQ()

� � interface DSAPrivateKey implements DSAKey , java.security.PrivateKey
� � ab st ract java .math .BigIn teger getX() � � f inal s tat ic long serialVersion UID

� � interface DSAPublicKey implements DSAKey , java.security.PublicKey
� � ab st ract java .math .BigIn teger getY() � � f inal s tat ic long serialVersion UID

� � interface RSAKey
� � ab st ract java .math .BigIn teger

getMod u lu s ()

� � interface RSAPrivateCrtKey implements RSAPrivateKey
� � ab st ract java .math .BigIn teger

getCrtCoeff icien t ()
� � ab st ract java .math .BigIn teger

getPrimeExp onen tP()
� � ab st ract java .math .BigIn teger

getPrimeExp onen tQ ()

� � ab st ract jav a .math .BigInteger getPr imeP()
� � ab st ract jav a.math .BigIn teger

getPrimeQ ()
� � ab st ract jav a.math .BigIn teger

getPub licExp on ent ()

� � interface RSAPrivateKey implements java.security.PrivateKey , RSAKey
� � ab st ract java .math .BigIn teger

getPriv ateExp onen t ()

� � interface RSAPublicKey implements java.security.PublicKey , RSAKey
� � ab st ract java .math .BigIn teger

getPub licExp on ent ()
OSGi Service-Platform Release 3 461-588

OSGi Defined Execution Environments Execution Environment Specification Version
22.3.11 java.security.spec
� � package java.security.spec
� � interface AlgorithmParameterSpec
� � class DSAParameterSpec implements AlgorithmParameterSpec , java.security.interfaces.DSAParams
� � DS AParameterS p ec(jav a.math.BigIn teger,

jav a.math .BigIn teger ,
jav a.math .BigIn teger)

� � jav a.math .BigIn teger getG()
� � jav a.math .BigIn teger getP()
� � jav a.math .BigIn teger getQ()

� � class DSAPrivateKeySpec implements KeySpec
� � DS APriv ateKey S p ec(jav a.math.BigIn teger,

jav a.math .BigIn teger ,
jav a.math .BigIn teger ,
jav a.math .BigIn teger)

� � jav a.math .BigIn teger getG()
� � jav a.math .BigIn teger getP()
� � jav a.math .BigIn teger getQ()
� � jav a.math .BigIn teger getX()

� � class DSAPublicKeySpec implements KeySpec
� � DS APub licKey Sp ec (jav a .math .BigInteger ,

jav a.math .BigIn teger ,
jav a.math .BigIn teger ,
jav a.math .BigIn teger)

� � jav a.math .BigIn teger getG()
� � jav a.math .BigIn teger getP()
� � jav a.math .BigIn teger getQ()
� � jav a.math .BigIn teger getY()

� � abstract class EncodedKeySpec implements KeySpec
� � En cod ed Key S pec (by te[])
� � by te[] getEn c oded ()

� � ab st ract S t rin g getFormat ()

� � class InvalidKeySpecException extends java.security.GeneralSecurityException
� � Inv alid Key S pec Excep t ion() � � Inv alid Key S pec Excep t ion(S t rin g)

� � class InvalidParameterSpecException extends java.security.GeneralSecurityException
� � Inv alid ParameterSp ecExc ep tion () � � Inv alid ParameterSp ec Exc ep tion (St r ing)

� � interface KeySpec
� � class PKCS8EncodedKeySpec extends EncodedKeySpec
� � PKCS 8Enc od edKey Sp ec (b y te[])
� � by te[] getEn c oded ()

� � f inal S t ring getFormat ()

� � class RSAKeyGenParameterSpec implements AlgorithmParameterSpec
� � RSA Key Gen ParameterSp ec (in t ,

jav a.math .BigIn teger)
� � f in al s ta t ic jav a .math .BigInteger F0

� � f in al s tat ic jav a .math .BigInteger F4
� � in t getKey s ize()
� � jav a.math .BigIn teger getPu b lic Expon en t ()

� � class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec
� �

RSA Priv ateCr tKey S pec (jav a.math .BigIn teg
er,jav a.m ath.B igIn teger,
jav a.math .BigIn teger ,
jav a.math .BigIn teger ,
jav a.math .BigIn teger ,
jav a.math .BigIn teger ,
jav a.math .BigIn teger ,
jav a.math .BigIn teger)

� � jav a.math .BigIn teger getCr tCoeff ic ien t ()
� � jav a.math .BigIn teger

getPr imeExp onen tP()
� � jav a.math .BigIn teger

getPr imeExp onen tQ()
� � jav a.math .BigIn teger getPrim eP()
� � jav a.math .BigIn teger getPrim eQ()
� � jav a.math .BigIn teger getPu b lic Expon en t ()

� � class RSAPrivateKeySpec implements KeySpec
� � RSA Priv ateKey S p ec(jav a.math.BigIn teger,

jav a.math .BigIn teger)
� � jav a.math .BigIn teger getMod u lus ()

� � jav a.math .BigIn teger
getPr iv ateExpon en t ()

� � class RSAPublicKeySpec implements KeySpec
� � RSA Pub licKey Sp ec (jav a .math .BigInteger ,

jav a.math .BigIn teger)
� � jav a.math .BigIn teger getMod u lus ()
� � jav a.math .BigIn teger getPu b lic Expon en t ()

� � class X509EncodedKeySpec extends EncodedKeySpec
� � X509Enc od edKey Sp ec (b y te[])
� � by te[] getEn c oded ()

� � f inal S t ring getFormat ()

22.3.12 java.text
� � package java.text
� � class Annotation
� � Ann otat ion (O b jec t)
� � Ob ject getValu e()

� � St r ing toSt ring()

� � interface AttributedCharacterIterator implements CharacterIterator
� � ab st ract jav a .ut il .S et

getAllAt t ribu teKey s()
� � ab st ract O b jec t

getAt t ribu te(At t ribu tedCharac terItera to r
$At t r ibu te)

� � ab st ract jav a .ut il .M ap getAtt r ibu tes()
� � ab st ract in t getRun Limit ()

� � ab st ract in t
getRunLimit (At tr ibutedCharacter Iterator
$A tt r ibu te)

� � ab st ract in t getRun Lim it (jav a.u t il .Set)
� � ab st ract in t getRunStart ()
� � ab st ract in t

getRunSta rt (At tr ibu tedCharacterIterator
$A tt r ibu te)

� � ab st ract in t getRun S tart (jav a.u t il .Set)
462-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � class AttributedCharacterIterator$Attribute implements java.io.Serializable
� � protected

At t rib uted Ch aracter Iterator$At t r ibu te(S t
rin g)

� � f in al b oolean eq ua ls(O bjec t)
� � protected S t ring getName()
� � f in al in t h ash Cod e()
� � f inal s tat ic

At t rib uted Ch aracter Iterator$At t r ibu te
INPUT_METHOD_SEGMENT

� � f inal s tat ic
At t rib uted Ch aracter Iterator$At t r ibu te
LAN GUAG E

� � f inal s tat ic
At t rib uted Ch aracter Iterator$At t r ibu te
READING

� � protected O bjec t readResolv e() th rows
jav a.io.In v alid Ob jectExcep t ion

� � Str ing toSt ring()

� � class AttributedString
� � At t rib uted S tr ing(S t rin g)
� � At t rib uted S tr ing(S t rin g, jav a.u til .M ap)
� �

At t rib uted S tr ing(At t rib uted Ch arac ter Iter
ator)

� �

At t rib uted S tr ing(At t rib uted Ch arac ter Iter
ator,in t ,int)

� �

At t rib uted S tr ing(At t rib uted Ch arac ter Iter
ator,in t ,int ,
At t rib uted Ch aracter Iterator$At t r ibu te[])

� � v oid
ad dA tt r ibu te(A tt r ibu tedCharacterIterator
$At tr ib ute,O bjec t)

� � v oid
ad dA tt r ibu te(A tt r ibu tedCharacterIterator
$At tr ib ute,O bjec t ,int ,in t)

� � void addAt t ribu tes (jav a.u t il .M ap ,in t ,in t)
� � At t rib uted Ch aracter Iterator get Iterator()
� � At t rib uted Ch aracter Iterator

get Iterator(At t rib u ted Ch arac ter Iterator$
At t rib ute[])

� � At t rib uted Ch aracter Iterator
get Iterator(At t rib u ted Ch arac ter Iterator$
At t rib ute[],in t,in t)

� � abstract class BreakIterator implements Cloneable
� � protected BreakItera tor ()
� � Ob jec t clon e()
� � ab st ract in t cur ren t()
� � f inal s tat ic in t DO NE
� � ab st ract in t f irs t()
� � ab st ract in t f ollowin g(in t)
� � stat ic jav a.u t il .Loc ale[]

getAva ilab leLoca les()
� � stat ic Bre akIterator

getCh aracterIn s tanc e()
� � stat ic Bre akIterator

getCh aracterIn s tanc e(jav a.u til .L oca le)
� � stat ic Bre akIterator getLin eIns tan ce()
� � stat ic Bre akIterator

getLineIn s tanc e(jav a.u til .L oca le)

� � stat ic BreakItera tor
getSen tenc eIn stan ce()

� � stat ic BreakItera tor
getSen tenc eIn stan ce(jav a.ut il .Loc ale)

� � ab st ract CharacterIterator getText ()
� � stat ic BreakItera tor getWordIn s tanc e()
� � stat ic BreakItera tor

getWordIn stanc e(java .ut il .L ocale)
� � b oolean isBou n dary (in t)
� � ab st ract in t las t ()
� � ab st ract in t next ()
� � ab st ract in t n ext (in t)
� � int p rec ed ing(int)
� � ab st ract in t p rev ious()
� � void setText (St r ing)
� � ab st ract v oid setText (Charac terItera to r)

� � interface CharacterIterator implements Cloneable
� � ab st ract Ob ject c lone()
� � ab st ract c h ar c u rren t ()
� � f inal s tat ic char DONE
� � ab st ract char f irs t ()
� � ab st ract in t getBeginIn d ex()
� � ab st ract in t getEnd Ind ex()

� � ab st ract in t get Index()
� � ab st ract c h ar la st ()
� � ab st ract c h ar n ext ()
� � ab st ract c h ar p reviou s ()
� � ab st ract char set Index(in t)

� � class ChoiceFormat extends NumberFormat
� � Ch oiceF orm at (d ou ble[],S t rin g[])
� � Ch oiceF orm at (S t rin g)
� � v oid app ly Pat tern (S tr ing)
� � Ob jec t clon e()
� � b oolean equ als (O b ject)
� � S tr ingBu f fer f ormat(d oub le,S t rin gBuf f er,

Field Pos ition)
� � S tr ingBu f fer f ormat(lon g,St r ingBu f fer ,

Field Pos ition)
� � Ob jec t[] getF orm ats()

� � doub le[] getLimit s()
� � int hashCode()
� � f inal s tat ic doub le nextDoub le(doub le)
� � stat ic d oub le n extDou ble(d oub le,

b oolean)
� � Nu mb er p ar se(S t rin g,ParsePos it ion)
� � f inal s tat ic doub le

prev iousDou b le(d ou ble)
� � void setChoices (doub le[] ,St r ing[])
� � Str ing toPat tern ()

� � final class CollationElementIterator
� � int getM axExp an sion (in t)
� � int getOff set ()
� � int next ()
� � f inal s tat ic in t NU LLO RDER
� � int p rev ious()
� � f inal s tat ic in t p rimaryOrder(int)

� � void reset ()
� � f inal s tat ic short secondary Order(in t)
� � void setOf f set (int)
� � void setText (St r ing)
� � void setText (CharacterIterator)
� � f inal s tat ic short tert iar yOrder (in t)

� � final class CollationKey implements Comparable
� � int comp areTo(Ob ject)
� � int c omp areTo(Collat ionKey)
� � b oolean equ als (O b ject)

� � S tr ing getS ou rc eSt r ing()
� � int hashCode()
� � byte[] toBy teArray ()
OSGi Service-Platform Release 3 463-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � abstract class Collator implements java.util.Comparator , Cloneable
� � protected Collator ()
� � f in al s ta t ic in t

CANO NICAL_ DECO M POS ITIO N
� � Ob ject c lone()
� � in t comp are(Objec t ,Ob ject)
� � ab st ract in t com pare(St r ing,S t rin g)
� � boolean eq u als(O bjec t)
� � boolean eq u als(S t rin g,St r ing)
� � f in al s ta t ic in t FU LL_ DECO M POS ITIO N
� � stat ic jav a.u t il .L oca le[]

getAva ilableLoca les ()
� � ab st ract Colla t ionKey

getCollat ionKey(S t ring)

� � in t getDec omp osit ion ()
� � stat ic Collator get In s tanc e()
� � stat ic Collator

getIn s tanc e(jav a.u til .L ocale)
� � in t getS trength ()
� � ab st ract in t hash Cod e()
� � f inal s tat ic in t IDENTICAL
� � f inal s tat ic in t NO _DECOMPO SITION
� � f inal s tat ic in t PRIM ARY
� � f inal s tat ic in t SECONDARY
� � void setDecom pos it ion(in t)
� � void setSt rength (in t)
� � f inal s tat ic in t TERTIARY

� � abstract class DateFormat extends Format
� � protected DateF ormat ()
� � f in al s ta t ic in t AM_ PM _ F IEL D
� � protected jav a.u t il.Calen dar c alen dar
� � Ob ject c lone()
� � f in al s ta t ic in t DATE_ FIELD
� � f in al s ta t ic in t DAY_ O F_ WEEK_ F IEL D
� � f in al s ta t ic in t

DAY_ OF _ WEEK_ IN_ M ON TH_ FIELD
� � f in al s ta t ic in t DAY_ O F_ YEAR_ F IEL D
� � f in al s ta t ic in t DEFAU LT
� � boolean eq u als(O bjec t)
� � f in al s ta t ic in t ER A_ FIELD
� � f in al S t rin gBuf f er f orm at (O b ject ,

St r ingBu ff er ,Field Posit ion)
� � f in al S t rin g format (jav a.u t il .Date)
� � ab st ract S t rin gBu ff er

format (jav a.u t il .Date,S tr ingB uf fer ,
Field Posit ion)

� � f in al s ta t ic in t FU LL
� � stat ic jav a.u t il .L oca le[]

getAva ilableLoca les ()
� � jav a.u til .Calen dar getCa lend ar ()
� � f inal s ta t ic DateFormat getDateIn stance()
� � f inal s ta t ic DateFormat

getDateIns tance(int)
� � f inal s ta t ic DateFormat

getDateIns tan ce(int ,jav a .ut il .Loc ale)
� � f inal s ta t ic DateFormat

getDateTimeInstance()
� � f inal s ta t ic DateFormat

getDateTimeInstance(in t, in t)
� � f inal s ta t ic DateFormat

getDateTimeIn stan ce(in t, in t ,
jav a.u til .L oca le)

� � f inal s ta t ic DateFormat get In stan ce()

� � Nu mb erF ormat getN um berFormat ()
� � f inal s tat ic DateFormat

getTim eIns tan ce()
� � f inal s tat ic DateFormat

getTimeIns tance(int)
� � f inal s tat ic DateFormat

getTim eIns tan ce(int ,jav a .ut il .Loc ale)
� � jav a.u til .Tim eZon e getTimeZon e()
� � in t hashCode()
� � f inal s tat ic in t HOUR0_F IEL D
� � f inal s tat ic in t HOUR1_F IELD
� � f inal s tat ic in t HOUR_OF_DAY0_F IELD
� � f in al s t at ic in t HOU R_ OF _ DAY1 _ FIELD
� � boolean is Len ient ()
� � f inal s tat ic in t LO NG
� � f inal s tat ic in t MEDIUM
� � f inal s tat ic in t MILLIS ECOND_F IEL D
� � f inal s tat ic in t MINUTE_FIELD
� � f inal s tat ic in t MO NTH_F IELD
� � protected Nu mb erF ormat nu mb erF ormat
� � jav a.u til .Date p arse(S t r in g) throws

ParseExcep t ion
� � ab st ract jav a .ut il .Date p ar se(S t rin g,

ParsePos it ion)
� � Ob ject pa rseOb ject (S t rin g,ParsePos ition)
� � f inal s tat ic in t SECOND_FIELD
� � void setCalen d ar(jav a.u t il .Calen d ar)
� � void setLen ient (boo lean)
� � void setNumberF ormat(Numb erFormat)
� � void setTimeZone(jav a.u t il .TimeZone)
� � f inal s tat ic in t SHORT
� � f in al s tat ic in t TIM EZO NE_F IELD
� � f in al s tat ic in t WEEK_ O F_ M ON TH_ FIELD
� � f in al s tat ic in t WEEK_ O F_ YEAR_ FIELD
� � f inal s tat ic in t YEAR_ FIELD

� � class DateFormatSymbols implements java.io.Serializable , Cloneable
� � DateFormatS y mb ols()
� � DateFormatS y mb ols(jav a.u t il .Loc ale)
� � Ob ject c lone()
� � boolean eq u als(O bjec t)
� � St r ing[] getAmPm St r ings ()
� � St r ing[] getE ras ()
� � St r ing getLocalPa tternChars ()
� � St r in g[] getM onth s()
� � St r ing[] getShor tMon ths ()
� � St r in g[] getS hor tWeekd ay s ()
� � St r in g[] getWeekdays ()

� � St r ing[][] getZoneS t rin gs()
� � in t hashCode()
� � void setAmPmS t rin gs(S t rin g[])
� � void setEras (S t ring[])
� � void setLoc alPat tern Ch ars(S t rin g)
� � void setMon ths (St r ing[])
� � void setShortMonths (S t rin g[])
� � void setShortWeekdays(S t rin g[])
� � void setWeekdays (S t rin g[])
� � void setZon eS t rin gs(St r ing[][])

� � class DecimalFormat extends NumberFormat
� � Decima lFormat ()
� � Decima lFormat (St r ing)
� � Decima lFormat (St r ing,

Decima lFormatS y mb ols)
� � void app lyLoc alized Pat tern (St r ing)
� � void app lyPat tern (St r ing)
� � Ob ject c lone()
� � boolean eq u als(O bjec t)

� � St r ingBu f fer format (d oub le,S tr ingB uf fer ,
Field Posit ion)

� � St r ingBu f fer format (long,S t rin gBu ff er,
Field Posit ion)

� � Decima lFormatS y mb ols
getDecima lF ormatS ym bols ()

� � in t getG rou pin gS ize()
� � in t getM ult ip lier ()
464-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � S tr ing getN egat iveP ref ix()
� � S tr ing getN egat iveS u ff ix()
� � Str ing getPos it ivePref ix()
� � S tr ing getPos it iv eSu f fix()
� � int hashCode()
� � b oolean

isDec imalS ep aratorAlway sSh own()
� � Nu mb er p ar se(S t rin g,ParsePos it ion)
� � v oid

setDec imalF orm atSy mb ols (Decima lF orma
t Sy mb ols)

� � v oid
setDec imalS ep ara torAlway sS h own(b oole
an)

� � void setGroupin gS iz e(in t)
� � void setMaximumFrac t ionDigit s (in t)
� � v oid setMaximu mIn tegerDigit s(int)
� � void setMin imumFrac t ionDigit s (in t)
� � v oid setMin imu mIn tegerDigit s(int)
� � void setMult iplier (in t)
� � v oid setNegat iv ePrefix(S t rin g)
� � v oid setNegat iv eS uf f ix(S t rin g)
� � v oid setPos itiv ePrefix(S t rin g)
� � v oid setPos itiv eS u ff ix(S t rin g)
� � Str ing toLoca lizedPat tern ()
� � Str ing toPat tern ()

� � final class DecimalFormatSymbols implements Cloneable , java.io.Serializable
� � Dec imalFormatSymbols()
� � Dec im alFormatS y mb ols(jav a.u t il .Loc ale)
� � Ob jec t clon e()
� � b oolean equ als (O b ject)
� � S tr ing getCur ren cy S y mb ol()
� � ch ar getDecima lSep arator()
� � ch ar getDigit()
� � ch ar getGroup in gSep arator()
� � S tr ing get In fin it y ()
� � S tr ing get In tern at ion alCu rrenc y Sy mb ol()
� � ch ar getMin usS ign()
� � ch ar getMon etary DecimalS ep arator()
� � S tr ing getN aN()
� � ch ar getPat tern S eparator ()
� � ch ar getPerc ent ()
� � ch ar getPerM ill()

� � ch ar getZeroDigit ()
� � int hashCode()
� � v oid s et Cu rr enc y Sy m bol(S tr ing)
� � v oid setDec imalS eparator (c h ar)
� � v oid setDigit (c h ar)
� � v oid setGrou pin gS eparator (c ha r)
� � v oid set Inf in ity (S t ring)
� � v oid

set In ternat iona lCu rrencySymbol(St r ing)
� � void setMinusS ign(cha r)
� � v oid setM oneta ry Dec imalS eparator (c h ar)
� � void setNaN(St r ing)
� � v oid setPat tern S ep ara tor (ch ar)
� � v oid s et Perc en t(c ha r)
� � v oid setPerM ill(c h ar)
� � void setZeroDigit (char)

� � class FieldPosition
� � Field Pos ition (int)
� � b oolean equ als (O b ject)
� � int getBegin Ind ex()
� � int getEnd In dex ()
� � int getF ield()

� � int hashCode()
� � v oid setBegin Ind ex(int)
� � v oid setEnd Ind ex(in t)
� � Str ing toSt ring()

� � abstract class Format implements java.io.Serializable , Cloneable
� � Format ()
� � Ob jec t clon e()
� � f inal S t ring format(Objec t)
� � ab st ract S t ringBu ff er format (Ob ject ,

S tr ingBu f fer ,Field Pos ition)

� � Ob jec t pa rseOb ject (S tr ing) th rows
ParseExc ept ion

� � ab st ract Ob ject par seO bjec t (S t r ing,
Par sePos it ion)

� � class MessageFormat extends Format
� � MessageFormat (S tr ing)
� � v oid app ly Pat tern (S tr ing)
� � Ob jec t clon e()
� � b oolean equ als (O b ject)
� � f inal S t ringBu ff er format (Ob ject [],

S tr ingBu f fer ,Field Pos ition)
� � f inal S t ringBu ff er format (Ob ject ,

S tr ingBu f fer ,Field Pos ition)
� � stat ic S tr ing format (St r ing,Ob ject [])
� � Format [] getFormats ()

� � jav a.u t il .Loca le getLoc ale()
� � int hashCode()
� � Ob jec t[] p ar se(S t rin g) t h row s

ParseExc ept ion
� � Ob jec t[] p ar se(S t rin g,Par sePos it ion)
� � Ob jec t p arseO bjec t (S t rin g,Par sePos it ion)
� � void setFormat (in t,F ormat)
� � void setFormats (Format [])
� � v oid setLoc ale(jav a.u t il .L oca le)
� � Str ing toPat tern ()

� � abstract class NumberFormat extends Format
� � Nu mb erF ormat ()
� � Ob jec t clon e()
� � b oolean equ als (O b ject)
� � f in al S t rin g f orma t(d ou ble)
� � ab st ract S t ringBu ff er format (doub le,

S tr ingBu f fer ,Field Pos ition)
� � f inal S t ring format(lon g)
� � ab st ract S t ringBu ff er format (long,

S tr ingBu f fer ,Field Pos ition)
� � f inal S t ringBu ff er format (Ob ject ,

S tr ingBu f fer ,Field Pos ition)
� � f inal s tat ic in t FRACTION_F IELD
� � stat ic jav a.u t il .Loc ale[]

getAva ilab leLoca les()
� � f in al s tat ic N um berFormat

getCu rren c yIn s tanc e()

� � stat ic Nu mb erF orm at
getCu rren c yIn s tanc e(jav a.u til .L oca le)

� � f in al s tat ic N u mberFormat get In stanc e()
� � stat ic Nu mb erF orm at

get Ins tan ce(jav a.u t il.L oca le)
� � int getMaximu mF ract ionDigit s ()
� � int getM aximu mIn tegerDigit s()
� � int getM inimu mF ract ion Digits ()
� � int getM inimu mIn tegerDigit s ()
� � f in al s tat ic N u mberFormat

getNu mb erIn stan ce()
� � stat ic Nu mb erF orm at

getNu mb erIn stan ce(jav a.ut il .Loc ale)
� � f in al s tat ic N u mberFormat

getPerc ent In stan c e()
OSGi Service-Platform Release 3 465-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � stat ic Nu mb erF ormat
getPercen t In stan ce(jav a.u t il .Loc ale)

� � in t hashCode()
� � f in al s ta t ic in t INTEG ER_ F IELD
� � boolean isGrou pin gUsed()
� � boolean isPar seIn tegerO nly ()
� � Nu mb er p ar se(S tr ing) th rows

ParseExcep t ion
� � ab st ract N umb er pa rse(S t rin g,

ParsePos ition)

� � f in al O bjec t p arseOb jec t(S t rin g,
ParsePos it ion)

� � void setGroup in gUsed (boolean)
� � void setMaximum Frac tion Digit s(in t)
� � void setMaximum IntegerDigit s (in t)
� � void setMin imumFrac tion Digit s(in t)
� � void setMin imu mIntegerDigits (int)
� � void setPar seIn tegerOn ly (boolean)

� � class ParseException extends Exception
� � ParseExcep t ion(S t rin g,int) � � in t getE rrorOff set ()

� � class ParsePosition
� � ParsePos ition (int)
� � boolean eq u als(O bjec t)
� � in t getE rror Index()
� � in t get Index()

� � in t hashCode()
� � void setEr ror Index(int)
� � void set Ind ex(int)
� � St r ing toSt ring()

� � class RuleBasedCollator extends Collator
� � RuleBasedColla tor (St r ing) throws

ParseExcep t ion
� � Ob ject c lone()
� � in t comp are(S t rin g,St r ing)
� � boolean eq u als(O bjec t)
� � Collat ion Elemen t Iterator

getCollat ionE lemen t Iterator(S t ring)

� � Collat ion Elemen t Iterator
getCollat ionE lemen t Iterator (Charac terIte
rator)

� � Collat ion Key getCollat ion Key (St r in g)
� � St r ing getRu les()
� � in t hashCode()

� � class SimpleDateFormat extends DateFormat
� � Simp leDateF orm at ()
� � Simp leDateF orm at (S t r in g)
� � Simp leDateF orm at (S t r in g,

DateFormatS y mb ols)
� � Simp leDateF orm at (S t r in g,

jav a.u til .L oca le)
� � void app lyLoc alized Pat tern (St r ing)
� � void app lyPat tern (St r ing)
� � Ob ject c lone()
� � boolean eq u als(O bjec t)
� � St r in gBu ff er format (jav a.u t il .Date,

St r ingBu ff er ,Field Posit ion)

� � jav a.u til .Date get2DigitYearS ta rt ()
� � DateF ormatS y mb ols

getDateFormatSymb ols()
� � in t hashCode()
� � jav a.u til .Date p ar se(S tr ing,ParsePos ition)
� � void set2DigitYearS ta rt (jav a.u til .Date)
� � void

setDateF orm atSy m bols (DateFormatS y mb
ols)

� � St r ing toL ocalized Pattern()
� � St r ing toPa ttern()

� � final class StringCharacterIterator implements CharacterIterator
� � St r in gCh arac ter Iterator (S t rin g)
� � St r in gCh arac ter Iterator (S t rin g,in t)
� � St r ingCh arac ter Iterator (S t rin g,in t,in t ,int)
� � Ob ject c lone()
� � ch ar cu rrent ()
� � boolean eq u als(O bjec t)
� � ch ar fir st ()
� � in t getBegin Ind ex()

� � in t getEnd In dex()
� � in t get In dex()
� � in t hashCode()
� � ch ar last ()
� � ch ar next ()
� � ch ar prev ious ()
� � ch ar set In dex(in t)
� � void setText (S t ring)

22.3.13 java.text.resources
� � package java.text.resources
� � class BreakIteratorRules extends java.util.ListResourceBundle
� � Break IteratorR ules () � � Ob ject [][] getCon tents ()

� � class BreakIteratorRules_th extends java.util.ListResourceBundle
� � Break IteratorR ules_ th () � � Ob ject [][] getCon tents ()

22.3.14 java.util
� � package java.util
� � abstract class AbstractCollection implements Collection
� � protected Ab st ractCollec t ion()
� � boolean add (Ob jec t)
� � boolean add All(Collect ion)
� � void c lear()
� � boolean c on ta ins (Ob ject)
� � boolean c on ta insAll(Collect ion)
� � boolean isEmpty ()
� � ab st ract Itera tor itera tor()

� � boolean remov e(Ob ject)
� � boolean remov eAll(Collect ion)
� � boolean retain All(Co llec t ion)
� � ab st ract in t siz e()
� � Ob ject [] toAr ray ()
� � Ob ject [] toAr ray (Ob jec t[])
� � St r ing toSt ring()

� � abstract class AbstractList extends AbstractCollection implements List
� � protected Ab st ractLis t ()
� � void add (in t ,O bjec t)

� � boolean add (Ob jec t)
� � boolean add All(int ,Collec t ion)
466-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � v oid c lear ()
� � b oolean equ als (O b ject)
� � ab st ract Ob ject get (int)
� � int hashCode()
� � int in d exOf (Ob ject)
� � Iterator iterator ()
� � int la st In dexO f (O b ject)

� � Lis tIterator l is t Iterator ()
� � Lis tIterator l is t Iterator (in t)
� � protected in t mod Cou nt
� � Ob jec t remove(int)
� � protected v oid remov eRange(in t,in t)
� � Ob jec t set (int ,O bjec t)
� � Lis t subList (int ,in t)

� � abstract class AbstractMap implements Map
� � protected Ab st ractM ap ()
� � v oid c lear ()
� � b oolean con t ain sKey (O bjec t)
� � b oolean con tain sValu e(Ob ject)
� � ab st ract Set en t rySet ()
� � b oolean equ als (O b ject)
� � Ob jec t get (Objec t)
� � int hashCode()

� � b oolean isEmp ty()
� � S et key Set ()
� � Ob jec t pu t (O b ject ,O bjec t)
� � v oid p u tAll(M ap)
� � Ob jec t remov e(Ob jec t)
� � int s ize()
� � Str ing toSt ring()
� � Collec tion v alu es()

� � abstract class AbstractSequentialList extends AbstractList
� � protected Ab st ractSequen t ialLis t ()
� � v oid add (int ,O b ject)
� � b oolean ad dAll(int ,Collect ion)
� � Ob jec t get (in t)

� � Iterator iterator ()
� � ab st ract L ist Itera tor l is tIterator(int)
� � Ob jec t remove(int)
� � Ob jec t set (int ,O bjec t)

� � abstract class AbstractSet extends AbstractCollection implements Set
� � protected Ab st ractSet ()
� � b oolean equ als (O b ject)

� � int hashCode()
� � b oolean remov eAll(Collec tion)

� � class ArrayList extends AbstractList implements List , Cloneable , java.io.Serializable
� � ArrayLis t ()
� � ArrayLis t (in t)
� � ArrayLis t (Collec t ion)
� � v oid add (int ,O b ject)
� � b oolean ad d(O bjec t)
� � b oolean ad dAll(int ,Collect ion)
� � b oolean ad dAll(Collec t ion)
� � v oid c lear ()
� � Ob jec t clon e()
� � b oolean con t ain s(Ob jec t)
� � void en sureCapac it y(in t)

� � Ob jec t get(in t)
� � int in d exOf (Ob ject)
� � b oolean isEmp ty()
� � int la st In dexO f (O b ject)
� � Ob jec t remove(int)
� � protected v oid remov eRange(in t,in t)
� � Ob jec t set (int ,O bjec t)
� � int s ize()
� � Ob jec t[] toAr ray()
� � Ob jec t[] t oAr ray(O bjec t [])
� � v oid t r imToS ize()

� � class Arrays
� � stat ic Lis t asList (O bjec t [])
� � stat ic int b in ary S earch (by te[] ,b y te)
� � stat ic int b in ary S earch (ch ar [],c h ar)
� � stat ic int b in ary S earch (dou b le[] ,dou b le)
� � stat ic int b in ary S earch (floa t[],f loat)
� � stat ic int b in ary S earch (int [] ,in t)
� � stat ic int b in ary S earch (long[],lon g)
� � stat ic int b in ary S earch (Ob ject [],O b jec t)
� � stat ic int b in ary S earch (Ob ject [],O b jec t ,

Comparator)
� � stat ic int b in ary S earch (sh ort [],shor t)
� � stat ic b oolean equ als (b y te[] ,b yte[])
� � stat ic b oolean equ als (c h ar[],c ha r[])
� � stat ic boolean eq u als(d oub le[] ,d oub le[])
� � stat ic b oolean equ als (f loat [],f loat [])
� � stat ic b oolean equ als (in t [] ,int [])
� � stat ic b oolean equ als (lon g[],lon g[])
� � stat ic b oolean equ als (O b ject [],O bjec t [])
� � stat ic b oolean equ als (sh ort [] ,sh or t[])
� � stat ic b oolean equ als (b oolean[],

b oolean[])
� � stat ic v oid fi l l(by te[] ,b y te)
� � stat ic v oid fi l l(by te[] ,in t,in t ,b yte)
� � stat ic v oid fi l l(ch ar[],c h ar)
� � stat ic v oid fi l l(ch ar[],in t ,int ,c ha r)
� � stat ic v oid fi l l(dou b le[] ,dou b le)
� � stat ic v oid fi l l(dou b le[] ,int ,in t,d ou b le)
� � stat ic v oid fi l l(f loat [],f loat)
� � stat ic v oid fi l l(f loat [],in t ,int ,f loat)

� � stat ic v oid fi l l(int [] ,in t)
� � stat ic v oid fi l l(int [] ,in t,in t ,int)
� � stat ic v oid fi l l(long[],in t ,in t ,lon g)
� � stat ic v oid fi l l(long[],lon g)
� � stat ic v oid fi l l(Ob ject [],in t ,int ,O bjec t)
� � stat ic v oid fi l l(Ob ject [],O b jec t)
� � stat ic v oid fi l l(sh ort [],in t, in t ,shor t)
� � stat ic v oid fi l l(sh ort [],shor t)
� � stat ic v oid fi l l(boolean[],in t ,int ,b oolean)
� � stat ic v oid fi l l(boolean[],b oolean)
� � stat ic v oid sor t(b y te[])
� � stat ic v oid sor t(b y te[],in t ,int)
� � stat ic v oid sor t(c ha r[])
� � stat ic v oid sor t(c ha r[] ,in t,in t)
� � stat ic v oid sor t(d ou ble[])
� � stat ic v oid sor t(d ou ble[],in t, in t)
� � stat ic v oid sor t(f loat [])
� � stat ic v oid sor t(f loat [] ,int ,in t)
� � stat ic v oid sor t(in t [])
� � stat ic v oid sor t(in t [],in t ,int)
� � stat ic v oid sor t(lon g[])
� � stat ic v oid sor t(lon g[] ,int ,in t)
� � stat ic void sor t(Objec t [])
� � stat ic v oid sor t(O bjec t [] ,int ,in t)
� � stat ic v oid sor t(O bjec t [] ,int ,in t ,

Comparator)
� � stat ic void sor t(Objec t [] ,Comparator)
� � stat ic void sor t(shor t [])
� � stat ic void sor t(shor t [] ,in t ,in t)

� � class BitSet implements java.io.Serializable , Cloneable
� � BitSet ()
� � BitSet (in t)
� � v oid and (BitSet)
� � v oid and Not(BitS et)

� � v oid c lear (in t)
� � Ob jec t clon e()
� � b oolean equ als (O b ject)
� � b oolean get(in t)
OSGi Service-Platform Release 3 467-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � in t hashCode()
� � in t length ()
� � void or (B itS et)
� � void set (in t)

� � in t s ize()
� � St r ing toSt ring()
� � void xor (B itS et)

� � abstract class Calendar implements java.io.Serializable , Cloneable
� � protected Calendar()
� � protected Calen d ar(TimeZon e,Loc ale)
� � ab st ract v oid ad d (in t ,int)
� � boolean a fter (Ob jec t)
� � f in al s ta t ic in t AM
� � f in al s ta t ic in t AM_ PM
� � f in al s ta t ic in t APRIL
� � protected boolean areF ieldsS et
� � f in al s ta t ic in t AUG US T
� � boolean b ef ore(Ob jec t)
� � f in al v oid clea r()
� � f in al v oid clea r(int)
� � Ob ject c lone()
� � protected v oid c omp lete()
� � ab st ract p rotec ted v oid c omp uteF ield s ()
� � ab st ract p rotec ted v oid c omp uteTime()
� � f in al s ta t ic in t DATE
� � f in al s ta t ic in t DAY_ O F_ M ON TH
� � f in al s ta t ic in t DAY_ O F_ WEEK
� � f in al stat ic int DAY_ O F_ WEEK_ IN _ MO NTH
� � f in al s ta t ic in t DAY_ O F_ YEAR
� � f in al s ta t ic in t DECEMB ER
� � f in al s ta t ic in t DS T_ OF F SET
� � boolean eq u als(O bjec t)
� � f in al s ta t ic in t ER A
� � f in al s ta t ic in t FEBRU ARY
� � f in al s ta t ic in t FIELD_COU NT
� � protected int [] f ields
� � f in al s ta t ic in t FR IDAY
� � f in al in t get(in t)
� � in t getActualMaximu m(int)
� � in t getActu alM inimu m(in t)
� � stat ic Loc ale[] getAv ailab leLoc ales()
� � in t getFir stDayOf Week()
� � ab st ract in t getGreatestM inimu m(in t)
� � stat ic Calen d ar get In stanc e()
� � stat ic Calen d ar get In stanc e(L oca le)
� � stat ic Calen d ar get In stanc e(T im eZon e)
� � stat ic Calen d ar get In stanc e(T im eZon e,

Loca le)
� � ab st ract in t getLeas tMaximum (in t)
� � ab st ract in t getMax imum (in t)
� � in t getMin imalDay sIn F ir stWeek()
� � ab st ract in t getMin imum (in t)
� � f in al Date getT im e()
� � protected long getTim eInM ill is ()
� � TimeZone getTimeZon e()

� � in t hashCode()
� � f inal s tat ic in t HOUR
� � f in al s t at ic in t HOU R_ OF _ DAY
� � f inal p rotec ted in t interna lGet (int)
� � boolean is Len ient ()
� � f inal boolean isSet (int)
� � protected b oolean[] isS et
� � protected b oolean isTimeS et
� � f in al s tat ic in t JANUAR Y
� � f inal s tat ic in t JULY
� � f inal s tat ic in t JUNE
� � f inal s tat ic in t MARCH
� � f inal s tat ic in t MAY
� � f inal s tat ic in t MILLIS ECOND
� � f inal s tat ic in t MINUTE
� � f inal s tat ic in t MO NDAY
� � f inal s tat ic in t MO NTH
� � f inal s tat ic in t NO VEMBER
� � f inal s tat ic in t OCTO BER
� � f inal s tat ic in t PM
� � void roll(in t ,int)
� � ab st ract v oid roll(int ,b oolean)
� � f inal s tat ic in t SATURDAY
� � f inal s tat ic in t SECOND
� � f inal s tat ic in t SEPTEM BER
� � f in al v oid set (int ,in t)
� � f in al v oid set (int ,in t ,int)
� � f in al v oid set (int ,in t ,int ,in t ,int)
� � f in al v oid set (int ,in t ,int ,in t ,int ,in t)
� � void setFir stDayOfWeek(int)
� � void setLen ient (boo lean)
� � void setMin imalDay sIn Fir stWeek(in t)
� � f in al v oid setTime(Date)
� � protected v oid setTimeIn Mill is (lon g)
� � void setTimeZone(TimeZon e)
� � f inal s tat ic in t SUNDAY
� � f inal s tat ic in t THURS DAY
� � protected long t ime
� � St r ing toSt ring()
� � f inal s tat ic in t TUESDAY
� � f inal s tat ic in t UNDECIMBER
� � f inal s tat ic in t WEDN ES DAY
� � f inal s tat ic in t WEEK_OF_ MONTH
� � f inal s tat ic in t WEEK_OF_ YEAR
� � f inal s tat ic in t YEAR
� � f inal s tat ic in t ZO NE_OFF SET

� � interface Collection
� � ab st ract b oolean ad d (O b ject)
� � ab st ract b oolean ad d All(Collect ion)
� � ab st ract v oid clea r()
� � ab st ract b oolean c ontain s (O b jec t)
� � ab st ract b oolean c ontain sAll(Co llec t ion)
� � ab st ract b oolean eq ua ls(Ob jec t)
� � ab st ract in t hash Cod e()
� � ab st ract b oolean isEmp ty ()

� � ab st ract Itera tor itera tor()
� � ab st ract b oolean rem ov e(O b ject)
� � ab st ract b oolean rem ov eAll(Collec t ion)
� � ab st ract b oolean reta inAll(Collec tion)
� � ab st ract in t siz e()
� � ab st ract O b jec t [] toArray ()
� � ab st ract O b jec t [] toArray (O b ject [])

� � class Collections
� � stat ic int b in ary S earch (L ist ,O bjec t)
� � stat ic int b in ary S earch (L ist ,O bjec t ,

Comparator)
� � stat ic vo id copy(Lis t ,Lis t)
� � f in al s ta t ic L ist EMPTY_ LIS T
� � f in al s ta t ic M ap EMPTY_ MAP
� � f in al s ta t ic S et EMPTY_ SET
� � stat ic En u mera tion

enu mera t ion(Collec tion)

� � stat ic v oid f i l l(L ist ,O bjec t)
� � stat ic Ob ject m ax(Collec tion)
� � stat ic Ob ject m ax(Collec tion ,

Comparator)
� � stat ic Ob ject m in(Collec t ion)
� � stat ic Ob jec t min (Collect ion ,Comp arator)
� � stat ic Lis t nCopies (in t ,Ob jec t)
� � stat ic v oid rev erse(L ist)
� � stat ic Comp arator rev erseOrd er()
468-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � stat ic v oid sh uf f le(L ist)
� � stat ic v oid sh uf f le(L ist ,Ran d om)
� � stat ic S et sin gleton(Ob jec t)
� � stat ic Lis t singletonL ist (Ob ject)
� � stat ic M ap sin gletonM ap (O b ject ,O bjec t)
� � stat ic void sor t(Lis t)
� � stat ic void sor t(Lis t ,Comparator)
� � stat ic Collec t ion

sy n ch ron ized Collec t ion(Collec t ion)
� � stat ic Lis t sy nchron ized Lis t (L ist)
� � stat ic M ap sy n ch ron ized M ap (M ap)
� � stat ic S et sy n ch ron ized S et(S et)

� � stat ic S orted Map
sy n ch ron ized S orted Map(S orted Map)

� � stat ic S orted Set
sy n ch ron ized S orted S et(S orted S et)

� � stat ic Collec t ion
un mod if iab leCollect ion (Collect ion)

� � stat ic Lis t un mod if iableL ist (Lis t)
� � stat ic M ap un mod ifia bleM ap (Map)
� � stat ic Set un modifiableSet (Set)
� � stat ic S orted Map

un modif iab leSor tedM ap (Sor tedM ap)
� � stat ic S orted Set

un mod if iab leS or tedS et (S or tedS et)

� � interface Comparator
� � ab st ract in t compare(Ob jec t,Ob ject) � � ab st ract b oolean eq u als(O bjec t)

� � class ConcurrentModificationException extends RuntimeException
� � Con cu rrentM od ific at ionExc ept ion () � � Con cu rren tM od ific at ionExc ept ion (St r ing)

� � class Date implements java.io.Serializable , Cloneable , Comparable
� � Date()
� � Date(long)
� � b oolean af ter (Date)
� � b oolean bef ore(Date)
� � Ob jec t clon e()
� � int comp areTo(Ob ject)

� � int comp areTo(Date)
� � b oolean equ als (O b ject)
� � long getTim e()
� � int hashCode()
� � v oid setTime(long)
� � Str ing toSt ring()

� � abstract class Dictionary
� � Dict ionary()
� � ab st ract En um erat ion elemen ts()
� � ab st ract Ob ject get (Ob ject)
� � ab st ract b oolean isEm pty ()

� � ab st ract En um erat ion key s()
� � ab st ract Ob ject pu t(Objec t ,Ob ject)
� � ab st ract Ob ject remove(O b ject)
� � ab st ract in t s ize()

� � class EmptyStackException extends RuntimeException
� � Em pty S tackExc ep tion ()

� � interface Enumeration
� � ab st ract boolean hasMoreE lements () � � ab st ract O b ject n extE lem ent ()

� � interface EventListener
� � class EventObject implements java.io.Serializable
� � Ev en tOb jec t(O bjec t)
� � Ob jec t getSou rc e()

� � protected O bjec t sou rc e
� � Str ing toSt ring()

� � class GregorianCalendar extends Calendar
� � Gregorian Ca lend ar ()
� � Gregorian Ca lend ar (in t ,int ,in t)
� � Gregorian Ca lend ar (in t ,int ,in t ,int ,in t)
� � Gregorian Ca lend ar (in t ,int ,in t ,int ,in t ,int)
� � Gregorian Ca lend ar (L oca le)
� � Gregorian Ca lend ar (T imeZon e)
� � Gregorian Ca lend ar (T imeZon e,L ocale)
� � f inal s tat ic in t AD
� � v oid add (int ,in t)
� � f inal s tat ic in t BC
� � protected v oid comp u teField s()
� � protected v oid comp u teTime()
� � b oolean equ als (O b ject)

� � int getAc tualMaximum(in t)
� � int getAc tualMin imum(in t)
� � int getGreates tMin imum(in t)
� � f in al Date getGregorian Ch an ge()
� � int getLeastMaximu m(int)
� � int getMaximu m(int)
� � int getM inimu m(in t)
� � int hashCode()
� � b oolean isLeapYear(in t)
� � v oid roll(in t ,int)
� � v oid roll(in t ,b oolean)
� � v oid setGregorianChange(Date)

� � class HashMap extends AbstractMap implements Map , Cloneable , java.io.Serializable
� � HashM ap ()
� � HashMap(in t)
� � HashMap(in t ,f loat)
� � HashMap(Map)
� � v oid c lear ()
� � Ob jec t clon e()
� � b oolean con t ain sKey (O bjec t)
� � b oolean con tain sValu e(Ob ject)
� � S et ent ry S et ()

� � Ob jec t get(O bjec t)
� � b oolean isEmp ty()
� � S et key Set ()
� � Ob jec t pu t (O b ject ,O bjec t)
� � v oid p u tAll(M ap)
� � Ob jec t remov e(Ob jec t)
� � int s ize()
� � Collec tion v alu es()

� � class HashSet extends AbstractSet implements Set , Cloneable , java.io.Serializable
� � HashSet ()
� � HashSet (in t)
� � HashSet (in t ,f loat)
� � HashS et (Collect ion)
� � b oolean ad d(O bjec t)
� � v oid c lear ()

� � Ob jec t clon e()
� � b oolean con t ain s(Ob jec t)
� � b oolean isEmp ty()
� � Iterator iterator ()
� � b oolean remov e(Ob jec t)
� � int s ize()

� � class Hashtable extends Dictionary implements Map , Cloneable , java.io.Serializable
� � Hashtab le() � � Hashtab le(int)
OSGi Service-Platform Release 3 469-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � Hash tab le(in t ,f loa t)
� � Hash tab le(Map)
� � void c lear()
� � Ob ject c lone()
� � boolean c on ta ins (Ob ject)
� � boolean c on ta insKey (Ob ject)
� � boolean c on ta insValu e(O b ject)
� � En um erat ion elemen ts()
� � Set en t ry S et ()
� � boolean eq u als(O bjec t)
� � Ob ject get (Ob jec t)

� � in t hashCode()
� � boolean isEmpty ()
� � En u merat ion key s ()
� � Set key S et ()
� � Ob ject pu t (O b jec t ,Ob jec t)
� � void p u tAll(M ap)
� � protected void rehash ()
� � Ob ject remove(Ob ject)
� � in t s ize()
� � St r ing toSt ring()
� � Collect ion v alu es()

� � interface Iterator
� � ab st ract b oolean h asNext ()
� � ab st ract O b jec t n ext ()

� � ab st ract v oid rem ove()

� � class LinkedList extends AbstractSequentialList implements List , Cloneable , java.io.Serializable
� � LinkedL ist ()
� � LinkedL ist (Collect ion)
� � void add (in t ,O bjec t)
� � boolean add (Ob jec t)
� � boolean add All(int ,Co llec t ion)
� � boolean add All(Collect ion)
� � void addF ir st (Objec t)
� � void addLast (Ob ject)
� � void c lear()
� � Ob ject c lone()
� � boolean c on ta ins (Ob ject)
� � Ob ject get (int)
� � Ob ject getF irs t()

� � Ob ject getLast ()
� � in t in dex Of (O b ject)
� � in t las t Ind exOf(Objec t)
� � List Itera tor l is t Iterator(in t)
� � Ob ject remove(in t)
� � boolean remov e(Ob ject)
� � Ob ject removeFir st ()
� � Ob ject removeLast ()
� � Ob ject set (in t ,Ob jec t)
� � in t s ize()
� � Ob ject [] toAr ray ()
� � Ob ject [] toAr ray (Ob jec t[])

� � interface List implements Collection
� � ab st ract v oid ad d (in t ,Ob ject)
� � ab st ract b oolean ad d (O b ject)
� � ab st ract b oolean ad d All(in t ,Collec tion)
� � ab st ract b oolean ad d All(Collect ion)
� � ab st ract v oid clea r()
� � ab st ract b oolean c ontain s (O b jec t)
� � ab st ract b oolean c ontain sAll(Co llec t ion)
� � ab st ract b oolean eq ua ls(Ob jec t)
� � ab st ract O b jec t get (in t)
� � ab st ract in t hash Cod e()
� � ab st ract in t ind exO f(O bjec t)
� � ab st ract b oolean isEmp ty ()
� � ab st ract Itera tor itera tor()

� � ab st ract in t las tIn d exOf (Ob jec t)
� � ab st ract L ist Iterator l ist Itera tor()
� � ab st ract L ist Iterator l ist Itera tor(int)
� � ab st ract O b jec t rem ov e(in t)
� � ab st ract b oolean rem ov e(O b ject)
� � ab st ract b oolean rem ov eAll(Collec t ion)
� � ab st ract b oolean reta inAll(Collec tion)
� � ab st ract O b jec t set(in t,O b ject)
� � ab st ract in t siz e()
� � ab st ract L ist subLis t (in t ,int)
� � ab st ract O b jec t [] toArray ()
� � ab st ract O b jec t [] toArray (O b ject [])

� � interface ListIterator implements Iterator
� � ab st ract v oid ad d (O b jec t)
� � ab st ract b oolean h asNext ()
� � ab st ract b oolean h asPrev iou s()
� � ab st ract O b jec t n ext ()
� � ab st ract in t nex tIn d ex()

� � ab st ract O b jec t p rev iou s()
� � ab st ract in t prev ious In dex()
� � ab st ract v oid rem ove()
� � ab st ract v oid set (O bjec t)

� � abstract class ListResourceBundle extends ResourceBundle
� � ListResou rc eBun d le()
� � ab st ract p rotec ted O b ject [] []

getContents()

� � En u merat ion getKey s ()
� � f in al O bjec t h and leG et Ob ject (S tr ing)

� � final class Locale implements Cloneable , java.io.Serializable
� � Loca le(S t rin g,S t rin g)
� � Loca le(S t rin g,S t ring,S t r ing)
� � f in al s ta t ic L ocale CANADA
� � f in al s ta t ic L ocale CANADA_ FRENCH
� � f in al s ta t ic L ocale CHINA
� � f in al s ta t ic L ocale CHINES E
� � Ob ject c lone()
� � f in al s ta t ic L ocale EN GL ISH
� � boolean eq u als(O bjec t)
� � f in al s ta t ic L ocale FRAN CE
� � f in al s ta t ic L ocale FRENCH
� � f in al s ta t ic L ocale GERM AN
� � f in al s ta t ic L ocale GERM ANY
� � stat ic Loc ale[] getAv ailab leLoc ales()
� � St r ing getCount ry ()
� � stat ic Loc ale getDef au lt ()
� � f in al S t rin g getDisp lay Cou n t ry ()
� � St r in g getDisplayCou nt ry (Loc ale)

� � f in al S t rin g getDisp lay Langu age()
� � St r ing getDisplayL an guage(L oca le)
� � f in al S t rin g getDisp lay Na me()
� � St r ing getDisplayN ame(Loc ale)
� � f in al S t rin g getDisp lay Var ian t ()
� � St r ing getDisplayV arian t (Loc ale)
� � St r ing get IS O3Coun t ry () th rows

Missin gResourceExcep t ion
� � St r ing get IS O3L an guage() throws

Missin gResourceExcep t ion
� � stat ic St r ing[] get IS OCoun t ries ()
� � stat ic St r ing[] get IS OL an guages()
� � St r ing getLangu age()
� � St r ing getVar ian t ()
� � in t hashCode()
� � f in al s tat ic L ocale ITALIAN
� � f in al s tat ic L ocale ITALY
� � f in al s tat ic L ocale JAPAN
470-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � f in al s tat ic L oca le JAPANES E
� � f in al s tat ic L oca le KO REA
� � f in al s tat ic L oca le KO REAN
� � f in al s tat ic L oca le PRC
� � stat ic v oid setDef au lt(L ocale)
� � f in al s tat ic L oca le S IMPL IFIED_ CHIN ES E

� � f in al s tat ic L oca le TAIWAN
� � f inal S t ring toSt ring()
� � f in al s ta tic Loc ale TRADITIO NAL _ CHINES E
� � f in al s tat ic L oca le UK
� � f in al s tat ic L oca le US

� � interface Map
� � ab st ract void c lear()
� � ab st ract b oolean c onta insKey (Ob ject)
� � ab st ract b oolean c onta insValu e(O b ject)
� � ab st ract Set en t rySet ()
� � ab st ract b oolean eq u als(O bjec t)
� � ab st ract Ob ject get (Ob ject)
� � ab st ract in t hash Code()

� � ab st ract b oolean isEm pty ()
� � ab st ract S et key S et ()
� � ab st ract Ob ject pu t(Objec t ,Ob ject)
� � ab st ract v oid p utAll(Map)
� � ab st ract Ob ject remove(O b ject)
� � ab st ract in t s ize()
� � ab st ract Collect ion v alu es()

� � interface Map$Entry
� � ab st ract b oolean eq u als(O bjec t)
� � ab st ract O b ject getKey ()
� � ab st ract O b ject getValu e()

� � ab st ract in t hashCode()
� � ab st ract Ob ject setValue(O b jec t)

� � class MissingResourceException extends RuntimeException
� � Missin gResourceExc ept ion (S t rin g,S t rin g,

S tr ing)
� � S tr ing getC lassName()
� � S tr ing getKey()

� � class NoSuchElementException extends RuntimeException
� � NoS u ch Elem entE xcep t ion () � � NoS u ch Elem entE xcep t ion (S t rin g)

� � class Observable
� � Ob serv ab le()
� � v oid add O bserv er (O b serv er)
� � protected v oid clearCh an ged()
� � int countObserver s()
� � void deleteObserv er(Observer)

� � v oid d eleteO bserv er s()
� � b oolean hasChan ged ()
� � v oid n ot if yO b ser v ers()
� � v oid n ot if yO b serv ers(O bjec t)
� � protected v oid setCh an ged ()

� � interface Observer
� � ab st ract void update(Observable,O b ject)

� � class Properties extends Hashtable
� � Proper ties ()
� � Prop er ties (Prop ert ies)
� � protected Proper t ies d ef ault s
� � S tr ing getProp erty (S t rin g)
� � S tr ing getProp erty (S t rin g,S tr ing)
� � v oid l is t (java .io.Prin tSt ream)
� � v oid l is t (java .io.Prin tWr iter)

� � void load(jav a.io. InputS t ream) throws
jav a.io.IO Ex cep t ion

� � Enumera t ion p rop er ty Names()
� � v oid sav e(jav a.io.O utp u tS t ream,S t rin g)
� � Ob jec t setProper ty(S t rin g,St r ing)
� � v oid s tore(jav a.io.O u tp u tSt ream,S t rin g)

throws jav a .io .IOExc ept ion

� � final class PropertyPermission extends java.security.BasicPermission
� � Prop er ty Permiss ion (S t rin g,S tr ing)
� � b oolean equ als (O b ject)
� � S tr ing getAc t ions ()
� � int hashCode()

� � b oolean imp lies(jav a.secu rit y .Permiss ion)
� � jav a.secu rit y .Permiss ionCollect ion

newPermiss ion Collect ion ()

� � class PropertyResourceBundle extends ResourceBundle
� �

Prop er ty Resou rc eBun d le(java .io.Inp u tSt re
am) th rows jav a.io.IOExc ep tion

� � En u mera t ion getKey s ()
� � Ob jec t hand leGetO b ject (St r in g)

� � class Random implements java.io.Serializable
� � Ran d om()
� � Ran d om(long)
� � protected in t next (int)
� � b oolean nextBoo lean()
� � v oid n extBy tes(b y te[])
� � doub le n extDoub le()

� � f loa t nextF loat ()
� � doub le n extGaussian()
� � int next In t()
� � int n ext In t(in t)
� � long nextLong()
� � v oid setS eed(lon g)

� � abstract class ResourceBundle
� � ResourceBu n dle()
� � f inal s tat ic ResourceBu nd le

getBun d le(S t rin g) th rows
Missin gResourceExc ept ion

� � f inal s tat ic ResourceBu nd le
getBun d le(S t rin g,Loc ale)

� � stat ic ResourceBundle getBundle(S t rin g,
Loc ale,ClassLoad er) th rows
Missin gResourceExc ept ion

� � ab st ract En um erat ion getKey s()
� � Loc ale getLoc ale()

� � f in al O b ject getO bjec t (S t rin g) th rows
Missin gResourceExc ept ion

� � f inal S t ring getS tr ing(S t ring) th rows
Missin gResourceExc ept ion

� � f in al S t rin g[] getSt r ingAr ray (S t rin g)
throws M iss ingR esou rc eEx cep t ion

� � ab st ract p rotec ted Ob ject
hand leG etO b ject (S tr ing) th rows
Missin gResourceExc ept ion

� � protected ResourceB un d le pa ren t
� � protected v oid

setPa ren t (Resou rc eBun d le)

� � interface Set implements Collection
� � ab st ract boolean add(Ob ject) � � ab st ract b oolean add All(Collect ion)
OSGi Service-Platform Release 3 471-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � ab st ract v oid clea r()
� � ab st ract b oolean c ontain s (O b jec t)
� � ab st ract b oolean c ontain sAll(Co llec t ion)
� � ab st ract b oolean eq ua ls(Ob jec t)
� � ab st ract in t hash Cod e()
� � ab st ract b oolean isEmp ty ()
� � ab st ract Itera tor itera tor()

� � ab st ract b oolean rem ov e(O b ject)
� � ab st ract b oolean rem ov eAll(Collec t ion)
� � ab st ract b oolean reta inAll(Collec tion)
� � ab st ract in t siz e()
� � ab st ract O b jec t [] toArray ()
� � ab st ract O b jec t [] toArray (O b ject [])

� � class SimpleTimeZone extends TimeZone
� � Simp leTimeZon e(in t ,S tr ing)
� � Simp leTimeZon e(in t ,S tr ing,in t ,int ,in t ,int ,

in t ,in t,in t ,int)
� � Simp leTimeZon e(in t ,S tr ing,in t ,int ,in t ,int ,

in t ,in t,in t ,int ,in t)
� � Ob ject c lone()
� � boolean eq u als(O bjec t)
� � in t getDS TS av ings ()
� � in t getOf f set (int ,in t ,int ,in t, in t ,in t)
� � in t getRawOff set ()
� � in t hashCode()
� � boolean h asS ameRu les(TimeZon e)

� � boolean in Day ligh tTime(Date)
� � void setDS TSav ings (in t)
� � void setEn d Rule(in t, in t ,in t)
� � void setEn d Rule(in t, in t ,in t,in t)
� � void setEn d Rule(in t, in t ,in t,in t ,b oolean)
� � void setRawOf f set (int)
� � void setSta rtRu le(in t ,int ,in t)
� � void setSta rtRu le(in t ,int ,in t, in t)
� � void setSta rtRu le(in t ,int ,in t, in t ,b oolean)
� � void setSta rtYear (in t)
� � St r ing toSt ring()
� � boolean u seDay lightTime()

� � interface SortedMap implements Map
� � ab st ract Comp ara tor c omp ara tor ()
� � ab st ract O b jec t f irstKey()
� � ab st ract S orted M ap headM ap (Ob ject)
� � ab st ract O b jec t las tKey ()

� � ab st ract S orted M ap su b Map(O bjec t ,
Ob ject)

� � ab st ract S orted M ap tailMap(O bjec t)

� � interface SortedSet implements Set
� � ab st ract Comp ara tor c omp ara tor ()
� � ab st ract Ob jec t f irst ()
� � ab st ract S orted S et headS et (Ob ject)
� � ab st ract O b jec t las t ()

� � ab st ract S orted S et su b Set (O bjec t ,
Ob ject)

� � ab st ract SortedSet tailSet (Objec t)

� � class Stack extends Vector
� � Stac k()
� � boolean em pty ()
� � Ob ject p eek()

� � Ob ject p op ()
� � Ob ject push (Ob ject)
� � in t searc h (O b jec t)

� � class StringTokenizer implements Enumeration
� � St r in gToken izer (S t rin g)
� � St r in gToken izer (S t rin g,S tr ing)
� � St r in gToken izer (S t rin g,S tr ing,b oolean)
� � in t coun tToken s()
� � boolean h asM oreE lements ()

� � boolean h asM oreToken s ()
� � Ob ject nextE lement ()
� � St r ing n extToken ()
� � St r ing n extToken (S t rin g)

� � class Timer
� � Timer()
� � Timer(b oolean)
� � void c an cel()
� � void sch ed ule(TimerTask,long)
� � void sch ed ule(TimerTask,long,lon g)
� � void sch ed ule(TimerTask,Date)

� � void sch ed ule(TimerTask,Date,lon g)
� � void sch ed uleAtF ixedR ate(T imerTask,

long,lon g)
� � void sch ed uleAtF ixedR ate(T imerTask,

Date,lon g)

� � abstract class TimerTask implements Runnable
� � protected TimerTask ()
� � boolean c an cel()

� � ab st ract v oid ru n ()
� � long scheduledExecu t ionT ime()

� � abstract class TimeZone implements java.io.Serializable , Cloneable
� � TimeZone()
� � Ob ject c lone()
� � stat ic St r ing[] getAv ailab leIDs ()
� � stat ic St r ing[] getAv ailab leIDs (in t)
� � stat ic TimeZone getDef au lt ()
� � f in al S t rin g getDisp lay Na me()
� � f in al S t rin g getDisp lay Name(Loc ale)
� � f inal S t ring getDisplayN ame(boolean ,int)
� � St r in g getDisplayN ame(b oolean ,int ,

Loca le)
� � St r ing get ID()

� � ab st ract in t getOf fset (in t ,int ,in t ,int ,in t ,
in t)

� � ab st ract in t getRawOf f set ()
� � stat ic TimeZone getTim eZon e(St r ing)
� � boolean h asS ameRu les (TimeZon e)
� � ab st ract b oolean in Day lightTim e(Date)
� � f inal s tat ic in t LO NG
� � stat ic void setDef au lt (TimeZon e)
� � void set ID(S t ring)
� � ab st ract v oid setRawO f fset (in t)
� � f inal s tat ic in t SHORT
� � ab st ract b oolean u seDay ligh tTime()

� � class TooManyListenersException extends Exception
� � TooMany L is tenersExc ep tion () � � TooMany L is ten ersExc ep tion (St r ing)

� � class TreeMap extends AbstractMap implements SortedMap , Cloneable , java.io.Serializable
� � TreeM ap ()
� � TreeM ap (Comp ara tor)
� � TreeM ap (M ap)
� � TreeM ap (S or ted M ap)

� � void c lear()
� � Ob ject c lone()
� � Comparator comp arator()
� � boolean c on ta insKey (Ob ject)
472-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � b oolean con tain sValu e(Ob ject)
� � S et ent ry S et ()
� � Ob jec t fir stKey ()
� � Ob jec t get (Objec t)
� � S orted Map h ead M ap (O b ject)
� � S et keyS et ()
� � Ob jec t la stKey ()

� � Ob jec t pu t (O b ject ,O bjec t)
� � v oid p u tAll(M ap)
� � Ob jec t remov e(Ob jec t)
� � int s ize()
� � S orted Map s u bM ap (Ob ject ,O b jec t)
� � Sorted Map tailM ap (Ob ject)
� � Collec tion v alu es()

� � class TreeSet extends AbstractSet implements SortedSet , Cloneable , java.io.Serializable
� � TreeS et ()
� � TreeS et (Collect ion)
� � TreeS et (Comparator)
� � TreeS et (Sor tedS et)
� � b oolean ad d(O bjec t)
� � b oolean ad dAll(Collec t ion)
� � v oid c lear ()
� � Ob jec t clon e()
� � Comparator comp arator()
� � b oolean con t ain s(Ob jec t)

� � Ob jec t fir st ()
� � S orted Set h ead S et (O b jec t)
� � b oolean isEmp ty()
� � Iterator iterator ()
� � Ob jec t la st ()
� � b oolean remov e(Ob jec t)
� � int s ize()
� � S orted Set su bS et (O b ject ,O bjec t)
� � S orted Set tailS et (Ob ject)

� � class Vector extends AbstractList implements List , Cloneable , java.io.Serializable
� � Vector ()
� � Vector (in t)
� � Vector (in t ,int)
� � Vector (Collect ion)
� � v oid add (int ,O b ject)
� � b oolean ad d(O bjec t)
� � b oolean ad dAll(int ,Collect ion)
� � b oolean ad dAll(Collec t ion)
� � v oid add E lemen t(O bjec t)
� � int c ap ac ity ()
� � protected in t cap ac it yIn c remen t
� � v oid c lear ()
� � Ob jec t clon e()
� � b oolean con t ain s(Ob jec t)
� � b oolean con tain sAll(Collect ion)
� � v oid c op y Int o(Ob ject [])
� � Ob jec t elem entAt (int)
� � protected in t elem entCoun t
� � protected O bjec t [] elementData
� � En u mera t ion elemen ts()
� � void en sureCapac it y(in t)
� � b oolean equ als (O b ject)
� � Ob jec t fir stE lement ()
� � Ob jec t get (in t)
� � int hashCode()

� � int in d exOf (Ob ject)
� � int in d exOf (Ob ject ,in t)
� � v oid in sertE lem entAt (Ob ject ,in t)
� � b oolean isEmp ty()
� � Ob jec t la stE lemen t()
� � int la st In dexO f (O b ject)
� � int la st In dexO f (O b ject ,in t)
� � Ob jec t remove(int)
� � b oolean remov e(Ob jec t)
� � b oolean remov eAll(Collec tion)
� � v oid remov eAllE lements ()
� � b oolean remov eE lemen t(O bjec t)
� � void removeE lementAt (int)
� � protected v oid remov eRange(in t,in t)
� � b oolean retain All(Collect ion)
� � Ob jec t set (int ,O bjec t)
� � void setE lementAt (Ob ject ,in t)
� � v oid setS ize(in t)
� � int s ize()
� � Lis t subList (int ,in t)
� � Ob jec t[] toAr ray()
� � Ob jec t[] t oAr ray(O bjec t [])
� � Str ing toSt ring()
� � v oid t r imToS ize()

� � class WeakHashMap extends AbstractMap implements Map
� � WeakHashMap()
� � WeakHashMap(in t)
� � WeakHashMap(in t ,f loat)
� � WeakHashMap(Map)
� � v oid c lear ()
� � b oolean con t ain sKey (O bjec t)

� � S et ent ry S et ()
� � Ob jec t get(O bjec t)
� � b oolean isEmp ty()
� � Ob jec t pu t (O b ject ,O bjec t)
� � Ob jec t remov e(Ob jec t)
� � int s ize()

22.3.15 java.util.jar
� � package java.util.jar
� � class Attributes implements Cloneable , java.util.Map
� � At t rib utes ()
� � At t rib utes (in t)
� � At t rib utes (At t ribu tes)
� � v oid c lear ()
� � Ob jec t clon e()
� � b oolean con t ain sKey (O bjec t)
� � b oolean con tain sValu e(Ob ject)
� � jav a.u t il .Set en t ry S et ()
� � b oolean equ als (O b ject)
� � Ob jec t get (Objec t)
� � S tr ing getVa lue(S tr ing)

� � S tr ing getVa lue(At t rib utes$Nam e)
� � int hashCode()
� � b oolean isEmp ty()
� � jav a.u t il .Set key S et ()
� � protected jav a.u t il .Map map
� � Ob jec t pu t (O b ject ,O bjec t)
� � v oid p u tAll(jav a .ut il .M ap)
� � S tr ing p u tValu e(S t rin g,S tr ing)
� � Ob jec t remov e(Ob jec t)
� � int s ize()
� � jav a.u t il .Collect ion v alu es()

� � class Attributes$Name
� � At t rib utes$Name(S t rin g)
� � f in al sta tic Att r ibu tes$N ame CL AS S_ PATH

� � f inal s tat ic A tt r ibu tes$Name
CO NTENT_TYPE

� � b oolean equ als (O b ject)
OSGi Service-Platform Release 3 473-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � f in al s ta t ic At t rib u tes$Name
EXTEN S ION _IN S TALL ATION

� � f in al s ta t ic At t rib u tes$Name
EXTEN S ION _L IS T

� � f in al s ta t ic At t rib u tes$Name
EXTEN S ION _N AM E

� � in t hashCode()
� � f in al s ta t ic At t rib u tes$Name

IMPL EM ENTATIO N_ TITL E
� � f in al s ta t ic At t rib u tes$Name

IMPL EM ENTATIO N_ UR L
� � f in al s ta t ic At t rib u tes$Name

IMPL EM ENTATIO N_ VENDOR
� � f in al s ta t ic At t rib u tes$Name

IMPL EM ENTATIO N_ VENDOR_ ID

� � f inal s tat ic At t ribu tes$Name
IMPL EM ENTATIO N_ VERS IO N

� � f inal s tat ic At t ribu tes$Name
MAIN _CLAS S

� � f inal s tat ic At t ribu tes$Name
MAN IFES T_ VER SIO N

� � f inal s tat ic At t ribu tes$Name SEALED
� � f inal s tat ic At t ribu tes$Name

SIG NATURE_V ERS IO N
� � f inal s tat ic At t ribu tes$Name

SPECIFICA TION _ TITLE
� � f inal s tat ic At t ribu tes$Name

SPECIFICA TION _ VEN DO R
� � f inal s tat ic At t ribu tes$Name

SPECIFICA TION _ VERS IO N
� � St r ing toSt ring()

� � class JarEntry extends java.util.zip.ZipEntry
� � JarEn tr y (S t rin g)
� � JarEn tr y (Ja rEnt r y)
� � JarEn tr y (java .ut il .zip .Z ipEn t ry)

� � Att r ibu tes getAt t r ibu tes() throws
jav a.io.IO Exc ep tion

� � jav a.secu rit y .cer t .Cert if icate[]
getCert if ic ates ()

� � class JarException extends java.util.zip.ZipException
� � JarExc ept ion () � � JarExc ept ion (S t rin g)

� � class JarFile extends java.util.zip.ZipFile
� � JarF ile(java .io.File) th rows

jav a.io.IO Exc ep tion
� � JarF ile(java .io.File,b oolean) throws

jav a.io.IO Exc ep tion
� � JarF ile(java .io.File,b oolean ,in t) th rows

jav a.io.IO Exc ep tion
� � JarF ile(S t rin g) throws jav a.io.IO Excep t ion
� � JarF ile(S t rin g,b oolean) th rows

jav a.io.IO Exc ep tion

� � jav a.u til .En um erat ion ent r ies()
� � jav a.u til .z ip.Z ip En t ry getEnt ry(S t rin g)
� � jav a.io.In pu tS tream

getIn p utS t ream (java .ut il .zip .Z ipEn t ry)
th rows jav a.io.IO Excep t ion

� � JarEn tr y get JarEn tr y (S t rin g)
� � Manifest getMan ifes t() throws

jav a.io.IO Exc ep tion
� � f in al s t at ic S t rin g M ANIF ES T_ NA ME

� � class JarInputStream extends java.util.zip.ZipInputStream
� � JarIn p utS t ream (jav a .io.Inp u tS t ream)

th rows jav a.io.IO Excep t ion
� � JarIn p utS t ream (jav a .io.Inp u tS t ream,

boolean) th rows java .io.IOExc ept ion
� � protected jav a.u t il. zip.Z ip En t ry

crea teZipEnt ry(S t rin g)
� � Man if est getM an if es t()

� � jav a.u til .z ip.Z ip En t ry getNextEn try ()
th rows jav a.io.IO Excep t ion

� � JarEn tr y getNext JarEn t ry () th rows
jav a.io.IO Exc ep tion

� � in t read (b y te[] ,in t ,in t) th rows
jav a.io.IO Exc ep tion

� � class JarOutputStream extends java.util.zip.ZipOutputStream
� � JarO utp u tSt ream(jav a.io.O utp u tS t ream)

th rows jav a.io.IO Excep t ion
� � JarO utp u tSt ream(jav a.io.O utp u tS t ream,

Man if est) throws jav a .io.IOExc ept ion

� � void p u tN extEn t ry (jav a.u t il .zip .Zip Ent ry)
th rows jav a.io.IO Excep t ion

� � class Manifest implements Cloneable
� � Man if est ()
� � Man if est (jav a.io.In pu tS tream) th rows

jav a.io.IO Exc ep tion
� � Manifest (Manif est)
� � void c lear()
� � Ob ject c lone()
� � boolean eq u als(O bjec t)
� � Att r ibu tes getAt t ribu tes(S tr ing)

� � jav a.u til .M ap getEnt ries ()
� � Att r ibu tes getM ain At t rib utes ()
� � in t hashCode()
� � void read (java .io.InputSt ream) throws

jav a.io.IO Exc ep tion
� � void write(jav a.io.O utp u tS t ream) throws

jav a.io.IO Exc ep tion

22.3.16 java.util.zip
� � package java.util.zip
� � class Adler32 implements Checksum
� � Adler32()
� � long getValu e()
� � void reset ()

� � void u p da te(b y te[])
� � void u p date(b y te[],in t ,int)
� � void u p date(in t)

� � class CheckedInputStream extends java.io.FilterInputStream
� �

Ch ecked InputSt ream(jav a.io.InputS t ream
,Ch ecksum)

� � Ch ecksum getCh ecksum ()
� � in t read () throws java .io.IOExc ept ion

� � in t read (b y te[] ,in t ,in t) th rows
jav a.io.IO Exc ep tion

� � long skip (lon g) th rows
jav a.io.IO Exc ep tion

� � class CheckedOutputStream extends java.io.FilterOutputStream
474-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� �

Ch eckedOutputS t ream(jav a.io.O utputS t r
eam,Chec ksum)

� � Ch ecksu m getCh ecksu m()

� � v oid wr ite(b y te[],in t ,int) throws
jav a.io.IO Ex cep t ion

� � v oid wr ite(in t) th rows
jav a.io.IO Ex cep t ion

� � interface Checksum
� � ab st ract lon g getValu e()
� � ab st ract void reset ()

� � ab st ract void update(by te[],in t ,int)
� � ab st ract void update(in t)

� � class CRC32 implements Checksum
� � CRC32()
� � long getVa lue()
� � void reset ()

� � v oid u p d at e(b y t e[])
� � v oid u p d at e(b y t e[] ,int ,in t)
� � v oid u p d at e(in t)

� � class DataFormatException extends Exception
� � DataFormatExcept ion() � � DataFormatExcept ion(S t ring)

� � class Deflater
� � Def later()
� � Def later(int)
� � Def later(int ,b oolean)
� � f inal s tat ic in t BEST_COMPR ESS ION
� � f inal s tat ic in t BEST_SPEED
� � f inal s tat ic in t DEFAULT_ COMPRESSIO N
� � f inal s tat ic in t DEFAULT_ STRATEGY
� � int d ef late(b y t e[])
� � int d ef late(b y te[] ,int ,in t)
� � f inal s tat ic in t DEFLATED
� � v oid en d ()
� � f inal s tat ic in t F ILTERED
� � protected void finalize()
� � v oid f in ish ()

� � b oolean fin ish ed ()
� � int getAd ler()
� � int getTotalIn ()
� � int getTotalOut()
� � f inal s tat ic in t HUFFMAN_ ONLY
� � b oolean need s Inp u t()
� � f inal s tat ic in t NO _COMPRESS IO N
� � void reset ()
� � void setDic tion ary (by te[])
� � v oid setDic tion ary (b y te[], in t ,in t)
� � v oid s et Inp u t (b y t e[])
� � v oid set Inp u t (b y te[] ,int ,in t)
� � void setLev el(int)
� � void setS trategy (in t)

� � class DeflaterOutputStream extends java.io.FilterOutputStream
� �

Def laterOutputS t ream(java.io.O utputS t r
eam)

� �

Def laterOutputS t ream(java.io.O utputS t r
eam,Deflater)

� �

Def laterOutputS t ream(java.io.O utputS t r
eam,Deflater ,int)

� � protect ed b y te[] b u f

� � v oid c lose() throws java .io.IOExc ept ion
� � protected Def later d ef
� � protected v oid def late() th rows

jav a.io.IO Ex cep t ion
� � v oid f in ish () th rows jav a.io.IO Exc ep tion
� � v oid wr ite(b y te[],in t ,int) throws

jav a.io.IO Ex cep t ion
� � v oid wr ite(in t) th rows

jav a.io.IO Ex cep t ion

� � class GZIPInputStream extends InflaterInputStream
� � GZIPIn p utS t ream (jav a .io.Inp u tS t ream)

throws jav a .io .IOExcep t ion
� � GZIPIn p utS t ream (jav a .io.Inp u tS t ream,in t)

throws jav a .io .IOExcep t ion
� � v oid c lose() throws java .io.IOExc ept ion

� � protected CR C32 crc
� � protected b oolean eos
� � f in al s tat ic in t G ZIP_ M AG IC
� � int read (b y te[] ,int ,in t) th rows

jav a.io.IO Ex cep t ion

� � class GZIPOutputStream extends DeflaterOutputStream
� �

GZIPOutputS t ream(jav a.io.O utputS t ream
) th rows jav a.io.IO Excep t ion

� �

GZIPOutputS t ream(jav a.io.O utputS t ream
,int) th rows java .io.IOExc ept ion

� � v oid c lose() throws java .io.IOExc ept ion
� � protected CR C32 crc
� � v oid f in ish () th rows jav a.io.IO Exc ep tion
� � v oid wr ite(b y te[],in t ,int) throws

jav a.io.IO Ex cep t ion

� � class Inflater
� � Inf later()
� � Inf later(b oolean)
� � v oid en d ()
� � protected void finalize()
� � b oolean fin ish ed ()
� � int getAd ler()
� � int getRem ainin g()
� � int getTotalIn ()
� � int getTotalOut()
� � int in f la te(by te[]) th rows

DataFormatExcept ion

� � int in f la te(b y te[] ,int ,in t) th rows
DataFormatExcept ion

� � b oolean need sDict ion ary ()
� � b oolean need s Inp u t()
� � void reset ()
� � void setDic tion ary (by te[])
� � v oid setDic tion ary (b y te[], in t ,in t)
� � v oid s et Inp u t (b y t e[])
� � v oid set Inp u t (b y te[] ,int ,in t)

� � class InflaterInputStream extends java.io.FilterInputStream
� � Inf laterIn p utS t ream(jav a.io.In pu tSt ream)
� � Inf laterIn p utS t ream(jav a.io.In pu tSt ream,

Inf later)
� � Inf laterIn p utS t ream(jav a.io.In pu tSt ream,

Inf later, in t)
� � int ava ilab le() th rows java .io.IOExc ept ion

� � protect ed b y te[] b u f
� � v oid c lose() throws java .io.IOExc ept ion
� � protected v oid fi l l() th rows

jav a.io.IO Ex cep t ion
� � protected In flater inf
� � protected in t len
OSGi Service-Platform Release 3 475-588

OSGi Defined Execution Environments Execution Environment Specification Version
� � in t read () throws java .io.IOExc ept ion
� � in t read (b y te[], in t ,in t) th rows

jav a.io.IO Exc ep tion

� � long skip (lon g) th rows
jav a.io.IO Exc ep tion

� � class ZipEntry implements ZipConstants , Cloneable
� � ZipEnt ry (S t rin g)
� � Zip Ent ry (Z ipEn try)
� � Ob ject c lone()
� � f in al s ta t ic in t DEFL ATED
� � St r ing getCom ment ()
� � long getCom pressed Siz e()
� � long getCrc()
� � by te[] getEx tra()
� � in t getMethod ()
� � St r in g getName()
� � long getS ize()
� � long getTime()

� � in t hashCode()
� � boolean isDirec tory ()
� � void setComment (St r ing)
� � void setCompressedS ize(long)
� � void setCrc (long)
� � void setExt ra(by te[])
� � void setMethod(in t)
� � void setSiz e(lon g)
� � void setTime(long)
� � f inal s tat ic in t STOR ED
� � St r ing toSt ring()

� � class ZipException extends java.io.IOException
� � ZipExcept ion() � � ZipExcept ion(S t ring)

� � class ZipFile implements ZipConstants
� � Zip File(jav a.io.F ile) th rows Z ipExc ept ion ,

jav a.io.IO Exc ep tion
� � Zip File(jav a.io.F ile,int) th rows

jav a.io.IO Exc ep tion
� � Zip File(S t rin g) th rows

jav a.io.IO Exc ep tion
� � void c lose() throws jav a.io. IO Excep t ion
� � jav a.u til .En umerat ion ent r ies()
� � protected v oid f in alize() th rows

jav a.io.IO Exc ep tion

� � Zip Ent ry getEn try (S t rin g)
� � jav a.io.In pu tS tream

getInputS t ream(Z ipEnt ry) throws
jav a.io.IO Exc ep tion

� � St r ing getName()
� � f inal s tat ic in t OPEN _DEL ETE
� � f inal s tat ic in t OPEN _READ
� � in t s ize()

� � class ZipInputStream extends InflaterInputStream implements ZipConstants
� � Zip InputSt ream(jav a.io.InputS t ream)
� � in t av a ilable() throws jav a .io.IOExc ept ion
� � void c lose() throws jav a.io. IO Excep t ion
� � void c loseEn try () th rows

jav a.io.IO Exc ep tion
� � protected Zip Ent ry

crea teZipEnt ry(S t rin g)

� � Zip Ent ry getN extEn t ry () th rows
jav a.io.IO Exc ep tion

� � in t read (b y te[] ,in t ,in t) th rows
jav a.io.IO Exc ep tion

� � long skip (lon g) th rows
jav a.io.IO Exc ep tion

� � class ZipOutputStream extends DeflaterOutputStream implements ZipConstants
� � ZipOutputS t ream(java .io.OutputS t ream)
� � void c lose() throws jav a.io. IO Excep t ion
� � void c loseEn try () th rows

jav a.io.IO Exc ep tion
� � f in al s ta t ic in t DEFL ATED
� � void f inish() throws java .io.IOExc ept ion
� � void pu tNextEn t ry (Z ipEnt ry) th rows

jav a.io.IO Exc ep tion

� � void setComment (St r ing)
� � void setLev el(in t)
� � void setMethod(in t)
� � f inal s tat ic in t STOR ED
� � void write(byte[],in t ,in t) throws

jav a.io.IO Exc ep tion

22.3.17 javax.microedition.io
� � package javax.microedition.io
� � interface Connection
� � ab st ract v oid close() th rows

jav a.io.IO Exc ep tion

� � class ConnectionNotFoundException extends java.io.IOException
� � Con nec t ionN otF ou nd Excep t ion () � � Con nec t ionNotFou nd Except ion(S t ring)

� � class Connector
� � stat ic Con nec t ion open (St r ing) throws

jav a.io.IO Exc ep tion
� � stat ic Con nec t ion open (St r ing,in t)

th rows jav a.io.IO Excep t ion
� � stat ic Con nec t ion open (St r ing,in t ,

boolean) th rows java .io.IOExc ept ion
� � stat ic jav a.io.Data Inp u tSt ream

open Data InputS t ream(St r ing) throws
jav a.io.IO Exc ep tion

� � stat ic jav a.io.DataOu tp utS t ream
open DataOu tputS tream(St rin g) th rows
jav a.io.IO Exc ep tion

� � stat ic jav a.io.In pu tS tream
open In pu tS tream(S t rin g) th rows
jav a.io.IO Exc ep tion

� � stat ic jav a.io.O utp u tS t ream
open OutputS t ream(S t rin g) throws
jav a.io.IO Exc ep tion

� � f inal s tat ic in t READ
� � f inal s tat ic in t READ_WRITE
� � f inal s tat ic in t WR ITE

� � interface ContentConnection implements StreamConnection
� � ab st ract S t rin g getEn codin g()
� � ab st ract lon g getLen gth ()

� � ab st ract S t rin g getTy pe()
476-588 OSGi Service-Platform Release 3

Execution Environment Specif ication Version 1.0 OSGi Defined Execution Environ-
� � interface Datagram implements java.io.DataInput , java.io.DataOutput
� � ab st ract S t rin g getAd dress ()
� � ab st ract by te[] getData()
� � ab st ract in t getLength()
� � ab st ract in t getOf f set ()
� � ab st ract void reset ()

� � ab st ract v oid setAdd ress (S t rin g) th rows
jav a.io.IO Ex cep t ion

� � ab st ract void setAdd ress (Datagram)
� � ab st ract void setData(byte[],in t ,int)
� � ab st ract void setLen gth (int)

� � interface DatagramConnection implements Connection
� � ab st ract in t getMaximu mLen gth() throws

jav a.io.IO Ex cep t ion
� � ab st ract in t getNomin alL ength () th rows

jav a.io.IO Ex cep t ion
� � ab st ract Datagram n ewDatagram(by te[],

int) throws java .io.IOExc ept ion
� � ab st ract Datagram n ewDatagram(by te[],

int ,S t rin g) th rows jav a.io.IO Excep t ion

� � ab st ract Datagram newDatagram(int)
throws jav a .io .IOExc ept ion

� � ab st ract Datagram newDatagram(int ,
S tr ing) th rows jav a.io.IO Exc ep tion

� � ab st ract void receiv e(Datagram) throws
jav a.io.IO Ex cep t ion

� � ab st ract void send (Datagram) th rows
jav a.io.IO Ex cep t ion

� � interface HttpConnection implements ContentConnection
� � f inal s tat ic S t ring GET
� � ab st ract long getDate() throws

jav a.io.IO Ex cep t ion
� � ab st ract long getExpirat ion () throws

jav a.io.IO Ex cep t ion
� � ab st ract S t ring getFile()
� � ab st ract S t rin g getHead erF ield(in t)

throws jav a .io .IOExcep t ion
� � ab st ract S t rin g getHead erF ield(S t rin g)

throws jav a .io .IOExcep t ion
� � ab st ract lon g getHead erF ieldDate(S t rin g,

long) th rows jav a.io.IO Exc ep tion
� � ab st ract in t getHead erF ieldIn t (S t rin g,in t)

throws jav a .io .IOExcep t ion
� � ab st ract S t rin g getHead erF ieldKey (in t)

throws jav a .io .IOExcep t ion
� � ab st ract S t ring getHost ()
� � ab st ract lon g getLastM odif ied () throws

jav a.io.IO Ex cep t ion
� � ab st ract in t getPort ()
� � ab st ract S t rin g getPro toc ol()
� � ab st ract S t rin g getQ uery()
� � ab st ract S t rin g getRef ()
� � ab st ract S t rin g getReq ues tMeth od ()
� � ab st ract S t rin g

getRequ es tP rop erty (St r in g)
� � ab st ract in t getRespon seCod e() th rows

jav a.io.IO Ex cep t ion
� � ab st ract S t rin g getRespon seMessage()

throws jav a .io .IOExcep t ion
� � ab st ract S t rin g getURL ()
� � f inal s tat ic S t ring HEAD
� � f in al s tat ic in t HTTP_ ACCEPTED
� � f in al s tat ic in t HTTP_ BA D_ GATEWAY
� � f in al s tat ic in t HTTP_ BA D_ METHO D
� � f in al s tat ic in t HTTP_ BA D_ REQ UES T
� � f in al s tat ic in t HTTP_ CLIENT_ TIM EO UT
� � f in al s tat ic in t HTTP_ CON FL ICT
� � f in al s tat ic in t HTTP_ CREATED
� � f in al s tat ic in t HTTP_ ENTITY_ TOO _ LARG E

� � f in al s tat ic in t HTTP_ EXPECT_ FAIL ED
� � f in al s tat ic in t HTTP_ F OR BIDDEN
� � f in al s tat ic in t HTTP_ G ATEWAY_ TIM EOUT
� � f in al s tat ic in t HTTP_ G O NE
� � f in al s tat ic in t HTTP_ IN TER NAL _ERRO R
� � f in al s tat ic in t HTTP_ L EN GTH_ R EQ UIRED
� � f in al s tat ic in t HTTP_ M O VED_ PERM
� � f in al s tat ic in t HTTP_ M O VED_ TEM P
� � f in al s tat ic in t HTTP_ M ULT_CHOICE
� � f in al s tat ic in t HTTP_ N O_ CON TEN T
� � f in al s tat ic in t HTTP_ N OT_ ACCEPTABL E
� � f inal s tat ic in t

HTTP_ NO T_ AUTHO RITAT IV E
� � f in al s tat ic in t HTTP_ N OT_ F O UND
� � f in al s tat ic in t HTTP_ N OT_ IM PLEM EN TED
� � f in al s tat ic in t HTTP_ N OT_ M O DIFIED
� � f in al s tat ic in t HTTP_ O K
� � f in al s tat ic in t HTTP_ PA RTIAL
� � f inal s tat ic in t

HTTP_ PAYM ENT_ REQ UIRED
� � f in al s tat ic in t HTTP_ PR ECON _ FAIL ED
� � f in al s tat ic in t HTTP_ PR OXY_ AUTH
� � f in al s tat ic in t HTTP_ REQ _ TOO _ LO NG
� � f in al s tat ic in t HTTP_ RES ET
� � f in al s tat ic in t HTTP_ S EE_ O THER
� � f in al s tat ic in t HTTP_ TEM P_ REDIRECT
� � f in al s tat ic in t HTTP_ UN AUTHO RIZED
� � f in al s tat ic in t HTTP_ UN AVAILAB LE
� � f inal s tat ic in t

HTTP_ UN SU PPOR TED_ RANG E
� � f inal s tat ic in t

HTTP_ UN SU PPOR TED_ TYPE
� � f in al s tat ic in t HTTP_ US E_ PRO XY
� � f in al s tat ic in t HTTP_ VERS IO N
� � f inal s tat ic S t r ing PO ST
� � ab st ract v oid setRequ es tM eth od(S t rin g)

throws jav a .io .IOExc ept ion
� � ab st ract v oid setRequ es tP rop erty (St r in g,

S tr ing) th rows jav a.io.IO Exc ep tion

� � interface InputConnection implements Connection
� � ab st ract java .io.DataIn p utS t ream

op enDataInputSt ream() th rows
jav a.io.IO Ex cep t ion

� � ab st ract jav a.io.Inp u tSt ream
op enInputS t ream() throws
jav a.io.IO Ex cep t ion

� � interface OutputConnection implements Connection
� � ab st ract java .io.DataO u tpu tS tream

op enDataOutputS t ream() th rows
jav a.io.IO Ex cep t ion

� � ab st ract jav a.io.Ou tp utS t ream
op enO utp u tS t ream() th rows
jav a.io.IO Ex cep t ion

� � interface StreamConnection implements InputConnection , OutputConnection
� � interface StreamConnectionNotifier implements Connection
� � ab st ract S t reamConnect ion

ac cep tAnd O pen () th rows
jav a.io.IO Ex cep t ion
OSGi Service-Platform Release 3 477-588

References Execution Environment Specif ication Version 1.0
22.4 References

[66] The Java Virtual Machine Specification

Tim Lindholm and Frank Yellin, Addison Wesley, ISBN 0-201-63452-X

[67] Downloadable Execution Environments

http://www.osgi.org/download

[68] J2ME, Java 2 Micro Edition

http://java.sun.com/j2me

[69] CDC, Connected Device Configuration

http://java.sun.com/products/cdc

[70] CLDC, Connected Limited Device Configuration

http://java.sun.com/products/cldc

[71] Foundation Profile

http://java.sun.com/products/foundation. This external specification is ©

Copyright 2000 Sun Microsystems, Inc.
478-588 OSGi Service-Platform Release 3

OSGi Service-Platform Release 3 479-588

Recommended Section

The following section contains recommended specifications. Recom-

mended specifications are made public to solicit feedback. Specifications in

these section may be subject to changes that are not backward compatible.

480-588 OSGi Service-Platform Release 3

Name-space Specification Version 1.0 Introduction
23 Name-space

Specification

Version 1.0

23.1 Introduction

A consistent name-space is an important component when designing and
deploying a network of OSGi service platforms. Bundles and external enti-

ties need to communicate, and a name-space definition simplifies many

aspects of this communication. A name-space is also an important compo-

nent for communication services and their addresses.

This specification defines a federated naming scheme that outlines the rules
for formatting a federated name that is used by different communication

services or mapped to addressing mechanisms like Uniform Resource Loca-

tors (URLs) and Uniform Resource Names (URNs).

This specification provides only the name-space. Actual communication

services and mappings are beyond the scope of this specification.

23.1.1 OSGi Name-space Essentials

• Powerful – The OSGi name-space must create an environment where any

bundle can send a message to any other bundle anywhere in the world.

This might be restricted by available routers and security measures.
• Flexible – The name-space should be very flexible because the

deployment models of OSGi environments differ significantly. The

name-space must therefore be able to handle a large number of configu-

rations and deployment models.

• Non-IP compatible – Many OSGi Service Platforms are located in systems

where IP connectivity is not always present. The OSGi name-space must
be able to handle addresses that are non-IP oriented.

• Compatible with firewalls – An OSGi Service Platform can be located

behind a number of firewalls. For example, an MP3 player on an OSGi

Service Platform is probably located inside a firewall implemented by a

residential gateway, which is also run on an OSGi Service Platform.

These gateways are further protected with an external firewall. The
name-space must be able to address these nested firewalls to all levels.

• Easy to parse – An address in the name-space hould be easy to parse in its

constituents.

23.1.2 Entities

• Address – The name of a location in a larger space. For example, an IP
address is the name for a computer in cyber-space.

• Name-space – A set of names in which each name is unique.
OSGi Service-Platform Release 3 481-588

Introduction Name-space Specif ication Version 1.0
• Domain – A domain name that can be mapped to an IP address using the
Internet Domain Name Service (DNS) or other name server technology.

• Communication Provider – A bundle that implements a messaging or con-

nection API for use by other bundles.

• Top Domain – A DNS name, like w ww .o sgi .o rg , that specifies a host that

controls a number of DNS sub domains.

• Label – The label part (defined in [73] RFC 1035 DOMAIN NAMES -

IMPLEMENTATION AND SPECIFICATION) of a DNS domain or host

name. E.g. In the host name w ww .o sgi . or g , w w w , o sgi , and or g are labels.

In a DNS name, it is also called a sub domain.

• Nested domain – A name (that may contain sub domains) that identifies a

host, controlling a domain, that may reside in another domain (top or

nested domain).
• Parent domain – The enclosing domain of a sub domain.

• Port – An endpoint in a communication scheme.

• OSGi Name – The tuple of OSGi domain, host, and port.

Figure 69 OSGi Name-space

23.1.3 OSGi Name Format

The format of an OSGi Name is as follows:

osgi-name ::= port ’@’ (nested-domain ’/’)* top-domain

The OSGi Name-space consists of a number of nested domains. The top

domain is always an Internet Domain Name System (DNS) host name (see

[72] DNS Related RFCs for more detail). For example,
co ntro l@w w w. osg i .o rg specifies a port that is located at the OSGi web site,

accessible from the Internet. The ww w .o sgi . or g is the OSGi top domain.

An OSGi Name can also contain nested domains. For example, in

A@ mp3pl ayer /f udd. elmer /osg i .ac me.c om , there are 2 nested domains,

fudd. elmer and mp3p layer .

DNS

osgi.acme.com

m46705950899 fudd.elmer

mp3player

Internet Domain Name System

Operator DNS-domain (top domain)

OSGi Gateway

OSGi MP3

= Port

Mobile Phone

www.ptt.com

Residence

Player Nested Domain

A

A@mp3player/fudd.elmer/osgi.acme.com

482-588 OSGi Service-Platform Release 3

Name-space Specification Version 1.0 Introduction
Both top domain, nested domains and ports may consists of labels. Labels
are used to specify an hierarchy. Labels are separated in a name with a ’.’. For

example, in ww w .o sgi . or g , w ww , o sgi and o rg are labels. For the top domain

(which is a DNS name), a label must match a DNS sub domain. For example,

in ww w .o sgi . or g , w ww is a DNS sub domain of o sgi , and o sgi is a sub

domain of o rg . Nested domains may interpret the label in the same way but

may also interpret this name in a proprietary manner.

All parts of an OSGi Name must follow the same rules for character set and

comparison.

port ::= name
top-domain ::= name
nested-domain ::= name

All OSGi Names strictly follow the rules of DNS.

name ::= (label ’.’) * label
label ::= l | (l ldh* ld)
l ::= [A-Za-z]?
ld ::= l | [0-9]
ldh ::= ld | ’-’

All names (port, top domains, and sub domains) match case insensitive

when they are used in comparisons. For example, W WW .O SG I.o rg is the

same as w ww .o sgi . or g . Such names must consist only of the alphabetic and
numeric characters of the US-ASCII code set. A hyphen or minus sign ("–" or

\u002D) is also allowed inside a name. A name must start with an alphabetic

character.

In an OSGi Name, nested domains and labels can be nested to any depth.

Nested domains are separated with a forward slash (’/’ or \u002F). Labels are
separated with a period (’.’ or \u002E).

Nested domains are different from sub domains. A sub domain must use the

same naming server technology as its parent domain. A nested domain can

use a different naming server technology. For example,

new s@4 57059 5089 9. mobi le/o sgi . acme. co m must use the Internet DNS to
locate the .c om top level domain server. The top level domain server locates

the a cme domain server that resolves the address of the o sgi domain server.

However, the nested domain 4 57059 5089 9. mo bi le uses the international

ISDN telephony numbering scheme to locate a mobile phone.

23.1.4 Relative Addressing

A name in this name-space can also name ports on other systems using a rel-

ative address. For example, if a bundle wants to send a message to a port on

the same machine, it can use the reserved top domain name: loc ald omai n .

For example, a@ lo cal doma in signifies a port on the local machine. The
lo cal doma in name can also be used to address machines that are located

within the same domain. For example, a@ x10/c ontr ol ler /l oc aldo main

addresses a domain controller that must be available in the same domain in

which the local machine resides.
OSGi Service-Platform Release 3 483-588

Introduction Name-space Specif ication Version 1.0
Addressing can also start from the top domain. The top domain is the host
available on the Internet. The name top doma in is reserved for this domain.

For example, a@x10/c ontr ol ler/f udd/to pdo main is addressing a host rela-

tive to the top domain.

Both the l oc aldo main name and the to pdo main name are depicted in

Figure 70 on page 484.

Figure 70 Relative addressing

Both lo ca ldo ma in and to pdo main are reserved domain names. They must

not be used as host names or domain names. A number of examples are
listed in the following table.

DNS

osgi.acme.com

mp3player control

x10

localdomain

fudd

local host

A@x10/control/localdomain

A

A@localdomain

A

A A@topdomain

A A@fudd/topdomain

topdomain

A@x10/contro/fudd/topdomain

relative origin

Name Comments

a@mp3 playe r/ lo cal do ma in Address of a port on a host mp3pla yer that is con-

nected in the same domain as the originator.

a@x10/h12312/lo cald oma in The h12312 domain must be on the same domain

as the local host. This domain needs to have a
nested domain x10 .

a@l oc aldo main Address of the port on a on the local host.

a@l oc aldo main /w w w. osg i .o rg Invalid. Localdomain must only be used as the top
domain.

new s@4 670 59 508 99 /te l/top doma in Address relative to the top domain (assuming the

OSGi would have defined the new s port).

Tab le 27 OSGi reserved name usage
484-588 OSGi Service-Platform Release 3

Name-space Specification Version 1.0 Introduction
23.1.5 Port Names

An OSGi Name represents a path through a tree in which the domains are

the nodes. Ports can reside at each node except the root. A port identifies an

endpoint. Communication providers in the OSGi Service Platform should

allow bundles to register listeners for a specific port.

A port name must follow the same rules as domain names, except that the

meaning of sub domains should be reversed. The reversal is necessary to

make port names compatible with standard Java practices of reversed

domain names. Bundles should use unique port names that do not conflict

with other bundles. This problem is usually solved using reverse domain

names.

Port names have a great deal in common with the OSGi Framework’s Persis-

tent IDentities (PIDs). Whenever possible, the PIDs and port names should

be aligned.

Port names without a label are to be defined only by the OSGi organization.

This specification does not define any such names.

Temporary port names must be assigned by the communication provider.

This provider must assure that those names are unique for the host and fol-

low the rules for port names.

A number of prefixes should be used to indicate the scheme that is used to
make a port name unique or indicate its purpose. The following table lists a

number of recommended prefixes.

top doma in@x10/w ww .a cme. co m Valid, but confusing because topdomain is a

reserved word for the top- and nested domains.

a@ fudd/l oc aldo main /to pdo main Invalid. Both localdomain and topdomain must be

the last domain (right most) and can thus never

be used together.

Name Comments

Table 27 OSGi reserved name usage

Prefix Example(s) Comments

co m., ne t . , o rg. , go v. , edu . ,

b iz . , i nfo . , etc .

c om.a cme. auto matio n If a company has registered

domain name, then the reversed

domain name can be used create a

PID.

guid. guid.678A-FFA8-19AC-FF 7A The guid. prefix is reserved for

automatically generated globally

unique ids.

Table 28 Port name construction examples
OSGi Service-Platform Release 3 485-588

Related Standards Name-space Specif ication Version 1.0
The following table lists a number of valid and invalid port names.

If the port name contains an hierarchy, it is advisable to separate the parts of

the hierarchy with periods, similar to DNS names.

23.1.6 International Names

DNS domain names, and nested domains, cannot handle international

names that contain characters not in the basic DNS character set because

they must be constructed from a limited code set. This can be a limiting fac-

tor when systems are deployed in countries that use non-ASCII scripts.

Work is underway to make DNS more useful for non-english alphabets.

Unfortunately, at the time of the writing of this standard, there is no consen-

sus of how non-ASCII names should be treated in the DNS. There exist a

number of proposals for encodings that can be used with DNS. Each encod-

ing scheme is identified with a unique prefix. For example, the AMC-ACE-Z,

see [82] AMC-ACE-Z draft, encoding should start with the prefix zq- - .

It is recommended that nested domains follow the conventions used with

the international names in DNS.

23.2 Related Standards

23.2.1 Uniform Resource Name (URN)

A special URI is a Uniform Resource Name (URN). A URN is a URI that is a

persistent identifier for an information resource. A URN consists of the fol-
lowing parts:

bundle . bund le.16 .co ntro l Valid, using the pattern to start

with the bundle ID to make the

string unique

te mp. temp. co m. acme .tra nspo rt

temp. guid. 678 A-F FA8 -

19AC -F F7A

Temporary port

Prefix Example(s) Comments

Tab le 28 Port name construction examples

Prefix Comments

co m. ac me .x10.c ontr ol Valid port name based on the reverse domain name system.

new s Invalid because the name does not have a sub-domain and the

OSGi Specifications have not defined this port name.

bundle .67 .dis play Valid name based on the bundle scheme.

Tab le 29 Examples of port names
486-588 OSGi Service-Platform Release 3

Name-space Specification Version 1.0 Security
urn ::= "urn:" NID ":" NSS
NID = Name-space Identifier
NSS = Name-space Specific String

Some examples of valid URNs:

urn:X-OSGi:control@46705950899%2Fmobile%2Fwww.osgi.org
urn:X-OSGi:com.acme.x@ ptt.info

More information about URNs can be found in [77] Uniform Resource Name.

23.3 Security

A name-space in itself is not related to security. Security becomes relevant

when a name-space is used as an address in conjunction with a transport

mechanism. Other OSGi specifications may use the OSGi Name in conjunc-

tion with transport mechanisms.

23.4 References

[72] DNS Related RFCs

http://www.dns.net/dnsrd/rfc

[73] RFC 1035 DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION

http://www.ietf.org/rfc/rfc1035.txt

[74] OSGi Service Platform, Release 2

http://www.osgi.org/resources/spec_overview.asp

[75] Unicode

http://www.unicode.org

[76] US-ASCII or basic latin

http://www.unicode.org/charts/PDF/U0000.pdf

[77] Uniform Resource Name

http://www.ietf.org/html.charters/urn-charter.html

[78] URN assigned name-spaces

http://www.iana.org/assignments/urn-name-spaces

[79] RFC 2141 URN Syntax

http://www.ietf.org/rfc/rfc2141.txt

[80] Naming and Addressing: URIs, URLs, ...

http://www.w3.org/Addressing

[81] International Domain names

http://www.i-dns.net/technology/howidns/howidns.html

[82] AMC-ACE-Z draft

http://www.ietf.org/internet-drafts/draft-ietf-idn-amc-ace-z-01.txt

This is a draft that is likely to be replaced with an RFC in the near future.

[83] Internationalized Domain Name Conversion Tool

http://mct.verisign-grs.com

[84] Preparation of Internationalized Host Names

http://www.i-d-n.net/draft/draft-ietf-idn-nameprep-03.txt
OSGi Service-Platform Release 3 487-588

References Name-space Specif ication Version 1.0
488-588 OSGi Service-Platform Release 3

Jini™ Driver Service Specif ication Version 1.0 Introduction
24 Jini™ Driver Service

Specification

Version 1.0

24.1 Introduction

The Jini™ network technology enables devices to form impromptu commu-
nities that can be assembled without any planning, installation, or human

intervention. Each device provides services that other devices in the com-

munity can use. A unique aspect of the Jini protocols is that each participat-

ing device in the community can provide Java code to other devices so that

they can leverage the provided services locally. The OSGi Service Platform is

an excellent match for Jini services.

This specification outlines the rules for using Jini in an OSGi Service Plat-

form and presents an APIs for:

• Discovery and control of Jini services within an OSGi framework

• Export of OSGi Services as Jini services.

This specification is based on the Jini specification but does not explain the

Jini operations in detail. For more information on the Jini operations, read

[85] Jini.

The OSGi Jini specification must be used with caution when used in secure
systems. Jini downloads code from external devices into the OSGi Service

Platform. The Jini specification has no security architecture to address the

possible threats that arise out of this. This means that most code will run

with permissions defined by the Jini Driver service bundle. See Security on

page 499 for more information.

Jini and all Jini-based terms are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

24.1.1 Essentials

• Transparency – Jini services should be usable as OSGi services and vice
versa.

• Export Capability – A bundle should be able to export an OSGi service as a

Jini service.

• Import Capability – A bundle should be able to use an OSGi service that

represents a Jini service.

24.1.2 Entities
• Jini Service – A Service Registrar or a service available from the Service

Registrar.

• OSGi Service – A service object available in the OSGi service registry.

• Group – A group of Service Registrars.
OSGi Service-Platform Release 3 489-588

Introduction J ini™ Driver Service Specification Version 1.0
• Service Registrar – The Jini service that can be discovered via a network
and that provides registrations from other services.

• Bridge – The connection between a non-Jini device and the Jini com-

munity.

• Proxy –An object that acts as a stand-in for another object.

• Jini Driver service – The service that allows a bundle to indicate what Jini

services should be registered as OSGi services.
• Jini Service Template – A set of n et. j in i .co r e.en try.Entry objects used to

filter Jini services of interest.

• Jini Entry – A base class for an attribute assertion. Actually assertions like

location, name, etc. are implemented in sub-classes.

Figure 71 Log Service Class Diagram org.osgi.service.jini package

24.1.3 Prerequisites

This specification requires OSGi Framework version 1.2 or higher because

the Jini Driver can only be implemented with dynamic import. See Package

Management on page 497.

24.1.4 Operation

When a Jini device is attached to a network, it uses an added protocol, called

discovery and join, to register a service with a Jini Service Registrar. A device

that provides a Jini service first locates the lookup service (discovery), and
then uploads an object that implements all its service interfaces (join) via

serialization.

JiniDriver

Importer impl.

JiniDriver impl.

Exporter impl.

some
serviceTagged
with EXPORT

Service
Registrar

Some imported
Jini service

Some importable
Jini Service

Service
Registrar

Some exportable
Jini service

sets Jini templates for requested Jini services

proxy forproxy for
exported

to

gets

gets
0..*

0..*0..*

0..*

0..*

0..*

registered

Jini Community

Jini Driver

Bundle

proxy object Service Registrar
proxy object

0..*

1

0..*

1

0..* 0..*
490-588 OSGi Service-Platform Release 3

Jini™ Driver Service Specif ication Version 1.0 The Jini Driver Service
Through the Service Registrar it is also possible to find specific services
based on the value of attributes. A client can download such a service in its

Virtual Machine, including the classes it needs. This service can then be exe-

cuted locally in the client.

The Jini Driver must also be able to register OSGi services with a Jini regis-

trar and must be able to import Jini services into the OSGi environment
using the Jini network protocols.

24.2 The Jini Driver Service

To import services, the Jini Driver service transforms any Jini lookup service

registrars that are discovered in the network, and transforms the Jini ser-

vices held in the service registrars to OSGi services. The Jini Driver Service is

an OSGi bundle that operates according to the driver model of the OSGi

Device Access Specification on page 223 and that deals with Jini lookup ser-

vices and OSGi services.

This specification defines a bridge between a Jini network (community) and

an OSGi Service Platform. Using this specification, OSGi services from the

service registry can be exported with very little effort to the Jini network,

and Jini services from the Jini network can be imported into the OSGi frame-

work. This is summarized as follows:

• Exporting – OSGi-to-Jini

• Importing – Jini-to-OSGi

To export services, the Jini Driver can discover services that are registered in

the OSGi framework as compliant with the Jini technology and register
them with the discovered Jini lookup service registrars.

Using the Jini Driver bundle significantly simplifies the process of using or

providing Jini services. Developers do not need to call the standard discov-

ery and join mechanisms because the Jini Driver service does this for them.

From a developer's point of view, there is no difference between Jini services
and conventional OSGi services. Any operation defined in OSGi can be per-

formed on Jini services.

24.3 Discovering Services

When started, the Jini Driver service must listen to the network for Jini

Lookup discovery events using the standard Jini discovery classes as defined

in the Jini specifications.
OSGi Service-Platform Release 3 491-588

Discovering Services J ini™ Driver Service Specification Version 1.0
Figure 72 The Jini Driver multicast discovery of registrars

When a Jini Lookup Service Registrar is discovered on the network, the Jini

Driver must retrieve its proxy object and register it as a

net. j i n i .c or e. lo o kup. Ser vi ceR egis trar service with the OSGi Framework.

These Service Registrars can be used by bundles that are written to work

directly with the Jini protocol.

The Jini Driver must then fetch all services from this Service Registrar that

match the Jini ne t. j in i . co re . lo ok up.Se rvice Template objects that are regis-

tered by Jini aware bundles with the setSe rvice Te m-

plate s(ne t. j in i .co r e. lo o kup.S ervic eTempla te[]) method.

Each of these services must be registered in the Framework’s service registry

under the interfaces or classes that are specified in the associated

net. j i n i .c or e. lo o kup. Ser vi ceTempla te object (a Se rvice Te mplate object fil-

ters the Jini services of interest). Additionally, the following registration

properties should be set when available:

• ENTR IES – Must contain an array of net. j in i .c or e. entry.Entr y objects

(Entry[]). These are the entries that are associated with the attr i buteSe ts

of the net. j i n i .c or e. l oo kup. Ser vi ceIte m object in the lookup.

• SERVIC E_ID – This property is a unique identity for a Jini service. The

type is a S tr ing .

24.3.1 Finding a Jini Service in the OSGi Service Registry

Typically in Jini, it is necessary to construct a

net. j i n i .c or e. lo o kup. Ser vi ceTempla te object with a number of

net. j i n i .c or e.e ntry.Entr y classes. The net. j i n i .c or e. lo o kup. Ser vi ceTempla te

object can do an assertion on the values of service attributes. These

attributes are not available in the OSGi service registry because Jini does not
provide a defined way to translate an ne t. j in i .co re .entr y. Entry object into a

string or number that can be matched with an OSGi filter.

OSGi Environment

Jini Driver

Bundle
IP Based Network

Multicast

Jini Community

Multicast

Jini Device

Lookup Service

ServiceRegistrar

net.jini.core.lookup

ServiceRegistrar

represented by

Jini Service OSGi Service
492-588 OSGi Service-Platform Release 3

Jini™ Driver Service Specif ication Version 1.0 Discovering Services
Jini specifically keeps the full semantics of the assertion in an
net. j in i .c or e. entry.Entr y sub-class. This means that only equality assertions

are possible. Jini does not support assertions such as greater than, less than,

presence, or other filter operations like OSGi does (or Service Location Pro-

tocol, SLP). For example, in Jini it is impossible to find a printer that has

more than 100 pages available, only an exact match is possible.

It is thus necessary to post-filter the services when it is required to look for

services with specific Jini attributes. This is shown in the following exam-

ple.

import org.osgi.framework.*;
import net.jini.lookup.entry.Location;

interface Display { void show(String text); }

class Publish {
...
ServiceReference SearchInFramework(

BundleContext bc, Entry match) {
try {

String filter =
"(objectClass=" + Display.class.getName() + ")";

 Entry entry = new Location(
"home","ground-floor","living");

ServiceReference[] ref = bc.getServiceReferences(
null, filter);

 for (int i=0; ref!=null && i<ref.length; i++) {
Entry[] entries = (Entry[])

ref[i].getProperty(JiniDriver.ENTRIES);
 for (int j=0;

entries!=null && j<entries.length; j++)
if (entry.equals(match))

 return ref[i];
 }

} catch (InvalidSyntaxException ex) {
...

}
 return null;

}
...

}

24.3.2 Using the Jini Service Registrar

Alternatively, a client bundle can use the Service Registrar objects that are

also available in the OSGi service registry. The Ser vi ceR egi strar interface

takes a ne t. j in i .co re . lo ok up.S ervic eTempla te object as a parameter and fil-

ters accordingly.

The following example demonstrates how Jini services can be found using

the Jini Service Registrar services found in the OSGi framework.

import net.jini.core.lookup.*;
import net.jini.core.entry.*;
OSGi Service-Platform Release 3 493-588

Importing a Jini Service J ini™ Driver Service Specification Version 1.0
import net.jini.lookup.entry.Location;
import org.osgi.framework.*;
import java.rmi.RemoteException;

interface DisplayInterface { void show(String text); }

class Publish {
 Object searchInJini(ServiceRegistrar lus) {
 try {

 Class[] classes = { DisplayInterface.class };
 Entry[] entries = { new Location(

"home", "ground-floor", "living")};

ServiceTemplate template =
new ServiceTemplate(null, classes, entries);

 return lus.lookup(template);
 } catch (RemoteException ex) {

...
 }
 return null;
 }
}

24.4 Importing a Jini Service

The Jini-to-OSGi import capability enables applications in an OSGi Frame-

work to interact with Jini services. Thus, OSGi bundles need not include

extra components to use Jini services, and they do not even have to be aware
of the the fact that the Service Platform is Jini enabled.

However, if an OSGi bundle needs access to specific services, it must fetch

the Jini Driver service and register an array of

net. j i n i .c or e. lo o kup. Ser vi ceTempla te objects with the setSer vice Te m-

plate s(ne t. j in i .co r e. lo o kup.S ervic eTempla te[]) method. A
net. j i n i .c or e. lo o kup. Ser vi ceTempla te object acts as a filter for Jini services

of interest.

Each bundle can set its own service templates that match Jini services. All

set templates must be merged by the Jini Driver server. All Jini services that

match the current set of templates must be imported by the Jini Driver ser-
vice.

public class Pub extends ServiceTracker {
ServiceTemplate templates[];

Pub(BundleContext context) {
super(context,

JiniDriver.class.getName(), null);
Entry entries[] = {

new Location("stuga","ground","main") };
Class classes[] = { Display.class };
ServiceTemplate templates[] = {
494-588 OSGi Service-Platform Release 3

Jini™ Driver Service Specif ication Version 1.0 Importing a Jini Service
new ServiceTemplate(
null, classes, entries) };

open();
}

public Object addingService(ServiceReference ref) {
JiniDriver jd = (JiniDriver) super.addingService(ref);
jd.setServiceTemplates(templates);

}
}

The registration of the discovered Jini services is only possible if the inter-

faces under which they are registered are available to the OSGi Framework.
Thus, the packages of these interfaces must be exported by a bundle in the

OSGi Service Platform. See Package Management on page 497 for more infor-

mation about this subject.

Figure 73 Importing Jini Services

When a Jini service is imported, it is registered as an OSGi service with the

following set of properties:

• DEVICE_C ATEG OR Y – The property that must be used in order to partic-

ipate in the OSGi Device Access mechanisms. The Jini Driver must set
the value of this property to j in i when it imports a Jini service.

• SERVI CE_ID – A unique Jini service id. Each service is required to have a

unique service id. The Jini Driver sets this property to the id of the

service in the Service Registrar.

• ENTR IES – The entries that describe the service to Jini. The type of this

property must be net. j in i . co re. entry. En try[] . These Entry objects are
copied from the net. j in i .c or e. entry.Entr y attributes in the Service Reg-

istrar.

OSGi Environment

Jini Driver

Bundle
IP Based Network

Multicast Multicast

Jini Community

Multicast

Jini Device

Jini Device

Lookup Service

ServiceRegistrar

net.jini.core.lookup

ServiceRegistrar

service.X

represented by

represented by
service.X

Jini Service OSGi Service

joins
OSGi Service-Platform Release 3 495-588

Exporting an OSGi Service to J ini J ini™ Driver Service Specification Version 1.0
24.5 Exporting an OSGi Service to Jini

A Jini Driver must register an OSGi service with all discovered Jini registrars
when the service is Jini compliant and registered with a registration property

J in iDr iver . EXPO RT .

A Jini Driver must manage the life-cycle of Jini services according to the life-

cycle state of the related OSGi service. I.e., when the service is registered

with the framework, the Jini Driver must automatically join this OSGi ser-
vice with the discovered Jini Lookup Services. When the OSGi service

becomes unregistered, the Jini Driver must remove it from all the Jini Ser-

vice Registrars. This must also cancel the associated Jini leases.

Figure 74 Exporting Jini Services

A Jini service is a conventional OSGi service with some additional require-

ments from the Jini specification:

• The exported service object, and all the objects it directly refers to, must

be serializable. Some objects, such as Swing's J Te xtArea , cannot cur-
rently be serialized and therefore cannot be used.

• The exported OSGi service object is created in the local Virtual Machine

(VM), but when it runs it does so in the client's VM. This typically means

it needs to be a proxy for the actual service that is available in the OSGi

Service Platform.

An exported service must be registered with the following properties:

• DEVI CE_C ATEGO R Y – The device category property as defined in the

Device Access Specification on page 223, service specification. The value of

this property must be "j in i". This property must be set.

• EX PO RT – Indicates to the Jini Driver service that this service wants to be
exported as a Jini service. The value is irrelevant, the Jini Driver service

must use the presence operator (=*) to detect this property. This

property must be set.

• LUS _EXP OR T_GRO U PS – The names of the Jini groups in which this

exported service wants to participate. The type is an array of S tr ing

objects (Str in g[]). If this property is not set, the Jini Driver default is
used. This property is optional.

OSGi Environment

Jini Driver

Bundle

IP Based Network

Jini Community

Jini Client

Jini Registrar

ServiceRegistrar

service.Y
Bundle

X

Lookup Service

ServiceRegistrar

service.Y
proxied for

registers service.Y

d
is
c
o
v
e
rs
496-588 OSGi Service-Platform Release 3

Jini™ Driver Service Specif ication Version 1.0 Package Management
• SERVI CE_ID – A unique Jini service id set by the exporting bundle. This
id is used to identify the service in the Service Registrar. It must be a

Str i ng object. If it is not set, the Jini Driver must create a unique id. This

property is optional.

• ENTR IES – An array of ne t. j in i .co re .entr y.Entry objects. These are the

attributes describing the service and are normally used to find Jini ser-

vices of interest. This property is optional.

24.5.1 Example

void foo(BundleContext context) {
String [] groups = { "acme", "osgi" };
Entry [] entries = {

new Location("hut", "attic", "back") };
Hashtable ht = new Hashtable();
ht.put(JiniDriver.EXPORT, "");
ht.put(JiniDriver.LUS_EXPORT_GROUPS, groups);
ht.put(

org.osgi.service.device.Constants.DEVICE_CATEGORY,
JiniDriver.DEVICE_CATEGORY);

ht.put(JiniDriver.ENTRIES, entries);
ht.put(Constants.SERVICE_PID, getPid());
context.registerService(Foo.class.getName(), this, ht);

}

24.6 Package Management

The Jini Driver loads code from other VMs and executes this code in the

OSGi environment. The strict management of classloader management in
the OSGi Service Platform affects how Jini applications can be used. The fol-

lowing sections discuss the different package related issues that occur when

the Jini protocol is used with an OSGi Service Platform.

24.6.1 Jini Service Interfaces

The OSGi Framework registers service objects under the name of an inter-
face. This interface must be exported by a bundle before it can be used by

another bundle. Each registered Jini service interface must therefore be

exported by one or more bundles if it is to be useful.

This implies that the Jini Driver must assure that the Jini service object

implements the actual service interface (the identical class object) that was
exported in the OSGi Service Platform. The Jini Driver cannot foresee what

Jini Services it must support a priori, and is thus not able to export or import

all the possible packages. Therefore, the Jini Driver requires dynamic import

and can be implemented only on Service Platforms with a Framework ver-

sion 1.2 or higher.
OSGi Service-Platform Release 3 497-588

Configuration J ini™ Driver Service Specification Version 1.0
24.6.2 Java RMI Package

Jini requires a number of Remote Method Invocation (RMI) classes but can

be implemented with other communication schemes. The RMI requirement
comes from the fact that the wire protocol depends on some pivotal RMI

classes. These are:

• java. rmi .M ar shalExc eptio n

• java. rmi .M ar shal l edO bje ct

• java. rmi .No Suc hO bjec tExc eptio nR emo te
• java. rmi .R emo teExcep tion

• java. rmi .U nmar shal Exc eptio n

Further RMI dependencies are related to the Jini implementation. The Sun

Jini Reference Implementation requires full RMI Support and a Java 2 com-

patible VM. None of the OSGi Execution Environments contain these
classes.

24.6.3 Jini Packages

The Jini specifications define many Java APIs that are needed to implement

a Jini Driver for an OSGi Service Platform. The Jini Driver bundle should

export the following packages:

24.7 Configuration

The Jini Driver service should use the OSGi Configuration Admin service

(Configuration Admin Service Specification on page 181) to specify the Jini

groups to which OSGi services should be exported and the Jini groups that
should be imported.

Package Description

net. j i n i .c or e.e ntry Entry Specification

net. j i n i .c or e. lo o kup Lookup Service Specification

net. j i n i .c or e.e ve nt Distributed Event Specification

net. j i n i .c or e. le ase Distributed Leasing Specification

net. j i n i .c or e.di sco very Unicast discovery part of the Jini Discovery and Join Specifica-
tion

net. j i n i .a dmin The interface that an administrable Jini service should imple-

ment

net. j i n i .d i sco very Discovery Utilities Specification

net. j i n i . lo o kup Utilities for managing the communication with Jini Lookup

Services

net. j i n i . lo o kup.e ntry Utility implemented in order to specify a modification of an

attribute entry

net.jini.lease Utility and event classes for leasing

Tab le 30 Jini exported packages
498-588 OSGi Service-Platform Release 3

Jini™ Driver Service Specif ication Version 1.0 Security
However, this specification also defines a number of System properties for
this purpose. The Jini Driver services define two configuration properties:

• CM _LUS _EX PO RT_GRO U PS – An array of Str i ng objects that specifies the

groups with which an OSGi service marked with EXPO RT should be reg-

istered. If this array is not set, the OSGI service must be registered with

all groups.
• CM _LUS _IMPO R T_G RO U PS – An array of Str ing objects that specifies the

groups that should be imported. The array defines the groups of Service

Registrars in which the driver is interested. If it this array is not set, it

must default to all groups.

These properties can also be set in the System properties, which will then
override configuration properties. Multiple elements in these properties

must be separated by commas.

24.8 Security

The Jini concept requires the device to download Java code from a peer

device. This code is then executed in the device’s own VM. This is a great

threat to security. Worms and viruses can easily spread this way. In addi-

tion, Jini does not have a security architecture.

The Jini Driver implementation must therefore exercise extreme care not to

allow the Jini services any permissions that can allow them to do harm.

Jini services inherit the permissions of the Jini Driver service bundle. This

bundle needs access to the local network in order to participate in the Jini

community. Jini services also usually require access to the local network
because they often are a proxy for a remote service.

24.9 org.osgi.service.jini

The OSGi Jini Driver. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.jini; specification-ver-
sion=1.0
JiniDriver

24.9.1 public interface JiniDriver

A basic interface for a Jini Driver.

This Driver acts as a bridge between a Jini network (community) and an

OSGi framework. Using this driver, OSGi services can be exported to the Jini

network, and Jini services from the Jini network can be imported into the

OSGi framework. This results in two possible transformations: Jini-to-OSGi

and OSGi-to-Jini. The Jini Driver is responsible for these transformations.

An OSGi service is a Jini service if it is registered in the framework with the

specified properties.

In OSGi-to-Jini transformation, the driver registers OSGi services as Jini ser-

vices in the discovered LUS.
OSGi Service-Platform Release 3 499-588

org.osgi.service. jini J ini™ Driver Service Specification Version 1.0
In Jini-to-OSGi transformation it registers with the framework all discov-
ered LUS and services in the LUS matching the given template.

The Jini Driver can be configured, through a set of properties, to export/

import Jini Services.

The properties DEVICE_CATEGORY, EXPORT, LUS_EXPORT_GROUPS,
SERVICE_ID, and ENTRIES are service register properties for particular Jini

Service (imported or exported).

The properties CM_LUS_IMPORT_GROUPS and CM_LUS_EXPORT_GROUPS are for

configuration of the Jini Driver. These properties are kept in the Configura-

tion Management Service defined by OSGi.

CM_LUS_EXPORT_GROUPS

24.9.1.1 public static final String CM_LUS_EXPORT_GROUPS =
“jini.lus.export.groups”

Optional service property, which should be a string array, containing the
LUS groups that the driver is interested in, when exporting framework ser-

vices to the Jini network. The driver discovers only the LUS, which are mem-

bers of at least one of these groups. It discovers all if the property is null or

the property is not defined, and does not perform discovery if the length of

the array is 0. If Jini Lookup Services are discovered, which after changing

the value of this property are not members of the groups, the registration of

all Jini services from the framework, which are registered with them, is can-
celled. The name of the property is jini.lus.export.groups.

CM_LUS_IMPORT_GROUPS

24.9.1.2 public static final String CM_LUS_IMPORT_GROUPS =
“jini.lus. import.groups”

Optional service property, which should be a string array, containing the

groups of LUS, that the driver is interested in, when importing Jini services.

The driver discovers only the LUS members of at least one of these groups. It

discovers all if the property is null or the property is not defined, and does

not perform discovery if the length of the array is zero. If LUS are discovered,

which after changing the value of this property are not members of the
groups, all registered services from them are unregistered. The name of the

property is jini.lus.import.groups.

DEVICE_CATEGORY

24.9.1.3 public static final String DEVICE_CATEGORY = “jini”

Constant for the value of the service property DEVICE_CATEGORY used by all

Jini services.

Value:jini

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY
ENTRIES

24.9.1.4 public static final String ENTRIES = “jini .entries”

Optional service property, which should be an net. j in i . co re. entr y. Entry

array, holding the attributes set of the framework service that represents

Jini proxy in the registration with a LUS. The name of the property is
jini.entries.

See Also net.jini.core.entry.Entry
EXPORT
500-588 OSGi Service-Platform Release 3

Jini™ Driver Service Specif ication Version 1.0 References
24.9.1.5 public static final String EXPORT = “jini.export”

The Export service property is a hint that marks an OSGi service to be

picked up and exported by the Jini Driver in the Jini network. Imported ser-

vices must not have this property set.

The property has no value. The name of the property is jini.export
LUS_EXPORT_GROUPS

24.9.1.6 public static final String LUS_EXPORT_GROUPS = “j ini.lus.export.groups”

Optional service property, which should contain a string array of the LUS

groups that are of interest to the OSGi service. This overrides the property
CM_LUS_EXPORT_GROUPS of the Jini Driver. If the value of this property is not

defined, CM_LUS_EXPORT_GROUPS will be used. The name of the property is

jini.lus.export.groups.

SERVICE_ID

24.9.1.7 public static final String SERVICE_ID = “j ini.service. id”

Optional service property, which should contain a string representation of

the Jini service ID. It is used by the Jini Driver when exporting framework

service. The driver automatically fills the values of this property when

importing the Jini service. The name of the property is jini.service.id.

getServiceTemplates ()

24.9.1.8 public ServiceTemplate[] getServiceTemplates()

� Gets the current set of templates that is used for searching and registering

services registered in discovered LUS. A service, registered in a LUS, will be

registered in the framework if it matches at least one of the templates in this

set

Returns an array containing templates or null if the set of templates is empty.
setServ iceTemplates(net.j ini.core.l ookup.ServiceTemplate[])

24.9.1.9 public void setServiceTemplates(ServiceTemplate[] template)

template template to be added.

� The Jini Driver is defined as a Service Factory. For every bundle a different

set of Service Templates is maintained. This method sets a new set of Ser-

viceTemplates (net.jini.core.lookup.ServiceTemplates) that are used

for searching and registering services in the discovered LUS. A service regis-

tered in a LUS will be registered in framework if it matches at least one of
the templates in one of the sets.

The ServiceTemplate(null, null, null) matches all services.

24.10 References

[85] Jini

http://www.jini.org
OSGi Service-Platform Release 3 501-588

References J ini™ Driver Service Specification Version 1.0
502-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 Introduction
25 UPnP™ Device Service

Specification

Version 1.0

25.1 Introduction

The UPnP Device Architecture specification provides the protocols for a
peer-to-peer network. It specifies how to join a network and how devices

can be controlled using XML messages sent over HTTP. The UPnP specifica-

tions leverage Internet protocols, including IP, TCP, UDP, HTTP, and XML.

The OSGi specifications address how code can be download and managed in

a remote system. Both standards are therefore fully complimentary. Using

an OSGi Service Platform to work with UPnP enabled devices is therefore a
very succesful combination.

This specification specifies how OSGi bundles can be developed that inter-

operate with UPnP™ (Universal Plug and Play) devices and UPnP control

points. The specification is based on [86] UPnP Device Architecture and does

not further explain the UPnP specifications. The UPnP specifications are
maintained by [87] UPnP Forum.

UPnP is a trademark of the UPnP Implementers Corporation.

25.1.1 Essentials

• Scope – This specification is limited to device control aspects of the UPnP

specifications. Aspects concerning the TCP/IP layer, like DHCP and

limited TTL, are not addressed.

• Transparency – OSGi services should be made available to networks with

UPnP enabled devices in a transparent way.

• Network Selection – It must be possible to restrict the use of the UPnP pro-
tocols to a selection of the connected networks. For example, in certain

cases OSGi services that are UPnP enabled should not be publishedto the

Wide Area Network side of a gateway, nor should UPnP devices be

detected on this WAN.

• Event handling – Bundles must be able to listen to UPnP events.

• Export OSGi services as UPnP devices – Enable bundles that make a service
available to UPnP control points.

• Implement UPnP Control Points – Enable bundles that control UPnP

devices.

25.1.2 Entities

• UPnP Base Driver – The bundle that implements the bridge between
OSGi and UPnP networks. This entity is not represented as a service.

• UPnP RootDevice –A physical device can contain one or more root

devices. Root devices contain one ore more devices. A root device is mod-
OSGi Service-Platform Release 3 503-588

Introduction UPnP™ Device Service Specification Version 1.0
elled with a UP nPDevic e object, there is no separate interface defined for
root devices.

• UPnP Device – The representation of a UPnP device. A UPnP device may

contain other UPnP devices and UPnP services. This entity is represented

by a U PnPDe vi ce object.

• UPnP Service –A UPnP device consists of a number of services. A UPnP

service has a number of UPnP state variables that can be queried and
modified with actions. This concept is represented by a U PnP Ser vi ce

object.

• UPnP Action – A UPnP service is associated with a number of actions that

can be performed on that service and that may modify the UPnP state

variables. This entity is represented by a U PnPAc tio n object.

• UPnP State Variable – A variable associated with a UPnP service, repre-
sented by a U PnPS tateVa r ia ble object.

• UPnP Event Listener Service – A listener to events coming from UPnP

devices.

• UPnP Host – The machine that hosts the code to run a UPnP device or

control point.

• UPnP Control Point – A UPnP device that is intended to control UPnP
devices over a network. For example, a UPnP remote controller.

• UPnP Icon – A representation class for an icon associated with a UPnP

device.

• UDN – Unique Device Name, a name that uniquely identifies the a spe-

cific device.

Figure 75 UPnP Service Specification class Diagram org.osgi.service.upnp package

<<interface>>
UPnPService

a listener

<<interface>>
UPnPAction

<<interface>>
UPnPState
Variable

<<interface>>
UPnPEvent
Listener

<<interface>>
UPnPIcon

A UPnP device
implementer

A UPnP control
point

A UPnP device
implementation

in parameter

out parm

has

1

0..n 0..n

1

10..n

11..n

UPnP Base Driver
Implementation

asso
ciated

 w
ith

has

has

registers getsregisters

listens to

0..n

1 1 0..n

has

1..n

1

0..n

1

10..n

<<interface>>
UPnPDevice

child

0..n

0,1
504-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 UPnP Specifications
25.1.3 Operation Summary

To make a UPnP service available to UPnP control points on a network, an

OSGi service object must be registered under the U PnPDe vi ce interface with
the Framework. The UPnP driver bundle must detect these UPnP Device ser-

vices and must make them available to the network as UPnP devices using

the UPnP protocol.

UPnP devices detected on the local network must be detcted and automati-

cally registered under the U PnPDe vi ce interface with the Framework by the
UPnP driver implementation bundle.

A bundle that wants to control UPnP devices, for example to implement a

UPnP control point, should track UPnP Device services in the OSGi service

registry and control them appropriately. Such bundles should not distin-

guish between resident or remote UPnP Device services.

25.2 UPnP Specifications

The UPnP DA is intended to be used in a broad range of device from the com-
puting (PCs printers), consumer electronics (DVD, TV, radio), communica-

tion (phones) to home automation (lighting control, security) and home

appliances (refridgerators, coffeemakers) domains.

For example, a UPnP TV might announce its existence on a network by

broadcasting a message. A UPnP control point on that network can then dis-
cover this TV by listening to those announce messages. The UPnP specifica-

tions allow the control point to retrieve information about the user

interface of the TV. This information can then be used to allow the end user

to control the remote TV from the control point, for example turn it on or

change the channels.

The UPnP specification supports the following features:

• Detect and control a UPnP standardized device. In this case the control point

and the remote device share a priori knowledge about how the device

should be controlled. The UPnP Forum intends to define a large number

of these standardized devices.
• Use a user interface description. A UPnP control point receives enough

information about a device and its services to automatically build a user

interface for it.

• Programmatic Control. A program can directly control a UPnP device

without a user interface. This control can be based on detected infor-

mation about the device or through a priori knowledge of the device
type.

• Allows the user to browse a web page supplied by the device. This web page

contains a user interface for the device that be directly manipulated by

the user. However, this option is not well defined in the UPnP Device

Architecture specification and is not tested for compliance.

The UPnP Device Architecture specification and the OSGi Service Platform

provide complementary functionality. The UPnP Device Architecture specifi-

cation is a data communication protocol that does not specify where and

how programs execute. That choice is made by the implementations. In con-

trast, the OSGi Service Platform specifies a (managed) execution point and
OSGi Service-Platform Release 3 505-588

UPnP Device UPnP™ Device Service Specification Version 1.0
does not define what protocols or media are supported. The UPnP specifica-
tion and the OSGi specifications are fully complementary and do not over-

lap.

From the OSGi perspective, the UPnP specification is a communication pro-

tocol that can be implemented by one or more bundles. This specification

therefore defines the following:

• How an OSGi bundle can implement a service that is exported to the

network via the UPnP protocols.

• How to find and control services that are available on the local network.

The UPnP specifications related to the assignment of IP addresses to new
devices on the network or auto-IP self configuration should be handled at

the operating system level. Such functions are outside the scope of this spec-

ification.

25.2.1 UPnP Base Driver

The functionality of the UPnP service is implemented in a UPnP base driver.
This is a bundle that implements the UPnP protocols and handles the inter-

action with bundles that use the UPnP devices. A UPnP base driver bundle

must provide the following functions:

• Discover UPnP devices on the network and map each discovered device

into an OSGi registered UPnP Device service.
• Present UPnP marked services that are registered with the OSGi

Framework on one or more networks to be used by other computers.

25.3 UPnP Device

The principle entity of the UPnP specification is the UPnP device. There is a

UPnP root device that represents a physical appliance, such as a complete TV.

The root device contains a number of sub-devices. These might be the tuner,

the monitor, and the sound system. Each sub-device is further composed of
a number of UPnP services. A UPnP service represents some functional unit

in a device. For example, in a TV tuner it can represent the TV channel selec-

tor. Figure 76 on page 506 illustrates this hierarchy.

Figure 76 UPnP device hierarchy

Network

UPnP root device

UPnP device

UPnP service

UPnP Action
506-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 UPnP Device
Each UPnP service can be manipulated with a number of UPnP actions.
UPnP actions can modify the state of a UPnP state variable that is associated

with a service. For example, in a TV there might be a state variable volume.

There are then actions to set the volume, to increase the volume, and to

decrease the volume.

25.3.1 Root Device

The UPnP root device is registered as a UPnP Device service with the Frame-

work, as well as all its sub-devices. Most applications will work with sub-

devices, and, as a result, the children of the root device are registered under

the U PnPDe vice interface.

UPnP device properties are defined per sub-device in the UPnP specification.
These properties must be registered with the OSGi Framework service regis-

try so they are searchable.

Bundles that want to handle the UPnP device hierarchy can use the regis-

tered service properties to find the parent of a device (which is another regis-

tered UP nPDevic e).

The following service registration properties can be used to discover this

hierarchy:

• PARENT_U DN – The Universal Device Name (UDN) of the parent device.

A root device most not have this property registered. Type is a S tr ing
object.

• CH IL DREN_UDN – An array of UDNs of this device’s children. Type is a

Str i ng[] object.

25.3.2 Exported Versus Imported Devices

Both imported (from the network to the OSGi service registry) and exported

(from the service registry to the network) U PnPDe vice services must have

the same representation in the OSGi Service Platform for identical devices.

For example, if an OSGi UPnP Device service is exported as a UPnP device

from an OSGi Service Platform to the network, and it is imported into

another OSGi Service Platform, the object representation should be equal.
Application bundles should therefore be able to interact with imported and

exported forms of the UPnP device in the same manner.

Imported and exported UPnP devices differ only by two marker properties

that can be added to the service registration. One marker,

DEVICE_C ATEG OR Y , should typically be set only on imported devices. By
not setting DEVIC E_C ATEGO RY on internal UPnP devices, the Device Man-

ager does not try to refine these devices (See the Device Access Specification on

page 223 for more information about the Device Manager). If the device ser-

vice does not implement the Devic e interface and does not have the

DEVICE_C ATEG OR Y property set, it is not considered a device according to

the Device Access Specification.
OSGi Service-Platform Release 3 507-588

Device Category UPnP™ Device Service Specification Version 1.0
The other marker, U PNP_EXPO RT , should only be set on internally created
devices that the bundle developer wants to export. By not setting

UPNP _EXP OR T on registered UPnP Device services, the UPnP Device service

can be used by internally created devices that should not be exported to the

network. This allows UPnP devices to be simulated within an OSGi Service

Platform without announcing all of these devices to any networks.

25.3.3 Icons

A UPnP device can optionally support an icon. The purpose of this icon is to

identify the device on a UPnP control point. UPnP control points can be

implemented in large computers like PC’s or simple devices like a remote

control. However, the graphic requirements for these UPnP devices differ

tremendously. The device can, therefore, export a number of icons of differ-
ent size and depth.

In the UPnP specifications, an icon is represented by a URL that typically

refers to the device itself. In this specification, a list of icons is available from

the UPnP Device service.

In order to obtain localized icons, the method getIc on s(S tr ing) can be used

to obtain different versions. If the locale specified is a nul l argument, then

the call returns the icons of the default locale of the called device (not the

default locale of the UPnP control point).When a bundle wants to access the

icon of an imported UPnP device, the UPnP driver gets the data and presents

it to the application through an input stream.

A bundle that needs to export a UPnP Device service with one ore more

icons must provide an implementation of the U PnP Ico n interface. This

implementation must provide an In putStre am object to the actual icon

data. The UPnP driver bundle must then register this icon with an HTTP

server and include the URL to the icon with the UPnP device data at the
appropriate place.

25.4 Device Category

UPnP Device services are devices in the context of the Device Manager. This

means that these services need to register with a number of properties to

participate in driver refinement. The value for UPnP devices is defined in

the U PnPDevic e constant DEVI CE_CATEGO R Y . The value is U PnP . The

UPnP Device interface contains a number of constants for matching values.
Refer to MATCH_GENERIC on page 515 for further information.

25.5 UPnPService

A UPnP Device contains a number of U PnP Ser vi ce objects. UP nPSe rvice

objects combine actions and state variables.
508-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 Working With a UPnP Device
25.5.1 State Variables

The UPn PState Var i able interface encapsulates the properties of a UPnP

state variable. In addition to the properties defined by the UPnP specifica-
tion, a state variable is also mapped to a Java data type. The Java data type is

used when an event is generated for this state variable and when an action is

performed containing arguments related to this state variable. There must

be a strict correspondence between the UPnP data type and the Java data

type so that bundles using a particular UPnP device profile can predict the

precise Java data type.

The function Q ue ryState Var i able defined in the UPnP specification has

been deprecated and is therefore not implemented. It is recommended to

use the UPnP event mechanism to track UPnP state variables.

25.6 Working With a UPnP Device

The UPnP driver must register all discovered UPnP devices in the local net-

works. These devices are registered under a UP nPDevic e interface with the

OSGi Framework.

Using a remote UPnP device thus involves tracking UPnP Device services in

the OSGi service registry. The following code illustrates how this can be

done. The sample Co ntro l le r class extends the Ser vice Tr ack er class so that it

can track all UPnP Device services and add them to a user interface, such as a

remote controller application.

class Controller extends ServiceTracker {
UI ui;

Controller(BundleContext context) {
super(context, UPnPDevice.class.getName(), null);

}
public Object addingService(ServiceReference ref) {

UPnPDevice dev = (UPnPDevice)super.addingService(ref);
ui.addDevice(dev);
return dev;

}
public void removedService(ServiceReference ref,

Object dev) {
ui.removeDevice((UPnPDevice) dev);

}
...

}

25.7 Implementing a UPnP Device

OSGi services can also be exported as UPnP devices to the local networks, in
a way that is transparent to typical UPnP devices. This allows developers to

bridge legacy devices to UPnP networks. A bundle should perform the fol-

lowing to export an OSGi service as a UPnP device:
OSGi Service-Platform Release 3 509-588

Event API UPnP™ Device Service Specification Version 1.0
• Register an UPnP Device service with the registration property
UPNP _EXP OR T .

• Use the registration property P RESENTATIO N_U R L to provide the presen-

tation page. The service implementer must register its own servlet with

the Http Service to serve out this interface. This URL must point to that

servlet.

There can be multiple UPnP root devices hosted by one OSGi platform. The

relationship between the UPnP devices and the OSGi platform is defined by

the PAR ENT_U DN and CH ILDR EN_UDN service properties. The bundle regis-

tering those device services must make sure these properties are set accord-

ingly.

25.8 Event API

UPnP events are sent using the whiteboard model, in which a bundle inter-

ested in receiving the UPnP events registers an object implementing the
UPnP Eve ntListen erS ervic e interface. A filter can be set to limit the events

for which a bundle is notified.

If a service is registered with a property named upn p.f i l ter with the value of

an instance of an Fi l te r object, the listener is only notified for matching

events (This is a Fi l te r object and not a Str ing object because it allows the
Inval id SyntaxExcep tion to be thrown in the client and not the UPnP driver

bundle).

The filter might refer to any valid combination of the following pseudo

properties for event filtering:

• U PnPDevic e. U DN – (U PnP .devic e.U DN) Only events generated by ser-

vices contained in the specific device are delivered. For example:

(U PnP. devic e.U DN=uuid: Upnp -TVEmulato r- 1_0 -1234 56 78 900 01)

• UPnP Device .TYP E– (UPnP.device.type) Only events generated by services

contained in a device of the given type are delivered. For example:

(U PnP. devic e.type=ur n:sc hemas -upnp -o rg: devic e:tvdevic e:1)
• UPnP Ser vi ce. ID – (U PnP. ser vi ce. id) Service identity. Only events gen-

erated by services matching the given service ID are delivered.

• UPnP Ser vi ce. TY PE – (U PnP .ser vice. type) Only events generated by ser-

vices of of the given type are delivered.

If an event is generated, the no ti fyU PnPEvent(Str ing, Str ing ,Dic t iona ry)
method is called on all registered U PnPEventLi stener services for which the

optional filter matches for that event. If no filter is specified, all events must

be delivered. If the filter does not match, the UPnP driver must not call the

UPnP Event Listener service.

One or multiple events are passed as parameters to the no ti fyUP nPE-
ve nt(S tr ing ,Str i ng,Dic t io nar y) method. The Dic t io nar y object holds a pair

of U pnPSta teVar iab le objects that triggered the event and an Object for the

new value of the state variable.
510-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 Localization
25.8.1 Initial Event Delivery

Special care must be taken with the initial subscription to events. According

to the UPnP specification, when a client subscribes for notification of events
for the first time, the device sends out a number of events for each state vari-

able, indicating the current status of each state variable. This behavior sim-

plifies the synchronization of a device and an event-driven client.

The UPnP Driver must mimic this event distribution for all UPnP Event Lis-

tener services when they are registered. The driver must guarantee the same
behavior for all registrations by keeping an internal history of the events.

The call to the listener's notification method must be done asynchronously.

25.9 Localization

All values of the UPnP properties are obtained from the device using the

device's default locale. If an application wants to query a set of localized

property values, it has to use the method getDesc r ip t ions (S tr ing) . For local-

ized versions of the icons, the method g etIc ons(Str ing) is to be used.

25.10 Dates and Times

The UPnP specification uses different types for date and time concepts. An
overview of these types is given in Table 31 on page 511.

The UPnP specification points to [91] XML Schema. In this standard, [92] ISo

8601 Date And Time formats are referenced. The mapping is not completely

defined which means that the this OSGi UPnP specification defines a com-

plete mapping to Java classes. The UPnP types da te , da teTime and

date Ti me .tz are represented as a Date object. For the d ate type, the hours,

minutes and seconds must all be zero.

The UPnP types t ime and t ime .tz are represented as a Lo ng object that repre-

sents the number of ms since midnight. If the time wraps to the next day

due to a time zone value, then the final value must be truncated to modulo

86.400.000.

See also TYPE_DATE on page 522 and further.

UPnP Type Class Example Value (TZ=CEST= +0200)

date Date 19 85- 04- 12 Sun Apr i l 12 0 0:0 0:00 CEST 198 5

date Ti me Date 19 85- 04- 12T10: 15: 30 Sun Apri l 12 10:15:3 0 C EST 19 85

date Ti me .tz Date 19 85- 04- 12T10: 15: 30+ 040 0 Sun Apri l 12 08 :15:3 0 C EST 198 5

time Lo ng 23:20: 50 84 .050. 000 (ms)

t ime.tz Lo ng 23:20: 50+0 300 1. 250.00 0 (ms)

Table 31 Mapping UPnP Date/Time types to Java
OSGi Service-Platform Release 3 511-588

Configuration UPnP™ Device Service Specification Version 1.0
25.11 Configuration

In order to provide a standardized way to configure a UPnP driver bundle,
the Configuration Admin property u pnp.s sdp.a ddr ess is defined.

The value is a Str ing[] with a list of IP addresses, optionally followed with a

colon (’:’, \u003A) and a port number. For example:

239.255.255.250:1900

Those addresses define the interfaces which the UPnP driver is operating on.

If no SSDP address is specified, the default assumed will be

239.255.255.250:1900. If no port is specified, port 1900 is assumed as default.

25.12 Networking considerations

25.12.1 The UPnP Multicasts

The operating system must support multicasting on the selected network

device. In certain cases, a multicasting route has to be set in the operating

system routing table.

These configurations are highly dependent on the underlying operating sys-
tem and beyond the scope of this specification.

25.13 Security

The UPnP specification is based on HTTP and uses plain text SOAP (XML)

messages to control devices. For this reason, it does not provide any inherent

security mechanisms. However, the UPnP specification is based on the

exchange of XML files and not code. This means that at least worms and

viruses cannot be implemented using the UPnP protocols.

However, a bundle registering a UPnP Device service is represented on the

outside network and has the ability to communicate. The same is true for

getting a UPnP Device service. It is therefore recommended that

Servic ePe rmissi on[R EG ISTER| GET,U PnPDevic e|U PnP Eve ntListen er] be

used sparingly and only for bundles that are trusted.

25.14 org.osgi.service.upnp

The OSGi UPnP API Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.upnp; specification-ver-
sion=1.0

25.14.1 Summary

• UPnPAction – A UPnP action. [p.513]
512-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 org.osgi.service.upnp
• UPnPDevice – Represents a UPnP device. [p.514]
• UPnPEventListener – UPnP Events are mapped and delivered to applica-

tions according to the OSGi whiteboard model. [p.518]

• UPnPIcon – A UPnP icon representation. [p.519]

• UPnPService – A representation of a UPnP Service. [p.520]

• UPnPStateVariable – The meta-information of a UPnP state variable as

declared in the device’s service state table (SST). [p.522]
UPnPAction

25.14.2 public interface UPnPAction

A UPnP action. Each UPnP service contains zero or more actions. Each

action may have zero or more UPnP state variables as arguments.

getInputArgumentNames()

25.14.2.1 public String[] getInputArgumentNames()

� Lists all input arguments for this action.

Each action may have zero or more input arguments.

Returns Array of input argument names or null if no input arguments.

See Also UPnPStateVariable[p.522]
getName()

25.14.2.2 public String getName()

� Returns the action name. The action name corresponds to the name field in

the actionList of the service description.

• For standard actions defined by a UPnP Forum working committee,

action names must not begin with X_ nor A_.

• For non-standard actions specified by a UPnP vendor and added to a
standard service, action names must begin with X_.

Returns Name of action, must not contain a hyphen character or a hash character
getOutputArgumentNames ()

25.14.2.3 public String[] getOutputArgumentNames()

� List all output arguments for this action.

Returns Array of output argument names or null if there are no output arguments.

See Also UPnPStateVariable[p.522]
getReturnArgumentName()

25.14.2.4 public String getReturnArgumentName()

� Returns the name of the designated return argument.

One of the output arguments can be flagged as a designated return argu-

ment.

Returns The name of the designated return argument or null if none is marked.
getStateVariab le(String)

25.14.2.5 public UPnPStateVariable getStateVariable(String argumentName)

argumentName The name of the UPnP action argument.

� Finds the state variable associated with an argument name. Helps to resolve

the association of state variables with argument names in UPnP actions.

Returns State variable associated with the named argument or null if there is no such

argument.

See Also UPnPStateVariable[p.522]
invoke(Dicti onary)
OSGi Service-Platform Release 3 513-588

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.0
25.14.2.6 public Dictionary invoke(Dictionary args) throws Exception

args A Dictionary of arguments. Must contain the correct set and type of argu-

ments for this action. May be null if no input arguments exist.

� Invokes the action. The input and output arguments are both passed as

Dictionary objects. Each entry in the Dictionary object has a String
object as key representing the argument name and the value is the argu-

ment itself. The class of an argument value must be assignable from the

class of the associated UPnP state variable. The input argument Dictionary

object must contain exactly those arguments listed by getInputArguments

method. The output argument Dictionary object will contain exactly those

arguments listed by getOutputArguments method.

Returns A Dictionary with the output arguments. null if the action has no output

arguments.

Throws Exception – The execution fails for some reason.

See Also UPnPStateVariable[p.522]
UPnPDev ice

25.14.3 public interface UPnPDevice

Represents a UPnP device. For each UPnP root and embedded device, an

object is registered with the framework under the UPnPDevice interface.

The relationship between a root device and its embedded devices can be

deduced using the UPnPDevice.CHILDREN_UDN and

UPnPDevice.PARENT_UDN service registration properties.

The values of the UPnP property names are defined by the UPnP Forum.

All values of the UPnP properties are obtained from the device using the

device’s default locale.

If an application wants to query for a set of localized property values, it has

to use the method UPnPDevice.getDescriptions(String locale).

CHILDREN_UDN

25.14.3.1 public static final String CHILDREN_UDN = “UPnP.device.childrenUDN”

The property key that must be set for all devices containing other embedded

devices.

The value is an array of UDNs for each of the device’s children (String[]).

The array contains UDNs for the immediate descendants only.

If an embedded device in turn contains embedded devices, the latter are not

included in the array.

The UPnP Specification does not encourage more than two levels of nesting.

The property is not set if the device does not contain embedded devices.

The property is of type String[]. Value is “UPnP.device.childrenUDN”

DEVICE_CATEGORY

25.14.3.2 public static final String DEVICE_CATEGORY = “UPnP”

Constant for the value of the service property DEVICE_CATEGORY used for all

UPnP devices. Value is “UPnP”.

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY
FRIENDLY_NAME
514-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 org.osgi.service.upnp
25.14.3.3 public static final String FRIENDLY_NAME = “UPnP.device.friendlyName”

Mandatory property key for a short user friendly version of the device name.

The property value holds a String object with the user friendly name of the

device. Value is “UPnP.device.friendlyName”.

ID

25.14.3.4 public static final String ID = “UPnP.device.UDN”

Property key for the Unique Device ID property. This property is an alias to

UPnPDevice.UDN. It is merely provided for reasons of symmetry with the

UPnPService.ID property. The value of the property is a String object of

the Device UDN. The value of the key is “UPnP.device.UDN”.

MANUFACTURER

25.14.3.5 public static final String MANUFACTURER = “UPnP.device.manufacturer”

Mandatory property key for the device manufacturer’s property. The prop-

erty value holds a String representation of the device manufacturer’s name.
Value is “UPnP.device.manufacturer”.

MANUFACTURER_URL

25.14.3.6 public static final String MANUFACTURER_URL =
“UPnP.device.manufacturerURL”

Optional property key for a URL to the device manufacturers Web site. The

value of the property is a String object representing the URL. Value is

“UPnP.device.manufacturerURL”.

MATCH_GENERIC

25.14.3.7 public static final int MATCH_GENERIC = 1

Constant for the UPnP device match scale, indicating a generic match for

the device. Value is 1.

MATCH_MANUFACTURER_MODEL

25.14.3.8 public static final int MATCH_MANUFACTURER_MODEL = 7

Constant for the UPnP device match scale, indicating a match with the

device model. Value is 7.

MATCH_MANUFACTURER_MODEL_REVISION

25.14.3.9 public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15

Constant for the UPnP device match scale, indicating a match with the

device revision. Value is 15.

MATCH_MANUFACTURER_MODEL_REVISION_SERIAL

25.14.3.10 public static final int
MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31

Constant for the UPnP device match scale, indicating a match with the

device revision and the serial number. Value is 31.

MATCH_TYPE

25.14.3.11 public static final int MATCH_TYPE = 3

Constant for the UPnP device match scale, indicating a match with the

device type. Value is 3.

MODEL_DESCRIPTION

25.14.3.12 public static final String MODEL_DESCRIPTION =
“UPnP.device.modelDescription”

Optional (but recommended) property key for a String object with a long

description of the device for the end user. The value is “UPnP.device.model-

Description”.

MODEL_NAME
OSGi Service-Platform Release 3 515-588

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.0
25.14.3.13 public static final String MODEL_NAME = “UPnP.device.modelName”

Mandatory property key for the device model name. The property value

holds a String object giving more information about the device model.

Value is “UPnP.device.modelName”.

MODEL_NUMBER

25.14.3.14 public static final String MODEL_NUMBER =
“UPnP.device.modelNumber”

Optional (but recommended) property key for a String class typed property

holding the model number of the device. Value is “UPnP.device.modelNum-

ber”.

MODEL_URL

25.14.3.15 public static final String MODEL_URL = “UPnP.device.modelURL”

Optional property key for a String typed property holding a string repre-

senting the URL to the Web site for this model. Value is “UPnP.device.mode-
lURL”.

PARENT_UDN

25.14.3.16 public static final String PARENT_UDN = “UPnP.device.parentUDN”

The property key that must be set for all embedded devices. It contains the
UDN of the parent device. The property is not set for root devices. The value

is “UPnP.device.parentUDN”.

PRESENTATION_URL

25.14.3.17 public static final String PRESENTATION_URL = “UPnP.presentationURL”

Optional (but recommended) property key for a String typed property
holding a string representing the URL to a device representation Web page.

Value is “UPnP.presentationURL”.

SERIAL_NUMBER

25.14.3.18 public static final String SERIAL_NUMBER = “UPnP.device.serialNumber”

Optional (but recommended) property key for a String typed property

holding the serial number of the device. Value is “UPnP.device.serialNum-

ber”.

TYPE

25.14.3.19 public static final String TYPE = “UPnP.device.type”

Property key for the UPnP Device Type property. Some standard property

values are defined by the Universal Plug and Play Forum. The type string

also includes a version number as defined in the UPnP specification. This

property must be set.

For standard devices defined by a UPnP Forum working committee, this

must consist of the following components in the given order separated by

colons:

• urn
• schemas-upnp-org
• device
• a device type suffix

• an integer device version

For non-standard devices specified by UPnP vendors following components

must be specified in the given order separated by colons:

• urn
• an ICANN domain name owned by the vendor
516-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 org.osgi.service.upnp
• device
• a device type suffix

• an integer device version

To allow for backward compatibility the UPnP driver must automatically

generate additional Device Type property entries for smaller versions than

the current one. If for example a device announces its type as version 3, then
properties for versions 2 and 1 must be automatically generated.

In the case of exporting a UPnPDevice, the highest available version must be

announced on the network.

Syntax Example: urn:schemas-upnp-org:device:deviceType:v

The value is “UPnP.device.type”.

UDN

25.14.3.20 public static final String UDN = “UPnP.device.UDN”

Property key for the Unique Device Name (UDN) property. It is the unique

identifier of an instance of a UPnPDevice. The value of the property is a

String object of the Device UDN. Value of the key is “UPnP.device.UDN”.

This property must be set.

UPC

25.14.3.21 public static final String UPC = “UPnP.device.UPC”

Optional property key for a String typed property holding the Universal

Product Code (UPC) of the device. Value is “UPnP.device.UPC”.

UPNP_EXPORT

25.14.3.22 public static final String UPNP_EXPORT = “UPnP.export”

The UPnP.export service property is a hint that marks a device to be picked

up and exported by the UPnP Service. Imported devices do not have this

property set. The registered property requires no value.

The UPNP_EXPORT string is “UPnP.export”.

getDescrip tions(String)

25.14.3.23 public Dictionary getDescriptions(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples

include “de“, “en“ or “en-US“. The default locale of the device is specified by
passing a null argument.

� Get a set of localized UPnP properties. The UPnP specification allows a

device to present different device properties based on the client’s locale. The

properties used to register the UPnPDevice service in the OSGi registry are

based on the device’s default locale. To obtain a localized set of the proper-
ties, an application can use this method.

Not all properties might be available in all locales. This method does not

substitute missing properties with their default locale versions.

Returns Dictionary mapping property name Strings to property value Strings
getIcons(Str ing)

25.14.3.24 public UPnPIcon[] getIcons(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples

include “de“, “en“ or “en-US“. The default locale of the device is specified by

passing a null argument.

� Lists all icons for this device in a given locale. The UPnP specification allows

a device to present different icons based on the client’s locale.
OSGi Service-Platform Release 3 517-588

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.0
Returns Array of icons or null if no icons are available.
getService(String)

25.14.3.25 public UPnPService getService(String serviceId)

serviceId The service id

� Locates a specific service by its service id.

Returns The requested service or null if not found.
getServices()

25.14.3.26 public UPnPService[] getServices()

� Lists all services provided by this device.

Returns Array of services or null if no services are available.
UPnPEventLi stener

25.14.4 public interface UPnPEventListener

UPnP Events are mapped and delivered to applications according to the

OSGi whiteboard model. An application that wishes to be notified of events
generated by a particular UPnP Device registers a service extending this

interface.

The notification call from the UPnP Service to any UPnPEventListener

object must be done asynchronous with respect to the originator (in a sepa-

rate thread).

Upon registration of the UPnP Event Listener service with the Framework,

the service is notified for each variable which it listens for with an initial

event containing the current value of the variable. Subsequent notifications

only happen on changes of the value of the variable.

A UPnP Event Listener service filter the events it receives. This event set is

limited using a standard framework filter expression which is specified

when the listener service is registered.

The filter is specified in a property named “upnp.filter” and has as a value an

object of type org.osgi.framework.Filter.

When the Filter is evaluated, the folowing keywords are recognized as

defined as literal constants in the UPnPDevice class.

The valid subset of properties for the registration of UPnP Event Listener ser-

vices are:

• UPnPDevice.TYPE -- Which type of device to listen for events.

• UPnPDevice.ID -- The ID of a specific device to listen for events.

• UPnPService.TYPE -- The type of a specific service to listen for events.

• UPnPService.ID -- The ID of a specific service to listen for events.
UPNP_FILTER

25.14.4.1 public static final String UPNP_FILTER = “upnp.filter”

Key for a service property having a value that is an object of type

org.osgi.framework.Filter and that is used to limit received events.

noti fyUPnPEvent(S tring,S tring,Dicti onary)

25.14.4.2 public void notifyUPnPEvent(String deviceId, String serviceId,
Dictionary events)

deviceId ID of the device sending the events

serviceId ID of the service sending the events
518-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 org.osgi.service.upnp
events Dictionary object containing the new values for the state variables that
have changed.

� Callback method that is invoked for received events. The events are col-

lected in a Dictionary object. Each entry has a String key representing the

event name (= state variable name) and the new value of the state variable.

The class of the value object must match the class specified by the UPnP
State Variable associated with the event. This method must be called asyn-

chronously

UPnPIcon

25.14.5 public interface UPnPIcon

A UPnP icon representation. Each UPnP device can contain zero or more
icons.

getDepth()

25.14.5.1 public int getDepth()

� Returns the color depth of the icon in bits.

Returns The color depth in bits. If the actual color depth of the icon is unknown, -1 is

returned.
getHeight()

25.14.5.2 public int getHeight()

� Returns the height of the icon in pixels. If the actual height of the icon is

unknown, -1 is returned.

Returns The height in pixels, or -1 if unknown.
getInputStream()

25.14.5.3 public InputStream getInputStream() throws IOException

� Returns an InputStream object for the icon data. The InputStream object

provides a way for a client to read the actual icon graphics data. The number

of bytes available from this InputStream object can be determined via the

getSize() method. The format of the data encoded can be determined by

the MIME type availble via the getMimeType() method.

Returns An InputStream to read the icon graphics data from.

See Also UPnPIcon.getMimeType()[p.519]
getMimeType()

25.14.5.4 public String getMimeType()

� Returns the MIME type of the icon. This method returns the format in

which the icon graphics, read from the InputStream object obtained by the

getInputStream() method, is encoded.

The format of the returned string is in accordance to RFC2046. A list of valid
MIME types is maintained by the IANA at ftp://ftp.isi.edu/in-notes/iana/

assignments/media-types/media-types (ftp://ftp.isi.edu/in-notes/iana/assign-

ments/media-types/media-types) .

Typical values returned include: “image/jpeg” or “image/gif”

Returns The MIME type of the encoded icon.
getSize()
OSGi Service-Platform Release 3 519-588

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.0
25.14.5.5 public int getSize()

� Returns the size of the icon in bytes. This method returns the number of

bytes of the icon available to read from the InputStream object obtained by

the getInputStream() method. If the actual size can not be determined, -1

is returned.

Returns The icon size in bytes, or -1 if the size is unknown.
getWidth()

25.14.5.6 public int getWidth()

� Returns the width of the icon in pixels. If the actual width of the icon is

unknown, -1 is returned.

Returns The width in pixels, or -1 if unknown.
UPnPService

25.14.6 public interface UPnPService

A representation of a UPnP Service. Each UPnP device contains zero or more

services. The UPnP description for a service defines actions, their arguments,
and event characteristics.

ID

25.14.6.1 public static final String ID = “UPnP.service. id”

Property key for the optional service id. The service id property is used when
registering UPnP Device services or UPnP Event Listener services. The value

of the property contains a String array (String[]) of service ids. A UPnP

Device service can thus announce what service ids it contains. A UPnP

Event Listener service can announce for what UPnP service ids it wants noti-

fications. A service id does not have to be universally unique. It must be

unique only within a device. A null value is a wildcard, matching all ser-
vices. The value is “UPnP.service.id”.

TYPE

25.14.6.2 public static final String TYPE = “UPnP.service.type”

Property key for the optional service type uri. The service type property is
used when registering UPnP Device services and UPnP Event Listener ser-

vices. The property contains a String array (String[]) of service types. A

UPnP Device service can thus announce what types of services it contains. A

UPnP Event Listener service can announce for what type of UPnP services it

wants notifications. The service version is encoded in the type string as spec-

ified in the UPnP specification. A null value is a wildcard, matching all ser-
vice types. Value is “UPnP.service.type”.

See Also UPnPService.getType()[p.521]
getAction(String)

25.14.6.3 public UPnPAction getAction(String name)

name Name of action. Must not contain hyphen or hash characters. Should be <32

characters.

� Locates a specific action by name. Looks up an action by its name.

Returns The requested action or null if no action is found.
getActions()

25.14.6.4 public UPnPAction[] getActions()

� Lists all actions provided by this service.

Returns Array of actions (UPnPAction[])or null if no actions are defined for this serv-
ice.
getId()
520-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 org.osgi.service.upnp
25.14.6.5 public String getId()

� Returns the serviceId field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the ser-

viceId must contain the following components in the indicated order:

• urn:upnp-org:serviceId:
• service ID suffix

Example: urn:upnp-org:serviceId:serviceID.

Note that upnp-org is used instead of schemas-upnp-org in this example
because an XML schema is not defined for each serviceId.

For non-standard services specified by UPnP vendors, the serviceId must

contain the following components in the indicated order:

• urn:
• ICANN domain name owned by the vendor

• :serviceId:
• service ID suffix

Example: urn:domain-name:serviceId:serviceID.

Returns The service ID suffix defined by a UPnP Forum working committee or speci-

fied by a UPnP vendor. Must be <= 64 characters. Single URI.
getStateVariab le(String)

25.14.6.6 public UPnPStateVariable getStateVariable(String name)

name Name of the State Variable

� Gets a UPnPStateVariable objects provided by this service by name

Returns State variable or null if no such state variable exists for this service.
getStateVariab les()

25.14.6.7 public UPnPStateVariable[] getStateVariables()

� Lists all UPnPStateVariable objects provided by this service.

Returns Array of state variables or null if none are defined for this service.
getType()

25.14.6.8 public String getType()

� Returns the serviceType field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the ser-

viceType must contain the following components in the indicated order:

• urn:schemas-upnp-org:service:
• service type suffix:

• integer service version

Example: urn:schemas-upnp-org:service:serviceType:v.

For non-standard services specified by UPnP vendors, the serviceType must
contain the following components in the indicated order:

• urn:
• ICANN domain name owned by the vendor

• :service:
• service type suffix:
• integer service version

Example: urn:domain-name:service:serviceType:v.
OSGi Service-Platform Release 3 521-588

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.0
Returns The service type suffix defined by a UPnP Forum working committee or spec-
ified by a UPnP vendor. Must be <= 64 characters, not including the version

suffix and separating colon. Single URI.
getVer sion()

25.14.6.9 public String getVersion()

� Returns the version suffix encoded in the serviceType field in the UPnP ser-
vice description.

Returns The integer service version defined by a UPnP Forum working committee or

specified by a UPnP vendor.
UPnPStateVariable

25.14.7 public interface UPnPStateVariable

The meta-information of a UPnP state variable as declared in the device’s

service state table (SST).

Method calls to interact with a device (e.g. UPnPAction.invoke(...);) use

this class to encapsulate meta information about the input and output argu-

ments.

The actual values of the arguments are passed as Java objects. The mapping

of types from UPnP data types to Java data types is described with the field

definitions.

TYPE_BIN_BASE64

25.14.7.1 public static final String TYPE_BIN_BASE64 = “bin.base64”

MIME-style Base64 encoded binary BLOB.

Takes 3 Bytes, splits them into 4 parts, and maps each 6 bit piece to an octet.

(3 octets are encoded as 4.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content

of the BLOB.

TYPE_BIN_HEX

25.14.7.2 public static final String TYPE_BIN_HEX = “bin.hex”

Hexadecimal digits representing octets.

Treats each nibble as a hex digit and encodes as a separate Byte. (1 octet is

encoded as 2.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content

of the BLOB.

TYPE_BOOLEAN

25.14.7.3 public static final String TYPE_BOOLEAN = “boolean”

True or false.

Mapped to Boolean object.

TYPE_CHAR

25.14.7.4 public static final String TYPE_CHAR = “char”

Unicode string.

One character long.

Mapped to Character object.

TYPE_DATE

25.14.7.5 public static final String TYPE_DATE = “date”

A calendar date.
522-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 org.osgi.service.upnp
Date in a subset of ISO 8601 format without time data.

See http://www.w3.org/TR/xmlschema-2/#date (http://www.w3.org/TR/

xmlschema-2/#date) .

Mapped to java.util.Date object. Always 00:00 hours.

TYPE_DATETIME

25.14.7.6 public static final String TYPE_DATETIME = “dateTime”

A specific instant of time.

Date in ISO 8601 format with optional time but no time zone.

See http://www.w3.org/TR/xmlschema-2/#dateTime (http://www.w3.org/

TR/xmlschema-2/#dateTime) .

Mapped to java.util.Date object using default time zone.

TYPE_DATETIME_TZ

25.14.7.7 public static final String TYPE_DATETIME_TZ = “dateTime.tz”

A specific instant of time.

Date in ISO 8601 format with optional time and optional time zone.

See http://www.w3.org/TR/xmlschema-2/#dateTime (http://www.w3.org/

TR/xmlschema-2/#dateTime) .

Mapped to java.util.Date object adjusted to default time zone.

TYPE_FIXED_14_4

25.14.7.8 public static final String TYPE_FIXED_14_4 = “fixed.14.4”

Same as r8 but no more than 14 digits to the left of the decimal point and no

more than 4 to the right.

Mapped to Double object.

TYPE_FLOAT

25.14.7.9 public static final String TYPE_FLOAT = “float”

Floating-point number.

Mantissa (left of the decimal) and/or exponent may have a leading sign.

Mantissa and/or exponent may have leading zeros. Decimal character in

mantissa is a period, i.e., whole digits in mantissa separated from fractional

digits by period. Mantissa separated from exponent by E. (No currency sym-

bol.) (No grouping of digits in the mantissa, e.g., no commas.)

Mapped to Float object.

TYPE_I1

25.14.7.10 public static final String TYPE_I1 = “i1”

1 Byte int.

Mapped to Integer object.

TYPE_I2

25.14.7.11 public static final String TYPE_I2 = “i2”

2 Byte int.

Mapped to Integer object.

TYPE_I4

25.14.7.12 public static final String TYPE_I4 = “i4”

4 Byte int.
OSGi Service-Platform Release 3 523-588

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.0
Must be between -2147483648 and 2147483647

Mapped to Integer object.

TYPE_INT

25.14.7.13 public static final String TYPE_INT = “int”

Integer number.

Mapped to Integer object.

TYPE_NUMBER

25.14.7.14 public static final String TYPE_NUMBER = “number”

Same as r8.

Mapped to Double object.

TYPE_R4

25.14.7.15 public static final String TYPE_R4 = “r4”

4 Byte float.

Same format as float. Must be between 3.40282347E+38 to 1.17549435E-38.

Mapped to Float object.

TYPE_R8

25.14.7.16 public static final String TYPE_R8 = “r8”

8 Byte float.

Same format as float. Must be between -1.79769313486232E308 and -

4.94065645841247E-324 for negative values, and between

4.94065645841247E-324 and 1.79769313486232E308 for positive values, i.e.,

IEEE 64-bit (8-Byte) double.

Mapped to Double object.

TYPE_STRING

25.14.7.17 public static final String TYPE_STRING = “string”

Unicode string.

No limit on length.

Mapped to String object.

TYPE_TIME

25.14.7.18 public static final String TYPE_TIME = “time”

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with no date and no time zone.

See http://www.w3.org/TR/xmlschema-2/#time (http://www.w3.org/TR/
xmlschema-2/#dateTime) .

Mapped to Long. Converted to milliseconds since midnight.

TYPE_TIME_TZ

25.14.7.19 public static final String TYPE_TIME_TZ = “time.tz”

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with optional time zone but no date.

See http://www.w3.org/TR/xmlschema-2/#time (http://www.w3.org/TR/
xmlschema-2/#dateTime) .

Mapped to Long object. Converted to milliseconds since midnight and

adjusted to default time zone, wrapping at 0 and 24*60*60*1000.
524-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 org.osgi.service.upnp
TYPE_UI1

25.14.7.20 public static final String TYPE_UI1 = “ui1”

Unsigned 1 Byte int.

Mapped to an Integer object.

TYPE_UI2

25.14.7.21 public static final String TYPE_UI2 = “ui2”

Unsigned 2 Byte int.

Mapped to Integer object.

TYPE_UI4

25.14.7.22 public static final String TYPE_UI4 = “ui4”

Unsigned 4 Byte int.

Mapped to Long object.

TYPE_URI

25.14.7.23 public static final String TYPE_URI = “uri”

Universal Resource Identifier.

Mapped to String object.

TYPE_UUID

25.14.7.24 public static final String TYPE_UUID = “uuid”

Universally Unique ID.

Hexadecimal digits representing octets. Optional embedded hyphens are

ignored.

Mapped to String object.

getA ll owedValues()

25.14.7.25 public String[] getAllowedValues()

� Returns the allowed values, if defined. Allowed values can be defined only

for String types.

Returns The allowed values or null if not defined. Should be less than 32 characters.
getDefaul tValue()

25.14.7.26 public Object getDefaultValue()

� Returns the default value, if defined.

Returns The default value or null if not defined. The type of the returned object can

be determined by getJavaDataType.
getJavaDataType()

25.14.7.27 public Class getJavaDataType()

� Returns the Java class associated with the UPnP data type of this state vari-
able.

Mapping between the UPnP data types and Java classes is performed accord-

ing to the schema mentioned above.

Integer ui1, ui2, i1, i2, i4, int
Long ui4, time, time.tz
Float r4, float
Double r8, number, fixed.14.4
Character char
String string, uri, uuid
Date date, dateTime, dateTime.tz
OSGi Service-Platform Release 3 525-588

References UPnP™ Device Service Specification Version 1.0
Boolean boolean
byte[] bin.base64, bin.hex

Returns A class object corresponding to the Java type of this argument.
getMax imum()

25.14.7.28 public Number getMaximum()

� Returns the maximum value, if defined. Maximum values can only be

defined for numeric types.

Returns The maximum value or null if not defined.
getMinimum()

25.14.7.29 public Number getMinimum()

� Returns the minimum value, if defined. Minimum values can only be

defined for numeric types.

Returns The minimum value or null if not defined.
getName()

25.14.7.30 public String getName()

� Returns the variable name.

• All standard variables defined by a UPnP Forum working committee

must not begin with X_ nor A_.
• All non-standard variables specified by a UPnP vendor and added to a

standard service must begin with X_.

Returns Name of state variable. Must not contain a hyphen character nor a hash char-

acter. Should be <32 characters.
getStep()

25.14.7.31 public Number getStep()

� Returns the size of an increment operation, if defined. Step sizes can be

defined only for numeric types.

Returns The increment size or null if not defined.
getUPnPDataType()

25.14.7.32 public String getUPnPDataType()

� Returns the UPnP type of this state variable. Valid types are defined as con-

stants.

Returns The UPnP data type of this state variable, as defined in above constants.
sendsEvents()

25.14.7.33 public boolean sendsEvents()

� Tells if this StateVariable can be used as an event source. If the StateVariable

is eventable, an event listener service can be registered to be notified when

changes to the variable appear.

Returns true if the StateVariable generates events, false otherwise.

25.15 References

[86] UPnP Device Architecture

http://www.upnp.org/download/UPnPDA10_20000613.htm

[87] UPnP Forum

http://www.upnp.org
526-588 OSGi Service-Platform Release 3

UPnP™ Device Service Specif ication Version 1.0 References
[88] Simple Object Access Protocol, SOAP

http://www.w3.org/TR/SOAP

[89] General Event Notification Architecture, GENA

http://www.upnp.org/download/draft-cohen-gena-client-01.txt

[90] Simple Service Discovery Protocol, SSDP

http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt

[91] XML Schema

http://www.w3.org/TR/xmlschema-2

[92] ISo 8601 Date And Time formats

www.iso.ch
OSGi Service-Platform Release 3 527-588

References UPnP™ Device Service Specification Version 1.0
528-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 Introduction
26 Initial Provisioning

Version 1.0

26.1 Introduction

To allow freedom regarding the choice of management protocol, the OSGi

Remote Management Reference Architecture on page 29, specifies an architec-
ture to remotely manage a Service Platform with a Management Agent. The

Management Agent is implemented with a Management Bundle that can

communicate with an unspecified management protocol.

This specification defines how the Management Agent can make its way to

the Service Platform, and gives a structured view of the problems and their
corresponding resolution methods.

The purpose of this specification is to enable the management of a Service

Platform by an Operator, and (optionally) to hand over the management of

the Service Platform later to another Operator. This approach is in accor-

dance with the OSGi remote management reference architecture.

This bootstrapping process requires the installation of a Management

Agent, with appropriate configuration data, in the Service Platform.

This specification consists of a prologue, in which the principles of the Ini-

tial Provisioning are outlined, and a number of mappings to different mech-
anisms.

26.1.1 Essentials

• Policy Free – The proposed solution must be business model agnostic;

none of the affected parties (Operators, SPS Manufacturers, etc.) should
be forced into any particular business model.

• Interoperability – The Initial Provisioning must permit arbitrary interop-

erability between management systems and Service Platforms. Any com-

pliant Remote Manager should be able to manage any compliant Service

Platform, even in the absence of a prior business relationship. Adhering

to this requirement allows a particular Operator to manage a variety of
makes and models of Service Platform Servers using a single man-

agement system of the Operator’s choice. This rule also gives the con-

sumer the greatest choice when selecting an Operator.

• Flexible – The management process should be as open as possible, to

allow innovation and specialization while still achieving interopera-

bility.

26.1.2 Entities

• Provisioning Service – A service registered with the Framework that pro-

vides information about the initial provisioning to the Management

Agent.
OSGi Service-Platform Release 3 529-588

Procedure Initial Provisioning Version 1.0
• Provisioning Dictionary – A Di ct io nar y object that is filled with infor-
mation from the ZIP files that are loaded during initial setup.

• RSH Protocol – An OSGi specific secure protocol based on HTTP.

• Management Agent – A bundle that is responsible for managing a Service

Platform under control of a Remote Manager.

Figure 77 Initial Provisioning

26.2 Procedure

The following procedure should be executed by an OSGi Framework imple-

mentation that supports this Initial Provisioning specification.

When the Service Platform is first brought under management control, it

must be provided with an initial request URL in order to be provisioned.

Either the end user or the manufacturer may provide the initial request

URL. How the initial request URL is transferred to the Framework is not

specified, but a mechanism might, for example, be a command line parame-
ter when the framework is started.

When asked to start the Initial Provisioning, the Service Platform will send

a request to the management system. This request is encoded in a URL, for

example:

http://osgi.acme.com/remote-manager

This URL may use any protocol that is available on the Service Platform

Server. Many standard protocols exist, but it is also possible to use a propri-

etary protocol. For example, software could be present which can communi-

cate with a smart card and could handle, for example, this URL:

smart-card://com1:0/7F20/6F38

<<interface>>
Provisioning
Service

Management
Agent impl.

Provisioning
Service impl.

java.net.URL

RSH URL handler HTTP/HTTPS
URL handler

URL FILE handler

is in
stalled b

y

gets

uses protocol defined by setup information
530-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 Procedure
Before the request URL is executed, the Service Platform information is
appended to the URL. This information includes at least the Service Plat-

form Identifier, but may also contain proprietary information, as long as the

keys for this information do not conflict. Different URL schemes may use

different methods of appending parameters; these details are specified in the

mappings of this specification to concrete protocols.

The result of the request must be a ZIP file (The content type should be

app l ica t ion /z ip). It is the responsibility of the underlying protocol to guar-

antee the integrity and authenticity of this ZIP file.

This ZIP file is unpacked and its entries (except bundle and bund le- ur l

entries, described in Table 33) are placed in a Dic t io nar y object. This
Dict io na ry object is called the Provisioning Dictionary. It must be made avail-

able from the Provisioning Service in the service registry. The names of the

entries in the ZIP file must not start with a slash (’/’).

The ZIP file may contain only four types of dictionary entries: te xt, bina ry ,

bundl e , or bundle -ur l . The types are specified in the ZIP entry’s extra field,
and must be a MIME type as defined in [99] MIME Types. The text and

bundl e-u r l entries are translated into a Str ing object. All other entries must

be stored as a byte [] .

The Provisioning Service must install (but not start) all entries in the ZIP file

that are typed in the extra field with bu ndle or b undle -ur l.

Type MIME Type Description

text MIM E_S TR ING

text/pla i n;ch ars et=utf- 8

M ust be r epr esente d a s a Str ing ob jec t

bina ry MIM E_B Y TE_AR RAY

app l ica t ion /o cte t-str eam

M ust be r epr esente d a s a byte ar ra y

(byte[]).

bundl e MIM E_B U NDLE

app l ica t ion /x- o sgi- bundle

Entries must be installed using

B undle Co ntext . i nstal l Bundl e(Str in g,

In putStre am), with the I nputStr eam object
constructed from the contents of the ZIP

entry. The location must be the name of the

ZIP entry without leading slash. This entry

must not be stored in the Provisioning Dictio-

nary.

bundl e-u r l MIM E_B U NDLE_U R L

text/x-o sgi- bund le- ur l ;

cha rset=utf -8

The content of this entry is a string coded in

utf-8. Entries must be installed using

B undle Co ntext . i nstal l Bundl e(Str in g,

In putStre am), with the I nputStr eam object

created from the given URL. The location
must be the name of the ZIP entry without

leading slash. This entry must not be stored in

the Provisioning Dictionary.

Table 32 Content types of provisioning ZIP file
OSGi Service-Platform Release 3 531-588

Procedure Initial Provisioning Version 1.0
If an entry named PR OVI SIO NING_STAR T_B UNDLE is present in the Provi-
sioning Dictionary, then its content type must be text as defined in Table 32.

The content of this entry must match the bundle location of a previously

loaded bundle. This designated bundle must be given Al lPer missio n and

started.

If no P RO VISI ONI NG_START_BU NDLE entry is present in the Provisioning
Dictionary, the Provisioning Dictionary should contain a reference to

another ZIP file under the PRO VIS IO NING_REF ERENC E key. If both keys are

absent, no further action must take place.

If this PR O VI SIO NING_R EFER ENC E key is present and holds a Str in g object

that can be mapped to a valid URL, then a new ZIP file must be retrieved
from this URL. The PR OVI SIO NING_R EFER ENC E link may be repeated multi-

ple times in successively loaded ZIP files.

Referring to a new ZIP file with such a URL allows a manufacturer to place a

fixed reference inside the Service Platform Server (in a file or smart card)

that will provide some platform identifying information and then also
immediately load the information from the management system. The

PRO VIS IO NING_REF ERENC E link may be repeated multiple times in succes-

sively loaded ZIP files. The entry PRO VIS IO NING_UP DATE_C O UNT must be

an Integ er object that must be incremented on every iteration.

Information retrieved while loading subsequent

PRO VIS IO NING_REF ERENC E URLs may replace previous key/values in the
Provisioning Dictionary, but must not erase unrecognized key/values. For

example, if an assignment has assigned the key pr op r ie tary- x, with a value

’3’, then later assignments must not override this value, unless the later

loaded ZIP file contains an entry with that name. All these updates to the

Provisioning Dictionary must be stored persistently. At the same time, each

entry of type bun dle or b undle- ur l (see Table 32) must be installed and not
started.

Once the Management Agent has been started, the Initial Provisioning ser-

vice has become operational. In this state, the Initial Provisioning service

must react when the Provisioning Dictionary is updated with a new

PRO VIS IO NING_REF ERENC E property. If this key is set, it should start the
cycle again. For example, if the control of a Service Platform needs to be

transferred to another Remote Manager, the Management Agent should set

the PRO VIS IO NING_REF ERENC E to the location of this new Remote Man-

ager’s Initial Provisioning ZIP file.This process is called re-provisioning.

If errors occur during this process, the Initial Provisioning service should try
to notify the Service User of the problem.

The previous description is depicted in Figure 78 as a flow chart.
532-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 Special Configurations
Figure 78 Flow chart installation Management Agent b undle

The Management Agent may require configuration data that is specific to
the Service Platform instance. If this data is available outside the Manage-

ment Agent bundle, the merging of this data with the Management Agent

may take place in the Service Platform. Transferring the data separately will

make it possible to simplify the implementation on the server side, as it is

not necessary to create personalized Service Platform bundles. The

PR OVI SIO NING_AGENT_CO NF IG key is reserved for this purpose, but the
Management Agent may use another key or mechanisms if so desired.

The PRO VIS IO NING_SPI D key must contain the Service Platform Identifier.

26.3 Special Configurations

The next section shows some examples of specially configured types of Ser-

vice Platform Servers and how they are treated with the respect to the speci-

fications in this document.

26.3.1 Branded Service Platform Server

If a Service Platform Operator is selling Service Platform Servers branded

exclusively for use with their service, the provisioning will most likely be

performed prior to shipping the Service Platform Server to the User. Typi-

cally the Service Platform is configured with the Dic t ion ary entry
PR OVI SIO NING_R EFERENC E pointing at a location controlled by the Opera-

tor.

U = platform URL

provisioning

load ZIP file from U

U = P. REFERENCE

Start

Management

Agent

install all bundles

with content type

bundle (-url)

into Provisioning

Dictionary

PROVISIONING

yes

no PROVISIONING

yes

no

operational

REFERENCE set?START_BUNDLE set?

re-provisioning
OSGi Service-Platform Release 3 533-588

The Provisioning Service Initial Provisioning Version 1.0
Up-to-date bundles and additional configuration data must be loaded from
that location at activation time. The Service Platform is probably equipped

with necessary security entities, like certificates, to enable secure down-

loads from the Operator’s URL over open networks, if necessary.

26.3.2 Non-connected Service Platform

Circumstances might exist in which the Service Platform Server has no
WAN connectivity, or prefers not to depend on it for the purposes not cov-

ered by this specification.

The non-connected case can be implemented by specifying a f i le :// URL for

the initial ZIP file (PR O VISIO NING _R EFER ENCE). That f i le : // URL would

name a local file containing the response that would otherwise be received
from a remote server.

The value for the Management Agent PRO VIS IO NING_REF ERENC E found in

that file will be used as input to the load process. The

PRO VIS IO NING_REF ERENC E may point to a bundle file stored either locally

or remotely. No code changes are necessary for the non-connected scenario.
The f i l e :// URLs must be specified, and the appropriate files must be created

on the Service Platform.

26.4 The Provisioning Service

Provisioning information is conveyed between bundles using the Provision-

ing Service, as defined in the Pro vis io ningS ervic e interface. Any changes to

the Provisioning Dictionary must be propagated directly to the Provisioning

Service. The Provisioning Dictionary is retrieved from the
Pro vis io ningS ervic e object using the ge tInfo rma tion () method.

The Provisioning Service provides a number of methods to update the Provi-

sioning Dictionary.

• addI nfo rmatio n(Dict i ona ry) – Add all key/value pairs in the given
Dict io nar y object to the Provisioning Dictionary.

• addI nfo rmatio n(Zi pInputS trea m) – It is also possible to add a ZIP file to

the Provisioning Service immediately. This will unpack the ZIP file and

add the entries to the Provisioning Dictionary. This method must install

the bundles contained in the ZIP file as described in Procedure on page

530.
• set Inf or matio n(Dict io nar y) – Set a new Provisioning Dictionary. This

will remove all existing entries.

Each of these method will increment the PR OVI SIO NING_U PDATE_C O UNT

entry.
534-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 Management Agent Environment
26.5 Management Agent Environment

The Management Agent should be written with great care to minimize
dependencies on other packages and services, as all services in OSGi are

optional. Some Service Platforms may have other bundles pre-installed, so it

is possible that there may be exported packages and services available.

Mechanisms outside the current specification, however, must be used to dis-

cover these packages and services before the Management Agent is

installed.

The Provisioning Service must ensure that the Management Agent is run-

ning with Al lPer miss io n . The Management Agent should check to see if the

Permission Admin service is available, and establish the initial permissions

as soon as possible to insure the security of the device when later bundles

are installed. As the Pe rmissi onAd mi n interfaces may not be present (it is an
optional service), the Management Agent should export the

Per missio nAdmin interfaces to ensure they can be resolved.

Once started, the Management Agent may retrieve its configuration data

from the Provisioning Service by getting the byte[] object that corresponds

to the P RO VISI O NI NG_AGENT_C O NFIG key in the Provisioning Dictionary.
The structure of the configuration data is implementation specific.

The scope of this specification is to provide a mechanism to transmit the

raw configuration data to the Management Agent. The Management Agent

bundle may alternatively be packaged with its configuration data in the

bundle, so it may not be necessary for the Management Agent bundle to use

the Provisioning Service at all.

Most likely, the Management Agent bundle will install other bundles to

provision the Service Platform. Installing other bundles might even involve

downloading a more full featured Management Agent to replace the initial

Management Agent.

26.6 Mapping To File Scheme

The f i le : scheme is the simplest and most completely supported scheme
which can be used by the Initial Provisioning specification. It can be used to

store the configuration data and Management Agent bundle on the Service

Platform Server, and avoids any outside communication.

If the initial request URL has a f i l e scheme, no parameters should be

appended, because the f i le : scheme does not accept parameters.

26.6.1 Example With File Scheme

The manufacturer should prepare a ZIP file containing only one entry

named P RO VISI ONI NG_START_BU NDLE that contains a location string of

an entry of type appl icat i on/x- osg i-b undle or appl ica t ion/x- os gi- bundle -

UR L . For example, the following ZIP file demonstrates this:

provisioning.start.bundle text agent
agent bundle C0AF0E9B2AB..

The bundle may also be specified with a URL:
OSGi Service-Platform Release 3 535-588

Mapping To HTTP(S) Scheme Initial Provisioning Version 1.0
provisioning.start.bundle text http://acme.com/a.jar
agent bundle-url http://acme.com/a.jar

Upon startup, the framework is provided with the URL with the f i le :

scheme that points to this ZIP file:

file:/opt/osgi/ma.zip

26.7 Mapping To HTTP(S) Scheme

This section defines how HTTP and HTTPS URLs must be used with the Ini-
tial Provisioning specification.

• HTTP – May be used when the data exchange takes place over networks

that are secured by other means, such as a Virtual Private Network (

VPN) or a physically isolated network. Otherwise, HTTP is not a valid

scheme because no authentication takes place.
• HTTPS – May be used if the Service Platform is equipped with appro-

priate certificates.

HTTP and HTTPS share the following qualities:

• Both are well known and widely used
• Numerous implementations of the protocols exist

• Caching of the Management Agent will be desired in many implementa-

tions where limited bandwidth is an issue. Both HTTP and HTTPS

already contain an accepted protocol for caching.

Both HTTP and HTTPS must be used with the GET method. The response is
a ZIP file, implying that the response header Co ntent- Typ e header must

contain appl icat i on/zi p.

26.7.1 HTTPS Certificates

In order to use HTTPS, certificates must be in place. These certificates, that
are used to establish trust towards the Operator, may be made available to

the Service Platform using the Provisioning Service. The root certificate

should be assigned to the Provisioning Dictionary before the HTTPS pro-

vider is used. Additionally, the Service Platform should be equipped with a

Service Platform certificate that allows the Service Platform to properly

authenticate itself towards the Operator. This specification does not state
how this certificate gets installed into the Service Platform.

The root certificate is stored in the Provisioning Dictionary under the key:

PRO VIS IO NING_RO O TX509

The Root X.509 Certificate holds certificates used to represent a handle to a

common base for establishing trust. The certificates are typically used when

authenticating a Remote Manager to the Service Platform. In this case, a

Root X.509 certificate must be part of a certificate chain for the Operator’s

certificate. The format of the certificate is defined in Certificate Encoding on

page 537.
536-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 Mapping To HTTP(S) Scheme
26.7.2 Certificate Encoding

Root certificates are X.509 certificates. Each individual certificate is stored as

a byte [] object. This byte[] object is encoded in the default Java manner, as
follows:

• The original, binary certificate data is DER encoded

• The DER encoded data is encoded into base64 to make it text.

• The base64 encoded data is prefixed with

 -- -- -B EGIN CER TIF I CATE-- -- -
and suffixed with:

 -- -- -END CER TIF I CATE-- -- -

• If a record contains more than one certificate, they are simply appended

one after the other, each with a delimiting prefix and suffix.

The decoding of such a certificate may be done with the
java .sec ur ity .c er t. Ce rt i f ica teFa cto ry class:

InputStream bis = new ByteArrayInputStream(x509); // byte[]
CertificateFactory cf =

CertificateFactory.getInstance("X.509");
Collection c = cf.generateCertificates(bis);
Iterator i = c.iterator();
while (i.hasNext()) {

Certificate cert = (Certificate)i.next();
System.out.println(cert);

}

26.7.3 URL Encoding

The URL must contain the Service Platform Identity, and may contain more

parameters. These parameters are encoded in the URL according to the

HTTP(S) URL scheme. A base URL may be set by an end user but the Provi-

sioning Service must add the Service Platform Identifier.

If the request URL already contains HTTP parameters (if there is a ’?’ in the

request), the servic e_pla tfo rm_id is appended to this URL as an additional

parameter. If, on the other hand, the request URL does not contain any

HTTP parameters, the ser vice _p latfo r m_id will be appended to the URL

after a ’?’, becoming the first HTTP parameter. The following two examples

show these two variants:

http://server.operator.com/service-x? «

foo=bar&service_platform_id=VIN:123456789

http://server.operator.com/service-x? «

service_platform_id=VIN:123456789

Proper URL encoding must be applied when the URL contains characters

that are not allowed. See [98] RFC 2396 - Uniform Resource Identifier (URI).
OSGi Service-Platform Release 3 537-588

Mapping To RSH Scheme Initial Provisioning Version 1.0
26.8 Mapping To RSH Scheme

The RSH protocol is an OSGi-specific protocol, and is included in this speci-
fication because it is optimized for Initial Provisioning. It requires a shared

secret between the management system and the Service Platform that is

small enough to be entered by the Service User.

RSH bases authentication and encryption on Message Authentication Codes

(MACs) that have been derived from a secret that is shared between the Ser-
vice Platform and the Operator prior to the start of the protocol execution.

The protocol is based on an ordinary HTTP GET request/response, in which

the request must be signed and the response must be encrypted and authenti-

cated. Both the signature and encryption key are derived from the shared secret

using Hashed Message Access Codes (HMAC) functions.

As additional input to the HMAC calculations, one client-generated nonce

and one server-generated nonce are used to prevent replay attacks. The non-

ces are fairly large random numbers that must be generated in relation to

each invocation of the protocol, in order to guarantee freshness. These non-

ces are called cl i entfg (client-generated freshness guarantee) and ser verf g
(server-generated freshness guarantee).

In order to separate the HMAC calculations for authentication and encryp-

tion, each is based on a different constant value. These constants are called

the authentication constant and the encryption constant.

From an abstract perspective, the protocol may be described as follows.

• δ – Shared secret, 160 bits or more

• s – Server nonce, called se rverc fg , 128 bits

• c – Client nonce, called cl ie ntfg , 128 bits

• K
a

 – Authentication key, 160 bits

• K
e
 – Encryption key, 192 bits

• r – Response data

• e – Encrypted data

• E – Encryption constant, a byte[] of 05, 36, 54, 70, 00 (hex)

• A – Authentication constant, a byte[] of 00, 4f, 53, 47, 49 (hex)
• M – Message material, used for K

e
 calculation.

• m – The calculated message authentication code.

• 3DES – Triple DES, encryption function, see [100] 3DES. The bytes of

the key must be set to odd parity. CBC mode must be used where the

padding method is defined in [101] RFC 1423 Part III: Algorithms,

Modes, and Identifiers. In [103] Java Cryptography API (part of Java 1.4)

this is addressed as PKC S5Pa ddin g.

• IV – Initialization vector for 3DES.

• SHA1 – Secure Hash Algorithm to generate the Hashed Message

Autentication Code, see [104] SHA-1. The function takes a single

parameter, the block to be worked upon.

• HMAC – The fuction that calculates a message authentication code,
which must HMAC-SHA1. HMAC-SHA1 is defined in [93] HMAC:

Keyed-Hashing for Message Authentication. The HMAC function takes a

key and a block to be worked upon as arguments. Note that the lower

16 bytes of the result must be used.
538-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 Mapping To RSH Scheme
• {} – Concatenates its arguments
• [] – Indicates access to a sub-part of a variable, in bytes. Index starts at

one, not zero.

In each step, the emphasized server or client indicates the context of the

calculation. If both are used at the same time, each variable will have

server or client as a subscript.

1. The client generates a random nonce, stores it and denotes it cl ie ntfg

2. The client sends the request with the cl ie ntfg to the server.

3. The server generates a nonce and denotes it ser ve rfg .

4. The server calculates an authentication key based on the SHA1 function,

the shared secret, the received c l ien tfg, the ser ve rfg and the authentica-

tion constant.

5. The server calculates an encryption key using an SHA-1 function, the

shared secret, the received cl ientfg , the se rver fg and the encryption con-

stant. It must first calculate the key material M.

6. The key for DES consists K
e

 and IV.

The server encrypts the response data using the encryption key derived

in 5. The encryption algorithm that must be used to encrypt/decrypt the

response data is 3DES. 24 bytes (192 bits) from M are used to generate K
e

,

but the low order bit of each byte must be used as an odd parity bit. This

means that before using K
e
, each byte must be processed to set the low

order bit so that the byte has odd parity.

The encryption/decryption key used is specified by the following:

7. The server calculates a MAC m using the HMAC function, the encrypted
response data and the authentication key derived in 4.

8. The server sends a response to the client containing the serve rfg , the MAC

m and the encrypted response data

c nonce=

cserver cclient⇐

s nonce=

Ka SHA1 δ c s A, , ,{ }()←

M 1 20,[] SHA1 δ c s E, , ,{ }()←
M 21 40,[] SHA1 δ M 1 20,[] c s E, , , ,{ }()←

Ke M 1 24,[]←

IV M 25 32,[]←

e 3DES Ke IV r, ,()←

m HMAC Ka e,()←

sclient sserver⇐

mclient mserver⇐

eclient eserver⇐
OSGi Service-Platform Release 3 539-588

Mapping To RSH Scheme Initial Provisioning Version 1.0
The client calculates the encryption key K
e

 the same way the server did in

step 5 and 6. and uses this to decrypt the encrypted response data. The

server fg value received in the response is used in the calculation.

9. The client performs the calculation of the MAC m’ in the same way the

server did, and checks that the results match the received MAC m. If they

do not match, further processing is discarded. The ser verf g value
received in the response is used in the calculation.

Figure 79 Action Diagram for RSH

26.8.1 Shared Secret

The shared secret should be a key of length 160 bits (20 bytes) or more. The

length is selected to match the output of the selected hash algorithm [94]

NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995..

In some scenarios, the shared secret is generated by the Operator and com-

municated to the User, who inserts the secret into the Service Platform
through some unspecified means.

The opposite is also possible: the shared secret can be stored within the Ser-

vice Platform, extracted from it, and then communicated to the Operator. In

this scenario, the source of the shared secret could be either the Service Plat-

form or the Operator.

In order for the server to calculate the authentication and encryption keys,

it requires the proper shared secret. The server must have access to many dif-

ferent shared secrets, one for each Service Platform it is to support. To be

able to resolve this issue, the server must typically also have access to the

Service Platform Identifier of the Service Platform. The normal way for the
server to know the Service Platform Identifier is through the application

protocol, as this value is part of the URL encoded parameters of the HTTP,

HTTPS, or RSH mapping of the Initial Provisioning.

In order to be able to switch Operators, a new shared secret must be used.

The new secret may be generated by the new Operator and then inserted
into the Service Platform device using a mechanism not covered by this

specification. Or the device itself may generate the new secret and convey it

r 3DES Ke IV e, ,()←

Ka SHA1 δ c s A, , ,{ }()←

m′ HMAC Ka e,()←

m′ m=

Service Platform Remote Manager

request(spid,clientfg)

response(spid,mac,serverfg,encrypted-data) Shared Secret

Shared Secret
540-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 Mapping To RSH Scheme
to the owner of the device using a display device or read-out, which is then
communicated to the new operator out-of-band. Additionally, the genera-

tion of the new secret may be triggered by some external event, like holding

down a button for a specified amount of time.

26.8.2 Request Coding

RSH is mapped to HTTP or HTTPS. Thus, the request parameters are URL
encoded as discussed in 26.7.3 URL Encoding. RSH requires an additional

parameter in the URL: the cl ientfg parameter. This parameter is a nonce that

is used to counter replay attacks. See also RSH Transport on page 542.

26.8.3 Response Coding

The server’s response to the client is composed of three parts:

• A header containing the protocol version and the ser ve rfg

• The MAC

• The encrypted response

These three items are packaged into a binary container according to Table

33.

The response content type is an RSH-specific encrypted ZIP file, implying
that the response header C on tent-Type must be appl ica ti on/x- rsh for the

HTTP request. When the content file is decrypted, the content must be a ZIP

file.

26.8.4 RSH URL

The RSH URL must be used internally within the Service Platform to indi-
cate the usage of RSH for initial provisioning. The RSH URL format is identi-

cal to the HTTP URL format, except that the scheme is rsh: instead of http: .

For example (« means line continues on next line):

rsh://server.operator.com/service-x

26.8.5 Extensions to the Provisioning Service Dictionary

RSH specifies one additional entry for the Provisioning Dictionary:

PR OVI SIO NING_R SH _S ECR ET

Bytes Description Value hex

4 Number of bytes in header 2E

2 Version 01 00

16 ser ve rfg ...

4 Number of bytes in MAC 10

16 Message Authentication Code MAC

4 Number of bytes of encrypted ZIP file N

N Encrypted ZIP file ...

Table 33 RSH Header description
OSGi Service-Platform Release 3 541-588

Security Initial Provisioning Version 1.0
The value of this entry is a b yte [] containing the shared secret used by the
RSH protocol.

26.8.6 RSH Transport

RSH is mapped to HTTP or HTTPS and follows the same URL encoding rules,

except that the cl ientfg is additionally appended to the URL. The key in the

URL must be cl i entfg and the value must be encoded in base 64 format:

The c l ien tf g parameter is transported as an HTTP parameter that is

appended after the servic e_pla tfo rm_id parameter. The second example

above would then be:

rsh://server.operator.com/service-x

Which, when mapped to HTTP, must become:

http://server.operator.com/service-x? «

service_platform_id=VIN:123456789& «

clientfg=AHPmWcw%2FsiWYC37xZNdKvQ%3D%3D

26.9 Security

The security model for the Service Platform is based on the integrity of the

Management Agent deployment. If any of the mechanisms used during the

deployment of management agents are weak, or can be compromised, the

whole security model becomes weak.

From a security perspective, one attractive means of information exchange
would be a smart card. This approach enables all relevant information to be

stored in a single place. The Operator could then provide the information to

the Service Platform by inserting the smart card into the Service Platform.

26.9.1 Concerns

The major security concerns related to the deployment of the Management
Agent are:

• The Service Platform is controlled by the intended Operator

• The Operator controls the intended Service Platform(s)

• The integrity and confidentiality of the information exchange that takes

place during these processes must be considered

In order to address these concerns, an implementation of the OSGi Remote

Management Architecture must assure that:

• The Operator authenticates itself to the Service Platform

• The Service Platform authenticates itself to the Operator
• The integrity and confidentiality of the Management Agent, certificates,

and configuration data are fully protected if they are transported over

public transports.

Each mapping of the Initial Provisioning specification to a concrete imple-

mentation must describe how these goals are met.
542-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 org.osgi.service.provisioning
26.9.2 Service Platform Long-Term Security

Secrets for long-term use may be exchanged during the Initial Provisioning

procedures. This way, one or more secrets may be shared securely, assuming
that the Provisioning Dictionary assignments used are implemented with

the proper security characteristics.

26.9.3 Permissions

The provisioning information may contain sensitive information. Also, the

ability to modify provisioning information can have drastic consequences.
Thus, only trusted bundles should be allowed to register, or get the Provi-

sioning Service. This restriction can be enforced using

Ser viceP ermiss ion [G ET, Pr ovis i onin gSer vice] .

No Per mi ssio n classes guard reading or modification of the Provisioning

Dictionary, so care must be taken not to leak the Dic t ion ary object received
from the Provisioning Service to bundles that are not trusted.

Whether message-based or connection-based, the communications used for

Initial Provisioning must support mutual authentication and message

integrity checking, at a minimum.

By using both server and client authentication in HTTPS, the problem of

establishing identity is solved. In addition, HTTPS will encrypt the transmit-

ted data. HTTPS requires a Public Key Infrastructure implementation in

order to retrieve the required certificates.

When RSH is used, it is vital that the shared secret is shared only between
the Operator and the Service Platform, and no one else.

26.10 org.osgi.service.provisioning

The OSGi Provisioning Service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-

Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.provisioning; specification-
version=1.0
Prov isi oningService

26.10.1 public interface ProvisioningService

Service for managing the initial provisioning information.

Initial provisioning of an OSGi device is a multi step process that culmi-

nates with the installation and execution of the initial management agent.

At each step of the process, information is collected for the next step. Multi-

ple bundles may be involved and this service provides a means for these

bundles to exchange information. It also provides a means for the initial

Management Bundle to get its initial configuration information.

The provisioning information is collected in a Dictionary object, called the

Provisioning Dictionary. Any bundle that can access the service can get a

reference to this object and read and update provisioning information. The

key of the dictionary is a String object and the value is a String or byte[]
OSGi Service-Platform Release 3 543-588

org.osgi.service.provisioning Initial Provisioning Version 1.0
object. The single exception is the PROVISIONING_UPDATE_COUNT
value which is an Integer. The provisioning prefix is reserved for keys

defined by OSGi, other key names may be used for implementation depen-

dent provisioning systems.

Any changes to the provisioning information will be reflected immediately

in all the dictionary objects obtained from the Provisioning Service.

Because of the specific application of the Provisioning Service, there should

be only one Provisioning Service registered. This restriction will not be

enforced by the Framework. Gateway operators or manufactures should

ensure that a Provisioning Service bundle is not installed on a device that

already has a bundle providing the Provisioning Service.

The provisioning information has the potential to contain sensitive infor-

mation. Also, the ability to modify provisioning information can have dras-

tic consequences. Thus, only trusted bundles should be allowed to register

and get the Provisioning Service. The ServicePermission is used to limit

the bundles that can gain access to the Provisioning Service. There is no
check of Permission objects to read or modify the provisioning informa-

tion, so care must be taken not to leak the Provisioning Dictionary received

from getInformation method.

MIME_BUNDLE

26.10.1.1 public static final String MIME_BUNDLE = “application/x-osgi-bundle”

MIME type to be stored in the extra field of a ZipEntry object for an install-

able bundle file. Zip entries of this type will be installed in the framework,

but not started. The entry will also not be put into the information dictio-

nary.

MIME_BUNDLE_URL

26.10.1.2 public static final String MIME_BUNDLE_URL = “text/x-osgi-bundle-url”

MIME type to be stored in the extra field of a ZipEntry for a String that repre-

sents a URL for a bundle. Zip entries of this type will be used to install (but

not start) a bundle from the URL. The entry will not be put into the informa-

tion dictionary.

MIME_BYTE_ARRAY

26.10.1.3 public static final String MIME_BYTE_ARRAY = “application/octet-
stream”

MIME type to be stored in the extra field of a ZipEntry object for byte[]
data.

MIME_STRING

26.10.1.4 public static final String MIME_STRING = “text/plain;charset=utf-8”

MIME type to be stored in the extra field of a ZipEntry object for String data.

PROVISIONING_AGENT_CONFIG

26.10.1.5 public static final String PROVISIONING_AGENT_CONFIG =
“provisioning.agent.config”

The key to the provisioning information that contains the initial configura-
tion information of the initial Management Agent. The value will be of type

byte[].

PROVISIONING_REFERENCE

26.10.1.6 public static final String PROVISIONING_REFERENCE =
544-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 org.osgi.service.provisioning
“provisioning.reference”

The key to the provisioning information that contains the location of the

provision data provider. The value must be of type String.

PROVISIONING_ROOTX509

26.10.1.7 public static final String PROVISIONING_ROOTX509 =
“provisioning.rootx509”

The key to the provisioning information that contains the root X509 certifi-

cate used to esatblish trust with operator when using HTTPS.

PROVISIONING_RSH_SECRET

26.10.1.8 public static final String PROVISIONING_RSH_SECRET =
“provisioning.rsh.secret”

The key to the provisioning information that contains the shared secret

used in conjunction with the RSH protocol.

PROVISIONING_SPID

26.10.1.9 public static final String PROVISIONING_SPID = “provisioning.spid”

The key to the provisioning information that uniquely identifies the Service

Platform. The value must be of type String.

PROVISIONING_START_BUNDLE

26.10.1.10 public static final String PROVISIONING_START_BUNDLE =
“provisioning.start.bundle”

The key to the provisioning information that contains the location of the

bundle to start with AllPermission. The bundle must have be previously

installed for this entry to have any effect.

PROVISIONING_UPDATE_COUNT

26.10.1.11 public static final String PROVISIONING_UPDATE_COUNT =
“provisioning.update.count”

The key to the provisioning information that contains the update count of
the info data. Each set of changes to the provisioning information must end

with this value being incremented. The value must be of type Integer. This

key/value pair is also reflected in the properties of the ProvisioningService

in the service registry.

addInfo rmation(Dicti onary)

26.10.1.12 public void addInformation(Dictionary info)

info the set of Provisioning Information key/value pairs to add to the Provision-

ing Information dictionary. Any keys are values that are of an invalid type

will be silently ignored.

� Adds the key/value pairs contained in info to the Provisioning Information

dictionary. This method causes the PROVISIONING_UPDATE_COUNT to be

incremented.

addInfo rmation(ZipInputStream)

26.10.1.13 public void addInformation(ZipInputStream zis) throws IOException

zis the ZipInputStream that will be used to add key/value pairs to the Provision-

ing Information dictionary and install and start bundles. If a ZipEntry does

not have an Extra field that corresponds to one of the four defined MIME

types (MIME_STRING, MIME_BYTE_ARRAY, MIME_BUNDLE, and

MIME_BUNDLE_URL) in will be silently ignored.
OSGi Service-Platform Release 3 545-588

References Initial Provisioning Version 1.0
� Processes the ZipInputStream and extracts information to add to the Provi-
sioning Information dictionary, as well as, install/update and start bundles.

This method causes the PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException – if an error occurs while processing the ZipInputStream. No

additions will be made to the Provisioning Information dictionary and no

bundles must be started or installed.
getInfo rmation()

26.10.1.14 public Dictionary getInformation()

� Returns a reference to the Provisioning Dictionary. Any change operations

(put and remove) to the dictionary will cause an

UnsupportedOperationException to be thrown. Changes must be done
using the setInformation and addInformation methods of this service.

setInfo rmation(Dicti onary)

26.10.1.15 public void setInformation(Dictionary info)

info the new set of Provisioning Information key/value pairs. Any keys are values
that are of an invalid type will be silently ignored.

� Replaces the Provisioning Information dictionary with the key/value pairs

contained in info. Any key/value pairs not in info will be removed from

the Provisioning Information dictionary. This method causes the

PROVISIONING_UPDATE_COUNT to be incremented.

26.11 References

[93] HMAC: Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt Krawczyk ,et. al. 1997.

[94] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[95] Hypertext Transfer Protocol - HTTP/1.1

http://www.ietf.org/rfc/rfc2616.txt Fielding, R., et. al.

[96] Rescorla, E., HTTP over TLS, IETF RFC 2818, May 2000

http://www.ietf.org/rfc/rfc2818.txt.

[97] ZIP Archive format

ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip

[98] RFC 2396 - Uniform Resource Identifier (URI)

http://www.ietf.org/rfc/rfc2396.txt

[99] MIME Types

http://www.ietf.org/rfc/rfc2046.txt and http://www.iana.org/assignments/

media-types

[100] 3DES

W/ Tuchman, "Hellman Presents No Shortcut Solution to DES," IEEE

Spectrum, v. 16, n. 7 July 1979, pp40-41.

[101] RFC 1423 Part III: Algorithms, Modes, and Identifiers

http://www.ietf.org/rfc/rfc1423.txt

[102] PKCS 5

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2

[103] Java Cryptography API (part of Java 1.4)

http://java.sun.com/products/jce/index-14.html
546-588 OSGi Service-Platform Release 3

Initial Provisioning Version 1.0 References
[104] SHA-1

U.S. Government, Proposed Federal Information Processing Standard for

Secure Hash Standard, January 1992

[105] Transport Layer Security

http://www.ietf.org/rfc/rfc2246.txt, January 1999, The TLS Protocol Version

1.0, T. Dierks & C. Allen.
OSGi Service-Platform Release 3 547-588

References Initial Provisioning Version 1.0
548-588 OSGi Service-Platform Release 3

Method Overview
27 Method Overview

This chapter contains a list of all the packages, classes, and methods of spec-

ifications that are part of the OSGi Service Platform, Release 3.

27.0.1 Method Index org.osgi.framework
final class AdminPermission extends BasicPermission
Ad minPermission ()
Ad minPermission (S t rin g,S t rin g)
boolean equ als (O b ject)

b oolean implies (Permission)
Perm iss ionCollect ion

newPermiss ion Collect ion ()

interface Bundle
stat ic f in al in t ACT IVE
stat ic f in al in t INS TAL LED
stat ic f in al in t RES OL VED
stat ic f in al in t S TARTIN G
stat ic f in al in t S TO PPING
stat ic f in al in t UN INS TALL ED
long getBu n dleId ()
Dict ion ary getHeaders()
S tr ing getL ocat ion ()
S erv iceRef eren c e[] getR egistered S erv ic es()

URL getResource(St r ing)
S erv iceRef erenc e[] getS erv ic es In Use()
int getS tate()
b oolean hasPermiss ion (O b ject)
void s tar t() throws BundleExcept ion
void s top() th rows Bund leExc ep tion
v oid u n ins tall() th rows Bu nd leEx cep t ion
void update() th rows Bund leExc ep tion
void update(InputS t ream) th rows

Bu nd leExcep t ion

interface BundleActivator
void s tar t(BundleContext) throws Except ion v oid s top(BundleContext) th rows Except ion

interface BundleContext
v oid a dd Bu n dleL isten er(Bun d leLis ten er)
v oid

ad dF rameworkL isten er(FrameworkListen e
r)

v oid add S erv ic eListen er(S erv iceL isten er,
S tr ing) th rows In v alid S yn taxExc ept ion

v oid add S erv ic eListen er(S erv iceL isten er)
Filter createFilter(S t rin g) th rows

Inv a lid S y ntax Exc ep tion
Bu nd le getBu nd le()
Bu nd le getBu nd le(long)
Bu nd le[] getBun d les()
File getDataFile(S t rin g)
S tr ing getProp erty (S t rin g)
Ob jec t getS ervic e(S ervic eRef eren ce)
S erv iceRef eren c e

getServ ic eRef eren ce(S t rin g)

S erv iceRef erenc e[]
getServ iceRef eren ces (St r ing,S t rin g)
throws In v alidS y n taxExcep t ion

Bu nd le in stallBu n dle(S tr ing) th rows
Bu nd leExcep t ion

Bu nd le in stallBu n dle(S tr ing,In p utS t ream)
throws Bu n dleExc ept ion

S erv iceRegis t rat ion regis terS erv ic e(S t rin g[] ,
Ob jec t,D ict ion ary)

S erv iceRegis t rat ion regis terS erv ic e(S t rin g,
Ob jec t,D ict ion ary)

v oid remov eBu nd leLis tener (B un d leListen er)
v oid

remov eF rameworkL is ten er(FrameworkL is
tener)

v oid remov eS erv iceL isten er(S erv iceL isten er)
b oolean un getServ ice(S erv iceRef erenc e)

class BundleEvent extends EventObject
stat ic f in al in t INS TAL LED
stat ic f in al in t S TARTED
stat ic f in al in t S TO PPED
stat ic f in al in t UN INS TALL ED

stat ic f in al in t UPDATED
Bu nd leEven t (in t ,Bu nd le)
Bu nd le getBu nd le()
int getTy p e()

class BundleException extends Exception
Bu nd leExcep t ion(S t rin g,Throwab le)
Bu nd leExcep t ion(S t rin g)

Th rowab le getNes ted Excep t ion ()

interface BundleListener extends EventListener
v oid b u nd leCh an ged (B un dleEv en t)

interface Configurable
Ob jec t getConf igu rat ionObject ()

interface Constants
stat ic f in al S t rin g BUN DLE_ ACTIVATOR
stat ic f in al S t rin g BUN DLE _ CAT EG O RY
stat ic f in al S t rin g BUN DLE _ CL AS SPA TH
stat ic f in al S t rin g

BUN DLE_ CO NTACTADDRES S
stat ic f in al S t rin g BUN DLE_ CO PYRIG HT
stat ic f in al S t rin g BUN DLE _ DES CRIPT IO N
stat ic f in al S t rin g BUN DLE _ DO CUR L
stat ic f in al S t rin g BUN DLE_ NAM E
stat ic f in al S t rin g BUN DLE_ NATIVECODE

stat ic f in al S t r in g
BUN DLE_ NATIVECO DE_ LAN GUAG E

stat ic f in al S t r in g
BUN DLE_ NATIVECO DE_ OS N AME

stat ic f in al S t r in g
BUN DLE_ NATIVECO DE_ OS VERS ION

stat ic f in al S t r in g
BUN DLE_NATIVECODE_PROCESSO R
OSGi Service-Platform Release 3 549-588

 Method Overview
stat ic fin al S t rin g
BUNDL E_R EQ UIREDEXECUTION EN VIRO N
MENT

stat ic fin al S t rin g
BUNDL E_U PDATELO CATIO N

stat ic fin al S t rin g BUN DLE_ VENDO R
stat ic fin al S t rin g BUN DLE_ VERSIO N
stat ic fin al S t rin g

DYNAM ICIM PO RT_ PACKAGE
stat ic fin al S t rin g EXPO RT_ PACKAG E
stat ic fin al S t rin g EXPO RT_ S ER VICE
stat ic fin al S t rin g

FRAM EWORK_ EXECUTIONENVIRONMENT
stat ic fin al S t rin g F RAMEWORK_ LANG UAG E
stat ic fin al S t rin g F RAMEWORK_ OS _ NAM E
stat ic f inal S t ring FRAMEWORK_OS _VERS ION

stat ic fin al S t rin g F RAMEWORK_ PRO CESS O R
stat ic f in al S t rin g F RAME W ORK _ VEN DO R
stat ic f in al S t rin g F RAME W ORK _ VER SIO N
stat ic f in al S t rin g IMPOR T_ PACKAG E
stat ic fin al S t rin g IM POR T_ SERVICE
stat ic fin al S t rin g O BJECTCL ASS
stat ic fin al S t rin g

PACKA GE_SPECIFICATION _VER SION
stat ic f in al S t rin g S ER VICE _ DES C RIPTIO N
stat ic f in al S t rin g S ER VICE _ ID
stat ic f in al S t rin g S ER VICE _ PID
stat ic fin al S t rin g S ER VICE_ RANKING
stat ic f in al S t rin g S ER VICE _ VEN DO R
stat ic fin al S t rin g

SYS TEM _B UNDL E_ L OCATION

interface Filter
boolean eq u als(O bjec t)
in t hashCode()
boolean m atch (Serv ic eRef eren ce)

boolean m atch (Dict ion ary)
St r ing toSt ring()

class FrameworkEvent extends EventObject
stat ic fin al in t ER ROR
stat ic fin al in t PACKAGES _ REFRES HED
stat ic fin al in t S TARTED
stat ic fin al in t S TARTLEVEL_ CHA NG ED
FrameworkEv en t(in t,O b ject)

FrameworkEvent(in t,Bund le,Throwab le)
Bun d le getBun d le()
Throwab le getThrowable()
in t getTy p e()

interface FrameworkListener extends EventListener
void f rameworkEv ent (FrameworkEv en t)

class InvalidSyntaxException extends Exception
Inv alid S yn taxExc ept ion (S t r in g,S t rin g) St r ing getF ilter ()

final class PackagePermission extends BasicPermission
stat ic fin al S t rin g EXPO RT
stat ic fin al S t rin g IM PORT
Pac kagePerm iss ion(S t rin g,St r in g)
boolean eq u als(O bjec t)
St r ing getAc tion s ()

in t hashCode()
boolean im plies (Permission)
Permission Collec t ion

newPerm iss ionCollect ion ()

class ServiceEvent extends EventObject
stat ic fin al in t MO DIF IED
stat ic fin al in t REGIS TERED
stat ic fin al in t UNR EG IS TER ING

Serv iceEv ent (int ,S erv ic eReferenc e)
Serv iceRef eren ce getS ervic eRef eren ce()
in t getTy p e()

interface ServiceFactory
Ob ject getS erv ic e(Bu n dle,

Serv ic eRegis trat ion)
void u n getS erv ic e(B un d le,

Serv iceRegis trat ion ,Ob ject)

interface ServiceListener extends EventListener
void serv iceChanged (Serv iceEv ent)

final class ServicePermission extends BasicPermission
stat ic f in al S t rin g G ET
stat ic f in al S t rin g REGIS TE R
Serv icePermiss ion(S t rin g,St r ing)
boolean eq u als(O bjec t)
St r ing getAc tion s ()

in t hashCode()
boolean im plies (Permission)
Permission Collec t ion

newPerm iss ionCollect ion ()

interface ServiceReference
Bun d le getBun d le()
Ob ject getProper ty (S t rin g)

St r ing[] getProper tyKeys ()
Bun d le[] getU sin gBu nd les()

interface ServiceRegistration
Serv ic eRef eren ce getR eferenc e()
void setProp ert ies (D ic t ionary)

void u n register ()

interface SynchronousBundleListener extends BundleListener

27.0.2 org.osgi.service.cm
interface Configuration
void d elete() th rows IO Excep t ion
boolean eq u als(O bjec t)
St r in g getBu nd leLoc at ion ()
St r ing getFactoryPid()
St r ing getPid ()

Dict ion ary getProper t ies()
in t hashCode()
void setBund leLoc at ion(S t ring)
void u p date(Dic t ionary) th rows IO Exc ep tion
void u p date() throws IO Excep t ion

interface ConfigurationAdmin
stat ic fin al S t rin g

SERVICE_ BUN DLEL OCATION
stat ic f in al S t rin g S ER VICE _ FAC TOR YPID
550-588 OSGi Service-Platform Release 3

Method Overview
Con figu ra t ion
createFactoryConf igu rat ion (S t rin g)
throws IO Ex cep t ion

Con figu ra t ion
createFactoryConf igu rat ion (S t rin g,
S tr ing) th rows IO Excep t ion

Con figu ra t ion getConf igurat ion(S t rin g,
S tr ing) th rows IO Except ion

Con figu ra t ion getConf igurat ion(S t rin g)
throws IO Ex cep t ion

Con figu ra t ion[] l is tCon figu rat ion s(S t rin g)
throws IO Ex cep t ion,
Inv a lid S y ntax Exc ep tion

class ConfigurationException extends Exception
Con figu ra t ion Except ion(S t ring,S tr ing)
S tr ing getProp erty ()

S tr ing getReason ()

interface ConfigurationPlugin
stat ic f in al S t rin g CM_ TARG ET v oid m odif y Con figu ra t ion(S erv iceRef erenc e,

Dict ionary)

interface ManagedService
v oid u p dated(Dic tion ary) th rows

Con figu ra t ion Excep t ion

interface ManagedServiceFactory
v oid d elet ed (S t rin g)
S tr ing getN ame()

void updated(S t ring,Dict ion ary) th rows
Con figu ra t ionExcep t ion

27.0.3 org.osgi.service.device
interface Constants
stat ic f in al S t rin g DEVICE_ CATEG O RY
stat ic f in al S t rin g DEVICE_ DES CRIPT IO N

stat ic f in al S t r in g DEVICE_ S ER IAL
stat ic f in al S t r in g DR IVER _ID

interface Device
stat ic f in al in t M ATCH_ NO NE v oid n oDr iv erF oun d ()

interface Driver
S tr ing a t tach (Serv ic eRef eren ce) th rows

Ex cep t ion
int m atch (Serv ic eRef eren ce) th rows

Ex cep t ion

interface DriverLocator
S tr ing[] f in dDr iv ers (Dic t ionary) Inp u tSt ream loadDr iv er(S tr ing) th rows

IOExc ept ion

interface DriverSelector
stat ic f in al in t S EL ECT_ NO NE int select (S erv iceR eferenc e,Match [])

interface Match
S erv iceRef eren c e getDriv er() int getM atch Valu e()

27.0.4 org.osgi.service.http
interface HttpContext
stat ic f in al S t rin g AUTHEN TICATIO N_ TYPE
stat ic f in al S t rin g AUTHO RIZATIO N
stat ic f in al S t rin g REM OTE_ US E R
S tr ing getM imeTy p e(S t rin g)

URL getResource(St r ing)
b oolean hand leS ecu rit y (Ht tp S erv letRequ es t,

Ht tp S erv letRespon se) th rows
IOExc ept ion

interface HttpService
Http Context c reateDefau ltHt tpCon text ()
v oid registerResou rc es(S t rin g,St r ing,

Ht tp Context) throws
Nam esp ac eEx cep t ion

v oid registerServ let(S t rin g,Serv let,
Dict ionary,Ht tpCon text) th rows
S erv letExc ep tion , N amespaceExc ept ion

void un regis ter (St r ing)

class NamespaceException extends Exception
Nam esp ac eEx cep t ion(S tr ing)
Nam esp ac eEx cep t ion(S tr ing,Throwable)

Th rowab le getExcept ion()

27.0.5 org.osgi.service.io
interface ConnectionFactory
stat ic f in al S t rin g IO _ SCHEM E Con n ect ion createCon nec t ion(S t rin g,int ,

b oolean) th rows IOExc ept ion

interface ConnectorService
stat ic f in al in t READ
stat ic f in al in t READ_ WRITE
stat ic f in al in t WRITE
Con nec t ion open (St r ing) throws IO Except ion
Con nec t ion open (St r ing,in t) th rows

IOExc ept ion
Con nec t ion open (St r ing,in t ,boolean) th rows

IOExc ept ion

DataInputS t ream
op enDataInp u tSt ream(S tr ing) th rows
IOExc ept ion

DataOutputSt ream
op enDataOutputS t ream(St ring) th rows
IOExc ept ion

InputSt ream op en InputSt ream(Str ing) th rows
IOExc ept ion

Ou tputS t ream open OutputS t ream(St r ing)
throws IO Ex cep t ion
OSGi Service-Platform Release 3 551-588

 Method Overview
27.0.6 org.osgi.service.jini
interface JiniDriver
stat ic f in al S t rin g CM _ LUS _ E XPO RT_ G ROU PS
stat ic f in al S t rin g CM _ LUS _ IM PORT _G RO UPS
stat ic fin al S t rin g DEVICE_ CATEG ORY
stat ic fin al S t rin g ENTRIES
stat ic fin al S t rin g EXPO RT

stat ic f in al S t rin g LUS _ E XPO RT_ G RO UPS
stat ic f in al S t rin g S ER VICE _ ID
Serv iceTemp late[] getS erv iceTempla tes()
void

setServ iceTempla tes(Serv iceTemplate[])

27.0.7 org.osgi.service.log
interface LogEntry
Bun d le getBun d le()
Throwab le getExc ept ion ()
in t getLev el()

St r ing getM essage()
Serv iceRef eren ce getS ervic eRef eren ce()
long getTime()

interface LogListener extends EventListener
void logged (L ogEn t ry)

interface LogReaderService
void ad d LogL isten er(LogLis tener)
En um erat ion getLog()

void remov eLogLis tener (LogLis tener)

interface LogService
stat ic f in al in t LO G_ DEBUG
stat ic fin al in t LO G_ ERRO R
stat ic fin al in t LO G_ IN FO
stat ic fin al in t LO G_ WARNIN G
void log(int ,S t rin g)

void log(int ,S t rin g,Th rowab le)
void log(S erv iceRef erenc e,int ,S t rin g)
void log(S erv iceRef erenc e,int ,S t rin g,

Throwab le)

27.0.8 org.osgi.service.metatype
interface AttributeDefinition
stat ic fin al in t BIG DECIMA L
stat ic fin al in t BIG INTEGER
stat ic f in al in t BO OL EAN
stat ic fin al in t BYTE
stat ic fin al in t CHARACTER
stat ic fin al in t DO UBLE
stat ic f in al in t FL OAT
stat ic fin al in t INTEG ER
stat ic f in al in t LO NG
stat ic fin al in t S HO RT

stat ic fin al in t S TRING
in t getCard ina lit y ()
St r ing[] getDef au ltV alue()
St r ing getDescr ipt ion ()
St r ing get ID()
St r ing getName()
St r ing[] getO pt ion Lab els ()
St r ing[] getO pt ion Valu es()
in t getTy p e()
St r ing v alid ate(St r ing)

interface MetaTypeProvider
St r in g[] getLoc ales () Ob jectC lassDef init ion

getO b jectClassDefin it ion(S t rin g,St r ing)

interface ObjectClassDefinition
stat ic fin al in t ALL
stat ic f in al in t OPTION AL
stat ic fin al in t REQUIR ED
Att r ibu teDef init ion []

getAt t ribu teDefin it ions (int)

St r ing getDescr ipt ion ()
Inp u tS t ream get Icon (int) throws IO Excep t ion
St r ing get ID()
St r ing getName()

27.0.9 org.osgi.service.packageadmin
interface ExportedPackage
Bun d le getExp or tin gBu nd le()
Bun d le[] getIm por t ingBu n dles ()
St r in g getName()

St r ing getS pec if ic at ion Vers ion()
boolean isRemov alPend ing()

interface PackageAdmin
Exp or ted Package getExpor tedPackage(S t rin g)
Exp or ted Package[]

getExp orted Pac kages (B un d le)

void refresh Pac kages (B un d le[])

27.0.10 org.osgi.service.permissionadmin
interface PermissionAdmin
Permission In fo[] getDef au ltPermission s ()
St r in g[] getLoc at ion s()
Permission In fo[] getPermiss ion s(S tr ing)

void setDefaultPermiss ion s(Perm iss ionIn fo[])
void setPermission s (S t rin g,Perm iss ionIn f o[])

class PermissionInfo
Permission In fo(S t rin g,S t r in g,S t rin g)
Permission In fo(S t rin g)
boolean eq u als(O bjec t)

f in al S t rin g getAct ion s()
f in al S t rin g getEn cod ed ()
f inal S t ring getName()
552-588 OSGi Service-Platform Release 3

Method Overview
f inal S t ring getTy pe()
int hashCode()

S tr ing toSt ring()

27.0.11 org.osgi.service.prefs
class BackingStoreException extends Exception
Bac kingS toreExc ept ion (St r ing)

interface Preferences
Str ing absolu tePath()
S tr ing[] ch ild renNames() th rows

Bac kingS toreExc ept ion
v oid c lear () th rows Back in gS toreExcept ion
v oid f lu sh () th rows Bac kingS toreExc ept ion
S tr ing get (S tr ing,S t rin g)
boolean getB oolean (S t rin g,boolean)
by te[] getBy teArray (St r ing,b y te[])
doub le getDou ble(S t rin g,dou b le)
floa t getF loat (S tr ing,f loat)
int get In t (S t rin g,int)
long getL ong(S t rin g,lon g)
S tr ing[] key s () th rows Bac kingS toreExc ept ion
S tr ing n am e()
Pref eren c es n od e(S t rin g)

boolean nodeExist s (S t ring) throws
Bac kingS toreExc ep tion

Preferences parent ()
v oid p u t (S t rin g,S tr ing)
v oid p u t Boolean (S t rin g,b oolean)
v oid p u t By teA rray (S t rin g,b yte[])
v oid p u t Dou ble(S tr ing,d ou b le)
v oid p u t Floa t(S t rin g,float)
v oid p u t Int (S tr ing,in t)
v oid p u tLon g(S t rin g,long)
void remove(St r ing)
void removeNode() th rows

Bac kingS toreExc ep tion
void sync () th rows Backin gS toreException

interface PreferencesService
Pref eren c es getS y stemPreferen ces ()
Pref eren c es getUserPreferenc es (S t rin g)

S tr ing[] getUsers ()

27.0.12 org.osgi.service.provisioning
interface ProvisioningService
stat ic f in al S t rin g M IME_ BUN DLE
stat ic f in al S t rin g M IME_ BUN DLE_ URL
stat ic f in al S t rin g M IME_ BYTE_ ARRAY
stat ic f in al S t rin g M IME_ S TRING
stat ic f in al S t rin g

PRO VIS ION ING _AG ENT_ CON FIG
stat ic f in al S t rin g PR OVIS IO NING _ REFERENCE
stat ic f in al S t rin g PR OVIS IO NING _ RO OTX509
stat ic f in al S t rin g

PRO VIS ION ING _R SH_ S ECRET

stat ic f in al S t r in g PR OVIS IO NING _ S PID
stat ic f in al S t r in g

PRO VIS ION ING _S TAR T_ BUNDLE
stat ic f in al S t r in g

PRO VIS ION ING _U PDATE_ CO UNT
v oid add In format ion (Dict ion ary)
void add In format ion (Z ip InputSt ream) throws

IOExc ept ion
Dict ion ary getIn f ormation ()
void set Inf ormat ion (Dic t iona ry)

27.0.13 org.osgi.service.startlevel
interface StartLevel
int getBu n dleS tar tL ev el(Bu n dle)
int get In itia lBun d leSta rt Lev el()
int getS tart Level()
boolean isBundlePersis tent ly S ta rted (Bund le)

v oid setBu nd leS tart Lev el(Bu nd le,in t)
void set Init ialBund leS tar t Lev el(in t)
v oid setS ta rt Lev el(int)

27.0.14 org.osgi.service.upnp
interface UPnPAction
S tr ing[] get In pu tArgu men tNam es()
S tr ing getN ame()
S tr ing[] getO utp u tArgum entN ames()
S tr ing getRetu rn Argu men tNam e()

UPn PS tateVariable getS tateVar iab le(S t rin g)
Dict ion ary inv oke(Dic tion ary) th rows

Ex cep t ion

interface UPnPDevice
stat ic f in al S t rin g CHIL DREN_ UDN
stat ic f in al S t rin g DEVICE_ CATEG O RY
stat ic f in al S t rin g F RIENDL Y_ NAM E
stat ic f in al S t rin g ID
stat ic f in al S t rin g M ANUF ACTURER
stat ic f in al S t rin g M ANUF ACTURER_ URL
stat ic f in al in t M ATCH_ G EN ER IC
stat ic f in al in t

MATCH_ MAN UF ACTUR ER_ M O DEL
stat ic f in al in t

MATCH_ MAN UF ACTUR ER_ M O DEL _ REVISI
ON

stat ic f in al in t
MATCH_ MAN UF ACTUR ER_ M O DEL _ REVISI
ON _ SERIAL

stat ic f in al in t M ATCH_ TYPE
stat ic f in al S t r in g M ODEL _ DES CRIPTIO N
stat ic f in al S t r in g MODEL _ NAME
stat ic f in al S t r in g M ODEL _ NUM BER
stat ic f in al S t r in g M ODEL _ URL
stat ic f in al S t r in g PAR EN T_ UDN
stat ic f in al S t r in g PR ES ENTATIO N_ UR L
stat ic f in al S t r in g S E RIAL_ NU MBER
stat ic f in al S t r in g TYPE
stat ic f in al S t r in g UDN
stat ic f in al S t r in g UPC
stat ic f in al S t r in g UPN P_ E XPO RT
Dict ion ary getDesc rip t ions (S t rin g)
UPn PIcon [] get Icon s (S t rin g)
UPn PS erv ice getS erv ic e(S t rin g)
OSGi Service-Platform Release 3 553-588

 Method Overview
UPnPServ ice[] getS erv ices ()

interface UPnPEventListener
stat ic f in al S t rin g UPN P_ FIL TER void n ot ify UPn PE v ent (S tr ing,S t rin g,

Dict ion ary)

interface UPnPIcon
in t getDepth()
in t getHeight ()
InputS t ream get InputSt ream() th rows

IOExcep t ion

St r ing getM imeTy pe()
in t getS ize()
in t getWid th ()

interface UPnPService
stat ic fin al S t rin g ID
stat ic fin al S t rin g TYPE
UPnPAct ion getAct ion (S t rin g)
UPnPAct ion [] getAct ion s()
St r in g get Id ()

UPn PSta teVariab le getS tateVar iab le(S t rin g)
UPn PSta teVariab le[] getS tateVariables ()
St r ing getTy p e()
St r ing getVersion ()

interface UPnPStateVariable
stat ic f in al S t rin g TYPE_ BIN_ BAS E64
stat ic fin al S t rin g TYPE_ BIN_ HEX
stat ic fin al S t rin g TYPE_ BO OL EAN
stat ic fin al S t rin g TYPE_ CHAR
stat ic fin al S t rin g TYPE_ DATE
stat ic fin al S t rin g TYPE_ DATETIM E
stat ic fin al S t rin g TYPE_ DATETIM E_ TZ
stat ic f in al S t rin g TYPE _ FIX E D_ 14 _ 4
stat ic fin al S t rin g TYPE_ FL OAT
stat ic fin al S t rin g TYPE_ I1
stat ic fin al S t rin g TYPE_ I2
stat ic fin al S t rin g TYPE_ I4
stat ic fin al S t rin g TYPE_ INT
stat ic fin al S t rin g TYPE_ NUM BER
stat ic fin al S t rin g TYPE_ R4
stat ic fin al S t rin g TYPE_ R8
stat ic f in al S t rin g TYPE _ S TRING

stat ic fin al S t rin g TYPE_ TIM E
stat ic fin al S t rin g TYPE_ TIM E_ TZ
stat ic fin al S t rin g TYPE_ UI1
stat ic fin al S t rin g TYPE_ UI2
stat ic fin al S t rin g TYPE_ UI4
stat ic fin al S t rin g TYPE_ URI
stat ic fin al S t rin g TYPE_ UUID
St r ing[] getAllowedVa lues ()
Ob ject getDef au lt Valu e()
Class get Jav aDataTy p e()
Nu mb er getM aximu m()
Nu mb er getM in imu m()
St r ing getName()
Nu mb er getS tep ()
St r ing getUPn PDataTy pe()
boolean sendsEvents()

27.0.15 org.osgi.service.url
abstract class AbstractURLStreamHandlerService extends URLStreamHandler implements
URLStreamHandlerService
protected URLS t reamHan d lerS et ter

realHan d ler
Abs t rac tURL St reamHan d lerS erv ice()
boolean eq u als(UR L,URL)
in t getDefau ltPort ()
InetAd dress getHostAd d ress(URL)
in t h ashCode(URL)
boolean h os tsEqu al(URL ,URL)
ab st ract UR LCon n ect ion

open Con n ect ion (UR L) throws
IOExcep t ion

void p ar seUR L(URLS t reamHan dlerS etter ,URL,
St r ing,in t ,in t)

boolean sameF ile(URL,U RL)
protected v oid setURL (UR L,S t rin g,St r ing,in t ,

St r ing,S t rin g)
protected v oid setURL (UR L,S t rin g,St r ing,in t ,

St r ing,S t rin g,St r ing,S t rin g,S tr ing)
St r ing toExtern alForm(URL)

interface URLConstants
stat ic f in al S t rin g URL _ CON TENT_ M IME TYPE st at ic f in al S t rin g URL _ HA NDL ER_ PR OTO CO L

interface URLStreamHandlerService
boolean eq u als(UR L,URL)
in t getDefau ltPort ()
InetAd dress getHostAd d ress(URL)
in t h ashCode(URL)
boolean h os tsEqu al(URL ,URL)

URLConn ec tion open Conn ect ion (U RL) th rows
IOExcep t ion

void p ar seUR L(URLS t reamHan dlerS etter ,URL,
St r ing,in t ,in t)

boolean sameF ile(URL,U RL)
St r ing toExtern alForm(URL)

interface URLStreamHandlerSetter
void setURL(URL ,S tr ing,S t rin g,int ,S t rin g,

St r ing)
void setURL(URL ,S tr ing,S t rin g,int ,S t rin g,

St r ing,S t ring,St r ing,S t ring)

27.0.16 org.osgi.service.useradmin
interface Authorization
St r in g getName()
St r ing[] getRoles ()

boolean h asRole(St r ing)

interface Group extends User
boolean add M emb er(Role)
boolean addRequ iredMember (Role)
Role[] getMemb ers()

Role[] getRequ ired M emb ers ()
boolean remov eM ember (Role)
554-588 OSGi Service-Platform Release 3

Method Overview
interface Role
stat ic f in al in t G ROU P
stat ic f in al in t RO LE
stat ic f in al in t US ER

S tr ing getN ame()
Dict ionary getP rop ert ies()
int getTy p e()

interface User extends Role
Dict ion ary getCred en tia ls() b oolean hasCred ent ial(S t rin g,Ob ject)

interface UserAdmin
Role c reateRole(S t rin g,int)
Authorizat ion getAuthorizat ion (User)
Role getRole(St r ing)

Role[] getRoles (S t rin g) th rows
Inv a lid S y ntax Exc ep tion

User getUser(St r ing,S t rin g)
b oolean remov eRole(S t rin g)

class UserAdminEvent
stat ic f in al in t RO LE_ CHAN GED
stat ic f in al in t RO LE_ CREATED
stat ic f in al in t RO LE_ REMO VED
UserAd minEv en t(S erv ic eReferenc e,in t,R ole)

Role getRole()
S erv iceRef erenc e getServ iceRef eren ce()
int getTy p e()

interface UserAdminListener
v oid roleCh an ged(UserAd min Ev en t)

final class UserAdminPermission extends BasicPermission
stat ic f in al S t rin g ADM IN
stat ic f in al S t rin g C HA NG E_ CR ED EN TIAL
stat ic f in al S t rin g C HA NG E_ PRO PERTY
stat ic f inal S t ring GET_CREDENTIAL
UserAd minPermission (St r ing,S t rin g)
boolean equ als (O b ject)

S tr ing getAc t ions ()
int hashCode()
b oolean implies (Permission)
Perm iss ionCollect ion

newPermiss ion Collect ion ()
S tr ing toSt ring()

27.0.17 org.osgi.service.wireadmin
class BasicEnvelope implements Envelope
Bas icEn velop e(Ob jec t,O b ject ,S t rin g)
Ob jec t get Id en tif ica t ion()

S tr ing getS c ope()
Ob jec t getVa lue()

interface Consumer
v oid p rodu cersCon nec ted(Wire[]) v oid u p dated(Wire,O bjec t)

interface Envelope
Ob jec t get Id en tif ica t ion()
S tr ing getS c ope()

Ob jec t getVa lue()

interface Producer
v oid c on su mersCon n ected (Wire[]) Ob jec t polled (Wire)

interface Wire
Class[] getF lav ors ()
Ob jec t getLas tVa lue()
Dict ionary getP rop ert ies()
S tr ing[] getS cop e()
boolean hasS cop e(S tr ing)

b oolean isConn ected ()
b oolean isValid ()
Ob jec t poll()
v oid u p date(O b ject)

interface WireAdmin
Wire createWire(S t r ing,S t rin g,Dict ionary)
v oid d eleteWire(Wire)

Wire[] getWires (St r ing) throws
Inv a lid S y ntax Exc ep tion

v oid u p dateWire(Wire,Dic t ionary)

class WireAdminEvent
stat ic f in al in t CO NS UM ER_ EXCEPTIO N
stat ic f in al in t PRO DUCER _EXCEPTIO N
stat ic f in al in t WIRE_ CON NECTED
stat ic f in al in t WIRE_ CREATED
stat ic f in al in t WIRE_ DEL ETED
stat ic f in al in t WIRE_ DIS CON NECTED
stat ic f in al in t WIRE_ TR ACE

stat ic f in al in t WIRE_ UPDATED
WireAdm inEv ent (S erv iceR eferenc e,int ,Wire,

Th rowab le)
S erv iceRef erenc e getServ iceRef eren ce()
Th rowab le getThrowab le()
int getTy p e()
Wire getWire()

interface WireAdminListener
v oid w ireA dmin Ev ent (WireAdm inEv ent)

interface WireConstants
stat ic f in al S t rin g

WIR EADM IN_ C ON SU ME R_ CO M POS ITE
stat ic f in al S t rin g

WIR EADM IN_ CON SU MER_ F LAVO RS
stat ic f in al S t rin g

WIR EADM IN_ C ON SU ME R_ PID
stat ic f in al S t rin g

WIR EADM IN_ C ON SU ME R_ S CO PE
stat ic f in al S t rin g W IREADMIN _ EVE N TS
stat ic f in al S t rin g W IREADMIN _ FIL TER
stat ic f in al S t rin g W IREADMIN _ PID

stat ic f in al S t r in g
WIR EADM IN_ PRODUCER_ CO MPOS ITE

stat ic f in al S t r in g
WIR EADM IN_ PRODUCER_ FIL TERS

stat ic f in al S t r in g
WIR EADM IN_ PRODUCER_ FL AVO RS

stat ic f in al S t r in g
WIR EADM IN_ PRODUCER_ PID

stat ic f in al S t r in g
WIR EADM IN_ PRODUCER_ S CO PE

stat ic f in al S t r in g WIREADMIN _ SCOPE_ AL L
OSGi Service-Platform Release 3 555-588

 Method Overview
stat ic f in al S t rin g WIR EVAL UE_ CURREN T
stat ic fin al S t rin g

WIREVALU E_ DELTA_A BSO LU TE

stat ic fin al S t rin g
WIREVALU E_ DELTA_ REL ATIVE

stat ic fin al S t rin g WIR EVAL UE_ EL APS ED
stat ic fin al S t rin g WIR EVAL UE_ PREVIOUS

final class WirePermission extends BasicPermission
stat ic fin al S t rin g CO NS UM E
stat ic fin al S t rin g PRO DUCE
WirePermission (St r ing,S t rin g)
boolean eq u als(O bjec t)
St r ing getAc tion s ()

in t hashCode()
boolean im plies (Permission)
Permission Collec t ion

newPerm iss ionCollect ion ()
St r ing toSt ring()

27.0.18 org.osgi.util.measurement
class Measurement implements Comparable
Measu remen t (d ou b le,dou b le,Unit ,lon g)
Measu remen t (d ou b le,dou b le,Unit)
Measu remen t (d ou b le,Unit)
Measu remen t (d ou b le)
Measu remen t ad d (M easuremen t)
Measu remen t ad d (d ou ble,U nit)
Measu remen t ad d (d ou ble)
in t c omp areTo(O bjec t)
Measu remen t d iv(M easurement)
Measu remen t d iv(d oub le,Un it)
Measuremen t d iv(doub le)
boolean eq u als(O bjec t)

f inal double getE rror()
f in al lon g getTime()
f inal Un it getUnit ()
f in al d ou ble getValu e()
in t hashCode()
Measu remen t mu l(M easu remen t)
Measu remen t mu l(d ou b le,U nit)
Measu remen t mu l(d ou b le)
Measu remen t sub (Measu remen t)
Measu remen t sub (dou b le,Unit)
Measu remen t sub (dou b le)
St r ing toSt ring()

class State
State(int ,S t ring,long)
State(int ,S t rin g)
boolean eq u als(O bjec t)
f inal S t ring getName()

fin al lon g getTime()
fin al in t getV alue()
in t hashCode()
St r ing toSt ring()

class Unit
stat ic fin al Un it A
stat ic fin al Un it C
stat ic f in al Un it cd
stat ic fin al Un it F
stat ic fin al Un it G y
stat ic fin al Un it Hz
stat ic fin al Un it J
stat ic f in al Un it K
stat ic fin al Un it kat
stat ic fin al Un it kg
stat ic fin al Un it lx
stat ic fin al Un it m
stat ic fin al Un it m2
stat ic f in al Un it m3
stat ic f in al Un it m_ s
stat ic f in al Un it m_ s2

stat ic fin al Un it mol
stat ic fin al Un it N
stat ic fin al Un it O hm
stat ic fin al Un it Pa
stat ic fin al Un it rad
stat ic fin al Un it S
stat ic fin al Un it s
stat ic fin al Un it T
stat ic fin al Un it u nit y
stat ic fin al Un it V
stat ic fin al Un it W
stat ic fin al Un it Wb
boolean eq u als(O bjec t)
in t hashCode()
St r ing toSt ring()

27.0.19 org.osgi.util.position
class Position
Posit ion (M easuremen t ,Measu remen t ,

Measu remen t ,Measu rem ent ,
Measu remen t)

Measu remen t getAlt itu d e()

Measu remen t getLat itu de()
Measu remen t getLon gitu d e()
Measu remen t getSp eed ()
Measu remen t getTrack()

27.0.20 org.osgi.util.tracker
class ServiceTracker implements ServiceTrackerCustomizer
protected fin al Bu n dleContext c on tex t
protected fin al F ilter f i lter
Serv ic eTracker(Bun d leCon text ,

Serv ic eRef eren ce,
Serv ic eTrackerCu s tom izer)

Serv ic eTracker(Bun d leCon text ,St r ing,
Serv ic eTrackerCu s tom izer)

Serv ic eTracker(Bun d leCon text ,Filter,
Serv ic eTrackerCu s tom izer)

Ob ject add in gServ ic e(Serv iceRef eren ce)
void c lose()
protected v oid f in alize() th rows Th rowab le

Ob ject getS erv ic e(S erv ic eRef eren ce)
Ob ject getS erv ic e()
Serv iceRef eren ce getS ervic eRef eren ce()
Serv iceRef eren ce[] getS erv ic eRef eren ces ()
Ob ject [] getS erv ices ()
in t getTrackingCount()
void mod if iedS ervic e(S ervic eRef eren ce,

Ob ject)
void op en ()
void remov e(S ervic eRef eren ce)
void remov edS ervic e(Serv iceRef eren ce,

Ob ject)
556-588 OSGi Service-Platform Release 3

Method Overview
int s ize() Ob jec t wa it ForS ervice(long) throws
Inter ruptedExcept ion

interface ServiceTrackerCustomizer
Ob jec t ad din gS erv ice(S erv iceR eferenc e)
v oid m odif ied Serv ice(Serv iceRef eren c e,

Ob jec t)

v oid remov ed Serv ice(S erv iceRef erenc e,
Ob jec t)

27.0.21 org.osgi.util.xml
class XMLParserActivator implements BundleActivator , ServiceFactory
stat ic f in al S t rin g DO M CLAS S F IL E
stat ic f in al S t rin g DO M FACTOR YNAM E
stat ic f ina l S t rin g PAR SER_ NA MES PACEAWARE
stat ic f in al S t rin g PAR SER_ VAL IDATING
stat ic f in al S t rin g S AXCLAS S FIL E
stat ic f in al S t rin g S AXF ACT ORYN AM E
XM LParserAc tiv a tor ()
Ob jec t getS ervic e(B un d le,

S erv iceRegis t rat ion)

v oid
setDO M Prop ert ies (Docu men tB uild erF ac t
ory ,Hash table)

v oid setS AXProper t ies(S AXParserF actory ,
Hashtab le)

void s tar t(BundleContext) throws Except ion
void s top(BundleContext) th rows Except ion
v oid u n getServ ic e(Bun d le,

S erv iceRegis t rat ion ,O bjec t)

27.0.22
OSGi Service-Platform Release 3 557-588

 Method Overview
558-588 OSGi Service-Platform Release 3

Index
A A 416
absolute delta 341
absolute path

preference 308
absolutePath 314
abstract 428
AbstractURLStreamHandlerService 156,
165

AbstractURLStreamHandlerService 165
equals 165
getDefaultPort 165
getHostAddress 165
hashCode 165
hostsEqual 166
openConnection 166
parseURL 166
realHandler 165
sameFile 166
setURL 166
toExternalForm 166

accept 337
access control 82

Wire Admin 338
AccessControlContext 262, 297
accuracy 404
action 258, 504, 507
activation 534
ACTIVE 57, 59, 60, 80, 89
active 137

start level 139
actuator 331
add 411, 412
addBundleListener 99
addFrameworkListener 99
addInformation 545
addingService 394, 397, 400
addition 403
addLogListener 172, 178
addMember 266
addRequiredMember 266
address 44, 255, 481
addressing information 345
addServiceListener 99, 100
ADMIN 274
admin 274
administration 31, 223, 253
administrative functions 82
administrative role 258
AdminPermission 32, 35, 43, 56, 62, 82, 87,
88, 132, 143, 150, 187, 199, 246, 297

AdminPermission 88
equals 88
implies 88
newPermissionCollection 88

aggregation
role 254

AIX 64
alarm system 258, 331
alarm-system 26
algorithm

device attachment 241
alias 65, 290, 292, 293
ALL 388
AllPermission 81, 148, 535
Alpha 64
altitude 422
AMC-ACE-Z 486
AMPS 24
ancestor 307
announce 505, 508
applet 290
appliance 506
application/octet-stream 544
application/x-osgi-bundle 531, 544
application/x-osgi-bundle-URL 535
application/zip 531, 536
arbiter 239
ArithmeticException 408
ARM 63
ASCII 294, 483, 486
ASN.1 204, 379
assembly line 26
assertion 493
asynchronously 78, 132, 139, 172, 511
ATM 21
attach 233, 236, 241, 249
attachment 223

device service 227
attribute 47, 48, 377, 379

Jini 497
AttributeDefinition 379, 380, 384

BIGDECIMAL 384
BIGINTEGER 384
BOOLEAN 385
BYTE 385
CHARACTER 385
DOUBLE 385
FLOAT 385
getCardinality 385
getDefaultValue 386
getDescription 386
getID 386
getName 386
getOptionLabels 386
getOptionValues 387
getType 387
INTEGER 385
LONG 385
OSGi Service-Platform Release 3 559-588

SHORT 385
STRING 385
validate 387

audio 294
authentication 34, 35, 253, 256, 258, 259,
263, 538, 540, 542, 543

basic 257, 295
header 296
pluggable 263
request 295

authentication constant 538
AUTHENTICATION_TYPE 296, 299
AUTHORIZATION 296, 299
Authorization 256, 259, 264

getName 264
getRoles 265
hasRole 265

authorization 253, 255, 258, 262, 292
request 295

AWT 384

B back-end 305, 307, 310
BackingStoreException 306, 310, 312

BackingStoreException 312
backward compatible 61, 137
band 341
base driver 231, 503

discovery 231
UPnP 506

base station 24
base unit 404, 408
base 64 542
base-64 296, 537
basic authentication 257, 295
basic member 259
basic role 255
BasicEnvelope 348

BasicEnvelope 348
getIdentification 348
getScope 348
getValue 348

BasicPermission 339
baud-rate 278
bean 346, 383
beginning start level 141
best effort 310
bidding process 240
BIGDECIMAL 384
BigDecimal 86
BIGINTEGER 384
BigInteger 86
bill 21
binary 531
binary message 294
bin.base64 522
bin.hex 522
bio-metric 253
bitmap 58, 344
BOOLEAN 385
boolean 522
boot time 138
bootstrap 529
bound 187
branded 533
bridge 490, 503, 509
bridging driver 234
broadcast 505
browser 287, 378, 505

buddy 260
Bundle 57, 72, 88

ACTIVE 89
getBundleId 90
getHeaders 90
getLocation 91
getRegisteredServices 91
getResource 91
getServicesInUse 92
getState 92
hasPermission 92
identifier 57
INSTALLED 89
RESOLVED 89
start 93
STARTING 90
stop 94
STOPPING 90
uninstall 94
UNINSTALLED 90
update 95, 97

bundle 39, 44, 57, 531
configuration 187
developer 66
failure 142
information 62
location 57, 58, 147
malicious 143
name-space 45
permission 147
resolve 59
run 139
start 44, 59
start level 139
state 57
stop 44, 60
storage area 62
uninstall 61
update 44, 60
version 44

Bundle Activator 58, 59, 60, 62
bundle url 531
BundleActivator 57, 59, 82, 97, 139, 140,
370

start 97
stop 98

Bundle-Activator 44, 59, 110
560-588 OSGi Service-Platform Release 3

Bundle-Category 44, 110
bundleChanged 109
Bundle-ClassPath 44, 111
Bundle-Classpath 45, 51, 56, 59
Bundle-ContactAddress 44, 111
BundleContext 58, 60, 61, 70, 78, 98

addBundleListener 99
addFrameworkListener 99
addServiceListener 99, 100
createFilter 100
getBundle 100, 101
getBundles 101
getDataFile 101
getProperty 101
getService 102
getServiceReference 103
getServiceReferences 103
installBundle 104, 105
registerService 105, 106
removeBundleListener 106
removeFrameworkListener 107
removeServiceListener 107
ungetService 107

Bundle-Copyright 44, 111
Bundle-Description 44, 111
Bundle-DocURL 44, 111
BundleEvent 78, 108, 173

BundleEvent 108
getBundle 108
getType 108
INSTALLED 108
STARTED 108
STOPPED 108
UNINSTALLED 108
UPDATED 108

BundleException 55, 59, 109
BundleException 109
getNestedException 109

BundleListener 78, 82, 109
bundleChanged 109

Bundle-Name 44, 111
Bundle-NativeCode 44, 46, 53, 55, 65, 111
Bundle-RequiredExecutionEnvironment
44, 112
bundles

install 58
Bundle-UpdateLocation 44, 113
bundle-url 531
Bundle-Vendor 44, 113
Bundle-Version 44, 113
BUNDLE_ACTIVATOR 110
BUNDLE_CATEGORY 110
BUNDLE_CLASSPATH 110
BUNDLE_CONTACTADDRESS 111
BUNDLE_COPYRIGHT 111
BUNDLE_DESCRIPTION 111
BUNDLE_DOCURL 111
BUNDLE_NAME 111
BUNDLE_NATIVECODE 111
BUNDLE_NATIVECODE_LANGUAGE
111
BUNDLE_NATIVECODE_OSNAME 112
BUNDLE_NATIVECODE_OSVERSION
112
BUNDLE_NATIVECODE_PROCESSOR
112
BUNDLE_REQUIREDEXECUTIONENVIR
ONMENT 112
BUNDLE_UPDATELOCATION 112
BUNDLE_VENDOR 113
BUNDLE_VERSION 113
bus 225
business 18, 29
business events 18
BYTE 385
byte array 306

C C 416
cache 158, 159, 310, 536

match values 244
calculation 403, 406, 408
call stack 81, 82
callback 68, 79, 82, 196, 329

configuration 191
CAN 339
capability 40
capturing

events 78
cardinality 378, 380
cast 46, 69
category 44, 294, 336
cd 416
CDC-1.0/Foundation-1.0 52, 53, 63
CDMA 33
CEBus 228
cellular 24

celsius 408
certificate 21, 35, 253, 256, 257, 536, 543

decoding, encoding 537
root 536

Certification Authority 21
changeCredential 274
changeProperty 274
CHANGE_CREDENTIAL 274
CHANGE_PROPERTY 274
channel 506
char 522
CHARACTER 385
charge 18
charging 21
Charging Provider 20, 21
charset=utf-8 544
check permission 81
checkGuard 80
checkPermission 80
OSGi Service-Platform Release 3 561-588

child node 306, 307, 308
childrenNames 314
CHILDREN_UDN 507, 510, 514
CIM 203, 377
class 343

AbstractURLStreamHandlerService 165
AdminPermission 87
BackingStoreException 312
BasicEnvelope 348
BundleEvent 108
BundleException 109
ConfigurationException 215
for name 49
FrameworkEvent 117
InvalidSyntaxException 119
Measurement 410
NamespaceException 303
PackagePermission 120
PermissionInfo 152
Position 423
ServiceEvent 121
ServicePermission 124
ServiceTracker 395
State 415
Unit 416
UserAdminEvent 271
UserAdminPermission 272
WireAdminEvent 358
WirePermission 365
XMLParserActivator 373

class loading 45
ClassCastException 45
classes 42, 45, 49, 51, 55
classloader 45, 46, 53, 56, 72, 84, 149

system 56
classpath 44, 45, 51

dependcies 59
permission 149
system 56

Class.forName 49
Class.isInstance 67
Class.newInstance 60
CLDC-1.0/MIDP-1.0 53
CLDC-1.0/MIDP-2.0 53
cleanup 42

preference 311
clear 314
clientfg 538
close 397
cm.target 217
CM_LUS_EXPORT_GROUPS 500
CM_LUS_IMPORT_GROUPS 500
CM_TARGET 217
cn 379
coercion 403
collaborate 403
collection 84

common name 379
communication 23, 33, 278, 481, 543

API 277
domain 277
infrastructure 277

communication provider 485
communication scheme 498
community 489
comm: scheme 279
Comparable 86, 406
compareTo 412
comparing 406
compatibility mode 142
compatible 61, 331
complex object 336
compliant 39, 491, 529
component 39, 42

architecture 346
composite

Producer, Consumer 335
producer,consumer 346

composite driver 233
compromise 542
concurrency preference 310
confidentiality 34
Configurable 77, 110

getConfigurationObject 110
configurable service 77
Configuration 209

delete 210
equals 210
getBundleLocation 210
getFactoryPid 210
getPid 211
getProperties 211
hashCode 211
modifying 201
setBundleLocation 211
update 211, 212

configuration 32, 49, 52, 181, 182
data 529, 533, 535
delete 193
factory 194
Http Service 298
managed service 191
management 32
properties 77, 188
service 325
target 183, 184
UPnP 512
wiring 325

Configuration Admin 181, 325, 332, 377,
498, 512
Configuration Admin Service 198
configuration management 306
Configuration object 187

access 199
562-588 OSGi Service-Platform Release 3

delete 200
get 202
location binding 187
managed service 198
managed service factory 199
update 200

Configuration Plugin 183
ConfigurationAdmin 212

createFactoryConfiguration 213, 214
getConfiguration 214, 215
listConfigurations 215
SERVICE_BUNDLELOCATION 213
SERVICE_FACTORYPID 213

ConfigurationException 191, 215, 216
ConfigurationException 216
getProperty 216
getReason 216

ConfigurationPlugin 216
CM_TARGET 217
modifyConfiguration 217

configure 34
connection 278

wire admin 347
Connection Factory 280
ConnectionFactory 283

createConnection 283
IO_SCHEME 283

connectivity 33, 481, 534
intermittent 277

Connector 155, 279
connector 277
Connector Service 277, 280
ConnectorService 283

open 284, 285
openDataInputStream 285
openDataOutputStream 285
openInputStream 286
openOutputStream 286
READ 284
READ_WRITE 284
WRITE 284

consolidate 19
constant

encryption and authentication 538
Constants 85, 87, 110, 247

BUNDLE_ACTIVATOR 110
BUNDLE_CATEGORY 110
BUNDLE_CLASSPATH 110
BUNDLE_CONTACTADDRESS 111
BUNDLE_COPYRIGHT 111
BUNDLE_DESCRIPTION 111
BUNDLE_DOCURL 111
BUNDLE_NAME 111
BUNDLE_NATIVECODE 111
BUNDLE_NATIVECODE_LANGUAGE

111
BUNDLE_NATIVECODE_OSNAME 112

BUNDLE_NATIVECODE_OSVERSION

112
BUNDLE_NATIVECODE_PROCESSOR

112
BUNDLE_REQUIREDEXECUTIONENVI

RONMENT 112
BUNDLE_UPDATELOCATION 112
BUNDLE_VENDOR 113
BUNDLE_VERSION 113
DEVICE_CATEGORY 247
DEVICE_DESCRIPTION 247
DEVICE_SERIAL 248
DRIVER_ID 248
DYNAMICIMPORT_PACKAGE 113
EXPORT_PACKAGE 113
EXPORT_SERVICE 113
FRAMEWORK_EXECUTIONENVIRON

MENT 113
FRAMEWORK_LANGUAGE 114
FRAMEWORK_OS_NAME 114
FRAMEWORK_OS_VERSION 114
FRAMEWORK_PROCESSOR 114
FRAMEWORK_VENDOR 114
FRAMEWORK_VERSION 114
IMPORT_PACKAGE 114
IMPORT_SERVICE 115
OBJECTCLASS 115
PACKAGE_SPECIFICATION_VERSION

115
SERVICE_DESCRIPTION 115
SERVICE_ID 115
SERVICE_PID 115
SERVICE_RANKING 116
SERVICE_VENDOR 116
SYSTEM_BUNDLE_LOCATION 116

CONSUME 337, 365
consume 365
Consumer 327, 330, 331, 348

producersConnected 349
updated 349

consumersConnected 333, 338, 351
CONSUMER_EXCEPTION 345, 358
contact 44
ContentConnection 279
ContentHandler 156, 164
ContentHandlerFactory 156
Content-Type 536
content-type 161, 279, 290, 294, 532
context 396
context-specific knowledge 325
contractor 19
control point 504, 505, 508
conversion 404, 422
convert 331, 408
converted data 343
copyright 44
CORBA 203
OSGi Service-Platform Release 3 563-588

country 381
create

configuration 198
createConnection 283
createDefaultHttpContext 291, 301
createFactoryConfiguration 213, 214
createFilter 100
createRole 261, 269
createWire 356

credential 21, 253, 255, 256, 257, 258, 262
cryptography 35
current node

preference 308
currentTimeMillis 405
customize 370
customized

Service Tracker 393

D data type 305, 330, 333, 336, 509
database 305
DataConnection 163
DatagramConnection 279
datagram: scheme 279
Date 511
date 511, 522
dateTime 511, 523
dateTime.tz 511, 523
datum 421
deactivate 60
deadlock 79, 85, 393
debug 69, 171, 332
decoding

certificate 537
default

HTTP Context 293
HttpContext 291
preference 310

degree 422
delegate 147
delegation 56
delete 210

configuration 193, 195, 196
configuration object 200
managed service 193
managed service factory 196
wire admin 344

deleted 220
deleteWire 357
deliver 344
delta 340, 341
dependencies 535

BundleClassPath 51
classpath 59
dynamic service 66
inter-bundle 68
package 59, 131
resolve 59
service 65
Service Factory 75
service object 71, 77
stale references 72

deploy 33, 39, 42, 481, 542
deprecated 509
depth 508
DER 537
deregulation 21

derived 404
derived unit 408, 409
DES 539
descendant 308
description 44, 69
detect 83
detection 223, 232
developer 39
development 19
Device 248, 507

MATCH_NONE 248
noDriverFound 248

device 40, 223, 504
configuration 190
generic 226
PID 186
representation 225

Device Access 195, 223, 495, 507
device attachment algorithm 241
device category 226, 228, 346
device driver

example 238
Device Manager 508
device manager 224, 240

optimization 244
start 241

device profile 509
device service 225, 226

attachment to 227
driver service 230
match 229
registrate 246
steal 236
unregistrate 227

DEVICE_CATEGORY 195, 226, 247, 495,
496, 500, 507, 508, 514
DEVICE_DESCRIPTION 247, 248
DEVICE_SERIAL 227, 248
DHCP 380, 506
digest 35
DigitalUnix 64
directory 21
discover 505
discovery 490
discovery base driver 231
discrete state 409
diskless 39
display 194
564-588 OSGi Service-Platform Release 3

distributed leasing 498
div 412, 413
DNS 482, 483, 486
document 306

XML parser 369
documentation 42, 44, 69
DocumentBuilderFactory 369, 371
doDelete 290
doGet 290
DOM 367, 368, 369, 371
domain 483
domain identifier 20
domain name 186, 235, 482
DomainCombiner 262
DOMCLASSFILE 371, 373
DOMFACTORYNAME 371, 373
doOptions 290
doPost 290
doPrivileged 81, 82, 282, 298
doPut 290
doTrace 290
DOUBLE 385
double 404
download 34, 39, 489
Driver 248

attach 249
match 249

driver 230, 491
other 235

driver bundle 230
reclamation 245
update 245

Driver Locator 237
Driver Selector 239
driver service

attachment of 227
register 235, 246
unregistrate 236

driver taxonomy 230
DriverLocator 237, 250

findDrivers 250
loadDriver 250

DriverSelector 250
select 250
SELECT_NONE 250

DRIVER_ID 235, 248
DSL 21, 24
DTD 369
duplicate

device service 235
PID 185

duplication
PID 187

dynamic import 44, 49, 490
Jini 497

DynamicImport-Package 48, 49, 50, 56, 85,
113
DYNAMICIMPORT_PACKAGE 113

E earth 422
EE 52, 53, 63, 160, 383
EIB 23
ellipsoid 422
email fetcher 194
embedded

XML 367
embedded device 223
en 381
encode 294
encoding 279

base-64 537
certificate 537
DER 537
RSH 542
signature 428
URL 537

encryption 538, 540
encryption constant 538
end-point 485
ENTRIES 492, 495, 497, 500
Entry 490
Envelope 336, 338, 350

getIdentification 350
getScope 350
getValue 350

env-parameter 53
en_ca_posix 381

equality
Measurement 406

equals 88, 117, 120, 125, 153, 165, 167, 210,
274, 365, 413, 415, 418
erratic bundle 138
ERROR 80, 117, 133
error 287, 406

log 171
numerical 403, 405
position 421
programming 138
State 409

ethernet 23, 24, 225, 232
event 62, 65, 77

asynchronously 78
capturing 78
distributed 498
log 173
permission 83
shutdown 80
startup 80
type 77
UPnP 509, 510, 511
wire admin 344

event listener 504
ExampleFactory 197
exception 173
execute 23, 53, 63, 81, 491, 505
OSGi Service-Platform Release 3 565-588

execution environment 44, 52, 63, 86, 160,
383, 427
exponent 408
EXPORT 47, 48, 83, 120, 496, 500
export 45, 50, 51, 59, 60, 61, 120, 132

Jini 495, 497
Management Agent 535
package 47, 131
permission 82, 83
service 76
strategy 51
UPnP 507

ExportedPackage 131, 133
getExportingBundle 133
getImportingBundles 133
getName 134

getSpecificationVersion 134
isRemovalPending 134

Export-Package 43, 45, 47, 48, 50, 59, 61,
113
Export-Service 113
EXPORT_PACKAGE 113
EXPORT_SERVICE 113
expose 47, 50
extend 56
extensible 39
extension 294
external addressing scheme 346
external entity 345
external interfaces 33
extra field

ZIP 531

F F 416
factory 156, 158, 194, 369, 370
factory PID 195
fahrenheit 408
failure 142
fathom 409
federated naming scheme 481
feet 403, 409
File 62
file storage 182
FilePermission 63, 85, 147, 149, 297

bundle data area 85
file: scheme 279, 534
Filter 68, 69, 73, 86, 116, 392

equals 117
hashCode 117
match 117
toString 117

filter 65, 66, 71, 199, 396, 510
Jini 492
log 172
role 261
spaces 86
syntax 73
UPnP 510
wire admin 334, 344
wire flow 339

final 380
finalize 397
find 69, 71
findDrivers 243, 250
findLibrary 53, 84
findResource 56, 84
firewall 23, 26, 34, 481
Firewire 23
fixed reference 532
fixed.14.4 523
flat model 306
flavor 330, 346

composite 339
flavors 343

FLOAT 385
float 523
floating point 403
flow

wire admin 339
flush 310, 314
footprint 278
formula 409
Foundation Profile 53
Framework 19, 39
framework event

mapping 173
FrameworkEvent 78, 80, 86, 117, 118, 140,
142, 173

ERROR 117
FrameworkEvent 118
getBundle 118
getThrowable 119
getType 119
PACKAGES_REFRESHED 118
STARTED 118
STARTLEVEL_CHANGED 118

frameworkEvent 119
FrameworkListener 78, 82, 119, 140

frameworkEvent 119
FRAMEWORK_EXECUTIONENVIRONM
ENT 113
FRAMEWORK_LANGUAGE 114
FRAMEWORK_OS_NAME 114
FRAMEWORK_OS_VERSION 114
FRAMEWORK_PROCESSOR 114
FRAMEWORK_VENDOR 114
FRAMEWORK_VERSION 114
FreeBSD 64
freshness 538
FRIENDLY_NAME 514
FTP 160
furlong 409
566-588 OSGi Service-Platform Release 3

G game 305
garbage collection 72, 75, 77
gatekeeper 33
gateway 22, 23, 24, 26, 481
general purpose 39
gent 57
geographic position 421
geoid 422
GET 71, 72, 83, 124, 536
get 124, 315

bundle information 62
getAction 520
getActions 121, 125, 153, 274, 365, 520
getAllowedValues 525
getAltitude 424
getAttributeDefinitions 388
getAuthorization 270
getAuthType 296
getBoolean 315
getBundle 100, 101, 108, 118, 126, 176
getBundleId 57, 90
getBundleLocation 210
getBundles 101
getBundleStartLevel 144
getByteArray 315
getCardinality 385
getConfiguration 187, 214, 215
getConfigurationObject 110
getCredential 274
getCredentials 268
getDataFile 62, 101, 305
getDefaultPermissions 151
getDefaultPort 165, 167
getDefaultValue 386, 525
getDepth 519
getDescription 386, 388
getDescriptions 517
getDouble 316
getDriver 251
getEncoded 153
getError 413
getException 176, 304
getExportedPackage 134
getExportedPackages 135
getExportingBundle 133
getFactoryPid 199, 210
getFilter 120
getFlavors 353
getFloat 316
getHeaders 90
getHeaders() 43
getHeight 519
getHostAddress 165, 167
getIcon 388
getIcons 508, 517
getID 386, 389
getId 520

getIdentification 348, 350
getImportingBundles 133
getInformation 546
getInitialBundleStartLevel 144
getInputArgumentNames 513
getInputStream 519
getInt 317
getJavaDataType 525
getLastValue 353
getLatitude 424
getLevel 176
getLocales 387
getLocation 57, 91, 187
getLocations 151
getLog 172, 178
getLong 317
getLongitude 424
getMatchValue 251
getMaximum 526
getMembers 266
getMessage 177
getMimeType 300, 519
getMinimum 526
getName 134, 153, 221, 264, 267, 386, 389,
416, 513, 526
getNestedException 109
getObjectClassDefinition 388
getOptionLabels 386
getOptionValues 387
getOutputArgumentNames 513
getPermissions 151
getPid 211
getProperties 211, 267, 353
getProperty 85, 101, 126, 216
getPropertyKeys 68, 126
getReason 216
getReference 127
getRegisteredServices 91
getRequiredMembers 266
getResource 56, 84, 91, 290, 300
getReturnArgumentName 513
getRole 270, 271
getRoles 265, 270
getScheme 296
getScope 337, 348, 350, 353
getService 68, 69, 102, 123, 374, 397, 398,
518
getServiceReference 72, 103, 122, 177, 271,
360, 398
getServiceReferences 103, 398
getServices 398, 518
getServicesInUse 92
getServiceTemplates 501
getSize 519
getSpecificationVersion 134
getSpeed 424
getStartLevel 144
OSGi Service-Platform Release 3 567-588

getState 58, 92
getStateVariable 513, 521
getStateVariables 521
getStep 526
getSystemPreferences 323
getThrowable 119, 360
getTime 177, 413, 416
getting

service properties 71
service reference objects 66

getTrack 424
getTrackingCount 398
getType 108, 119, 122, 153, 268, 272, 360,
387, 521
getUnit 413
getUPnPDataType 526
getUser 270
getUserPreferences 323
getUsers 323
getUsingBundles 127
getValue 348, 350, 413, 416
getVersion 522
getWidth 520
getWire 361

getWires 357
GET_CREDENTIAL 274
gnu.math 410
GPRS 33
GPS 421
grammar 44
granting access 263
graphic 508
greater 493
ground speed 422
GROUP 267
Group 265

addMember 266
addRequiredMember 266
getMembers 266
getRequiredMembers 266
removeMember 266

group 255, 258, 489
Jini 498, 499

GSM 24, 33
GUI 380
GUID 380, 485
Gy 417

H handler 160
handleSecurity 255, 292, 296, 300
hardware 39, 225, 339
hasCredential 269
hashCode 117, 121, 125, 153, 165, 167, 211,
274, 366, 414, 416, 419
Hashed Message Access Code 538
hasPermission 92
hasRole 259, 265
hasScope 354
header 42

authentication 296
Authorization 296
RSH 541

heater 331, 342
Hertz 408
hierarchical naming 306
hierarchy 483, 486, 506, 507
high score 305
history 511
HMAC 538
home 26
horse power 409
host 482, 504
hostile 27
hostsEqual 166, 167
hot-plugging 223

HPUX 64
HTML 42, 287, 290, 294
HTTP 158, 160, 279, 298, 503, 508, 536, 540
Http Context

default 293
Http Service 77, 255, 287, 394, 510
HttpConnection 279
HttpContext 255, 263, 287, 288, 290, 293,
297, 299

AUTHENTICATION_TYPE 299
AUTHORIZATION 299
getMimeType 300
getResource 300
handleSecurity 300
REMOTE_USER 299

HTTPS 296, 298, 536, 540
HttpService 287, 301

createDefaultHttpContext 301
registerResources 302
registerServlet 302
unregister 303

human 255
human intervention 489
humidity 328
hysteresis 342
Hz 408, 417

I IANA 294
icon 42, 380, 504, 511
ID 510, 515, 520
identical alias 293
identifier 20

identify 508
identity

composite 335
Measurement 406

IDL 203
568-588 OSGi Service-Platform Release 3

idle device 227, 236
idle driver 237, 244
IEEE 1394B 23, 228, 346
Ignite 64
IllegalArgumentException 142
IllegalStateException 160
image 287, 306

MIME 294
immutable 410, 422
implementation 51
implies 81, 88, 121, 125, 256, 259, 274, 366
IMPORT 48, 83, 120
import 45, 48, 49, 50, 56, 120, 132

dynamic 44, 48, 49, 85
Jini 497
Jini service 494
permission 83
static 49
UPnP 507

importing
package 48
services 76

Import-Package 48, 49, 50, 56, 59, 115
Import-Service 115
IMPORT_PACKAGE 114
IMPORT_SERVICE 115
inactive

driver bundle 246
inch 409
indirection 72
industrial 24
info 172
Initial Provisioning 20, 34, 529
initial request 530
initial start level 141
initialize 142
initiator 256
innovation 529
InputConnection 279
install 39, 57, 58, 59, 62, 80, 531

bundle 58
installation 32
installBundle 58, 86, 87, 104, 105, 531
INSTALLED 57, 78, 89, 108, 174
instance 46, 67, 72, 75
instantiate 49
int 404, 524
INTEGER 385
integrity 34, 542, 543
intent 336
interface 45, 51, 83, 428

AttributeDefinition 384
Authorization 264
Bundle 88
BundleActivator 97
BundleContext 98
BundleListener 109

Configurable 110
Configuration 209
ConfigurationAdmin 212
ConfigurationPlugin 216
ConnectionFactory 283
ConnectorService 283
Constants 110, 247
Consumer 348
Device 248
Driver 248
DriverLocator 250
DriverSelector 250
Envelope 350
ExportedPackage 133
Filter 116
FrameworkListener 119
Group 265
HttpContext 299
HttpService 301
Jini 497
JiniDriver 499
LogEntry 176
LogListener 177
LogReaderService 177
LogService 178
ManagedService 217
ManagedServiceFactory 219
Match 251
MetaTypeProvider 387
ObjectClassDefinition 388
PackageAdmin 134
PermissionAdmin 150
Preferences 312
PreferencesService 322
Producer 350
ProvisioningService 543
Role 267
ServiceFactory 123
ServiceListener 124
ServiceReference 125
ServiceRegistration 127
ServiceTrackerCustomizer 400
specification 39
StartLevel 143
SynchronousBundleListener 128
UPnPAction 513
UPnPDevice 514
UPnPEventListener 518
UPnPIcon 519
UPnPService 520
UPnPStateVariable 522
URLConstants 166
URLStreamHandlerService 167
URLStreamHandlerSetter 168
User 268
UserAdmin 269
UserAdminListener 272
OSGi Service-Platform Release 3 569-588

Wire 352
WireAdmin 356
WireAdminListener 361
WireConstants 361

intermediate node 308
intermittent 33
internal name 292
international 486
internet 21, 27, 287
inter-operability 24, 33
inter-operate 336
intersection 337
interval 404, 405
invalid 408
InvalidSyntaxException 119, 510

getFilter 120
InvalidSyntaxException 119

invoice 21
invoke 513
io.scheme 283

IO_SCHEME 283
IP 21, 24
IP address 481
IRIX 64
isAbsolute 149
isAssignableFrom 331
isBundlePersistentlyStarted 144
isConnected 354
ISDN 483
ISO 8601 511
ISP 21
isRemovalPending 134
isValid 354
i1 523
i2 523
i386 64
i4 523
i486 64
i586 64
i686 64

J J 417
JAAS 253, 262
JAR 42, 44, 49, 51, 56, 290, 427

based services 370
embedded 51
file 25
XML parser 367

Java Media Framework 49
javax.comm 235
javax.comm.SerialPort 228, 238
javax.microedition.io 277
javax.microedition.io.Connector 279, 280
javax.microedition.io.ContentConnec-
tion 279
javax.microedition.io.DatagramConnec-
tion 279
javax.microedition.io.HttpConnection
279
javax.microedition.io.InputConnection
279
javax.microedition.io.OutputConnection
279
javax.microedition.io.StreamConnection
279
javax.microedition.io.StreamConnection-
Notifier 279
javax.servlet 287
javax.servlet.Servlet 288
javax.xml.parsers 369, 371
javax.xml.parsers.DocumentBuilderFac-
tory 374
javax.xml.parsers.SAXParserFactory 374
java. 48
java.beans 383
java.content.handler.pkgs 160
java.io.FilePermission 149, 150
java.lang.ClassCastException 45

java.lang.Class.forName 49
java.lang.Class.newInstance 60
java.lang.Comparable 406
java.lang.IllegalArgumentException 142
java.lang.IllegalStateException 160
java.microedition.io.Connector 278
java.net.ContentHandler 156
java.net.ContentHandlerFactory 156
java.net.URL 156, 290
java.net.URLConnection 156, 163
java.net.URLStreamHandler 155, 160
java.net.URLStreamHandlerFactory 156,
160
java.protocol.handler.pkgs 160
java.rmi.MarshalException 498
java.rmi.MarshalledObject 498
java.rmi.NoSuchObjectExceptionRemote
498
java.rmi.RemoteException 498
java.rmi.UnmarshalException 498
java.security.AccessController 81
java.security.AllPermission 82, 148
java.security.BasicPermission 83, 339
java.security.Permission 149
java.security.ProtectionDomain 46
JAXP 369, 371, 372
JCP 409, 427
JDK 1.3 262
JINI 228
Jini 489
jini 500
Jini Driver 490, 495
JiniDriver 499

CM_LUS_EXPORT_GROUPS 500
CM_LUS_IMPORT_GROUPS 500
DEVICE_CATEGORY 500
ENTRIES 500
570-588 OSGi Service-Platform Release 3

EXPORT 500
getServiceTemplates 501
LUS_EXPORT_GROUPS 501
SERVICE_ID 501
setServiceTemplates 501

jini.entries 500
jini.export 501
jini.lus.export.groups 500, 501

jini.lus.import.groups 500
jini.service.id 501
JMF 49, 50
join 490, 496
JSR 409
J2ME 52, 277, 427
J2SE 262

K K 417
kat 417
Kawa 410
kelvin 408

keys 318
kg 417
kind 336, 339

L label 482
LAN 23
landlord 19
language 63, 85, 112, 378, 381
languagedef 54
large data object 306
latitude 422
launch 139
LDAP 379, 380
leak 543
lease 496
legacy 49, 509
legal iii
less 493
lessor 19
level 171

log 171
start 137

library 53, 60, 84
life cycle management 32, 57
life-cycle 59, 280, 496
light weight 347
limit update 339, 341
Linux 64
listConfigurations 215
listen 75
listener

log 175
listeners 79

types of 78
load 50, 53, 82, 305

native language code libraries 53
loadDriver 243, 244, 250
local 182
local device 22, 27
local network 499, 506
localdomain 483
locale 379, 380, 384, 408, 422, 486, 508, 511
localization 69, 378
location 44, 57, 58, 62, 149, 187, 531, 533,
535

configuration 199

lock 79
lock-step 311
log 179, 180

configuration 195, 196
PID 185
retrieve 172

Log Reader Service 172
Log Service 71
LogEntry 176

getBundle 176
getException 176
getLevel 176
getMessage 177
getServiceReference 177
getTime 177

logged 172, 177
LogListener 172, 177

logged 177
LogReaderService 177

addLogListener 178
getLog 178
removeLogListener 178

LogService 178
log 179, 180
LOG_DEBUG 178
LOG_ERROR 179
LOG_INFO 179
LOG_WARNING 179

LOG_DEBUG 171, 174, 178
LOG_ERROR 171, 179
LOG_INFO 172, 173, 179
LOG_WARNING 172, 179
LONG 385
longitude 422
Lonworks 228
lookup 492
lookup service

Jini 491
low-bandwidth 33
LUS_EXPORT_GROUPS 496, 501
lx 417

M m 417 MAC 538
OSGi Service-Platform Release 3 571-588

MacOS 64
malicious 143
manage

topology 347
managed 39
Managed Service 182, 189
managed service

configuration 191
create 198
delete 193
example 192

Managed Service Factory 182, 194
managed service factory

create 199
delete 196
example 196
register 195

ManagedService 217
updated 219

ManagedServiceFactory 219
deleted 220
getName 221
updated 221

managed-services 25
management 18, 31, 42, 325, 378, 380

agent 32, 131, 132
bundle 32
center 26
energy 26
fleet 26
policy 25
proprietary 33
protocol 24, 33, 529
security 35
self 26
system 33
user 306
vendor 33

Management Agent 32, 131, 133, 137, 142,
147, 183, 529, 532, 535

configuration 200
management system 383
manifest 42, 45

header 46, 47, 49, 51, 52, 53, 85
manifest header

retrieving 43
MANUFACTURER 515
manufacturer 530
MANUFACTURER_URL 515
mapping

framework event 173
HTTP to servlet, resources 292

marker 507
marker property 226
Mars Polar Lander 403
masquerade 331
Match 240, 243, 251

getDriver 251
getMatchValue 251

match 49, 117, 236, 249
device service 229
driver service 236

MATCH_GENERIC 508, 515
MATCH_MANUFACTURER_MODEL
515
MATCH_MANUFACTURER_MODEL_R
EVISION 515
MATCH_MANUFACTURER_MODEL_R
EVISION_SERIAL 515
MATCH_NONE 243, 248
MATCH_TYPE 515
MAX_VALUE 139
MD5 35
Measurement 328, 333, 403, 405, 410, 411,
422

add 411, 412
compareTo 412
div 412, 413
equals 413
getError 413
getTime 413
getUnit 413
getValue 413
hashCode 414
Measurement 411
mul 414
sub 414, 415
toString 415

measurement 339, 421
measurement system 409
media type 288, 294
mediation 24
member 258
memory usage 72
message 173, 279, 505

MIME 294
Message Authentication Codes 538
messaging 482
meta information 66
META-INF

services 370, 371
meta-type 204, 377
MetaTypeProvider 378, 379, 380, 387

getLocales 387
getObjectClassDefinition 388

meter 403
method 549
metric 403
microedition.configuration 53
microedition.profile 53
MIDP 53
migration 61
mile 408
millisecond 405
572-588 OSGi Service-Platform Release 3

MIME 156, 159, 290, 294, 531
content-type 294
type return 295

MIME_BUNDLE 531, 544
MIME_BUNDLE_URL 531, 544
MIME_BYTE_ARRAY 531, 544
MIME_STRING 531, 544
minimal 53, 427
minimalistic 77
Mips 64
mixed data type 205, 383
mobile 24, 282, 483
MODEL_DESCRIPTION 515
MODEL_NAME 515
MODEL_NUMBER 516
MODEL_URL 516
MODIFIED 122, 174
modifiedService 394, 399, 400
modify 65

scope 338
tracked service 394

modifyConfiguration 217
modifyProperties 202
mol 417
monitor 79, 393, 506
MOST 23
movement 328
movie 290
MP3 player 481
mul 414
multicasting 512
multipart

MIME 294
multiple 193
multiple wires 344
multiplexing driver 234
multiplication 403, 408
m_s 417
m_s2 417
m2 417
m3 417

N N 418
name 44, 318, 482
name server 482
name-space 45, 47, 337, 368, 370, 379, 481

XML parser 369
NamespaceException 287, 303

getException 304
NamespaceException 303

naming hierarchy 305
NAT 23, 34
native 428
native code 72, 84, 85

multiple 55
native-code 25, 44, 46, 53, 55, 57, 59, 339

algorithm 55
nativecode-clause 53
nativepaths 53
nested

arrays, vectors 383
domain 483

nested arrays 205
nested domain 482
NetBSD 64
Netware 64
network 23

access 34
address translation 23, 34
configuration 190
device 225
restrictions 34

network driver 232
network protocol 491

Network Provider 21
net.jini.admin 498
net.jini.core.discovery 498
net.jini.core.entry 498
net.jini.core.entry.Entry 492, 493, 494, 495
net.jini.core.event 498
net.jini.core.lease 498
net.jini.core.lookup 498
net.jini.core.lookup.ServiceRegistrar 492
net.jini.core.lookup.ServiceTemplate 492
net.jini.discovery 498
net.jini.lookup 498
net.jini.lookup.entry 498
newInstance 60
newPermissionCollection 88, 121, 125,
275, 366
NEWS 160
NID 487
nl_be 381
node 306, 308, 318, 485
nodeExists 308, 318
noDriverFound 248
nonce 538, 539
non-validate 368
notification 40, 511
notified 68
notify 61
notifyUPnPEvent 510, 518
NSS 487
number 524
numerical error 403, 405

O OBJECTCLASS 87, 115
objectClass 67, 69, 71, 115
objectclass 69

ObjectClassDefinition 378, 379, 381, 388
ALL 388
getAttributeDefinitions 388
OSGi Service-Platform Release 3 573-588

getDescription 388
getIcon 388
getID 389
getName 389
OPTIONAL 388
REQUIRED 388

obtaining
services 70

OCD 381
Ohm 418
OID 204, 379, 380
open 284, 285, 399
OpenBSD 64
openConnection 156, 163, 166, 167
openDataInputStream 285
openDataOutputStream 285
openInputStream 286
openOutputStream 286
operating system 25, 63, 64, 65
Operator 18, 19, 21, 24, 26, 65, 255, 259
optimization

device manager 244
OPTIONAL 388
optional 69, 70
org.osgi.framework 40, 87
org.osgi.framework.executionenviron-
ment 53, 63, 113
org.osgi.framework.language 63, 114
org.osgi.framework.os.name 64, 114
org.osgi.framework.os.version 55, 64, 114
org.osgi.framework.processor 63, 114
org.osgi.framework.vendor 63, 114
org.osgi.framework.version 63, 114
org.osgi.service.cm 209
org.osgi.service.Device 226
org.osgi.service.device 247
org.osgi.service.http 299
org.osgi.service.http.authentication.re-
mote.user 296, 300
org.osgi.service.http.authentication.type

296, 299
org.osgi.service.http.port 298
org.osgi.service.http.port.secure 298
org.osgi.service.io 283
org.osgi.service.jini 499
org.osgi.service.log 176
org.osgi.service.metatype 384
org.osgi.service.packageadmin 133
org.osgi.service.permissionadmin 150
org.osgi.service.prefs 312
org.osgi.service.provisioning 543
org.osgi.service.startlevel 143
org.osgi.service.upnp 512
org.osgi.service.url 165
org.osgi.service.useradmin 263
org.osgi.service.useradmin.authorization
296, 299
org.osgi.service.wireadmin 347
org.osgi.util.measurement 410
org.osgi.util.position 423
org.osgi.util.tracker 395
org.osgi.util.xml 373
org.w3c.dom 371
org.xml.sax 371
OSGI-OPT 42
OSGi/Minimum-1.0 53, 63
OSI 380
osname 112
osnamedef 54
osversion 112
osversiondef 54
OS/2 64
OS2 64
ounce 409
out-of-band 34
output 223
OutputConnection 279
overlap 506
overwhelm 335

P Pa 408, 418
package 42, 45, 47, 49, 50

description 47, 48
exporting 47
import 56
importing 48
Jini 497
name 47, 48, 49
permission 83
policy 131
sharing 46, 56, 67, 131, 132
split 50
status 131
unknown 50
version 47

Package Admin 49, 131, 132
PackageAdmin 132, 134

getExportedPackage 134
getExportedPackages 135
refreshPackages 135

PackagePermission 47, 49, 56, 82, 83, 120
equals 120
EXPORT 120
getActions 121
hashCode 121
implies 121
IMPORT 120
newPermissionCollection 121
PackagePermission 120

PACKAGES_REFRESHED 118, 132
PACKAGE_SPECIFICATION_VERSION
115
parallel port 226
parameter 47, 48
574-588 OSGi Service-Platform Release 3

parent 308, 319
parent domain 482
parent node 307
PARENT_UDN 507, 510, 516
PArisc 64
parse 481
parser

xml 367
parser.namespaceAware 374
parser.validating 374
PARSER_NAMESPACEAWARE 369, 374
PARSER_VALIDATING 369, 374
parseURL 161, 166, 167
pascal 408
password 253, 255, 257, 296
path 51, 485

preference 308
resources 292

PBX 26
PC 26
peer to peer 32, 499, 503
pentium 64
performance 339
periodic event 328
Permission 84
permission 32, 34, 56, 63, 70, 71, 77, 80, 81,
82, 147

bundle 84
checks 81
classpath 149
configuration bundle 205
Connection Factory 283
default 147, 148
device access 246
Http Service 297
import 149
Initial Provisioning 543
Jini 499
manipulate 148
package 83
persistent 148, 149
returning 84
scope 338
service 83
storage area 149
type 82
user admin 253, 262
white-space 150

Permission Admin 147, 148, 149, 535
PermissionAdmin 150

getDefaultPermissions 151
getLocations 151
getPermissions 151
setDefaultPermissions 151
setPermissions 152

PermissionInfo 149, 152
equals 153

getActions 153
getEncoded 153
getName 153
getType 153
hashCode 153
PermissionInfo 152
toString 154

persistent 57, 58, 61, 62, 70, 139, 305, 310,
331, 532

configuration 200
persistent storage area 62
Personal Java 53
pi 422
PID 70, 182, 185, 186, 189, 227, 326, 331,
334, 485

factory 195
registering a service with 185

PKI 21, 543
platform independence 39
pluggable authentication 263
plug-in 50, 183, 201

forcing callback 203
modify data 202
registration 206

policy 131, 132, 147, 172, 237, 246, 529
poll 330, 333, 338, 355
polled 352
port 483

HTTP(S) 298
80 288

port name 485
Position 328, 423, 424

getAltitude 424
getLatitude 424
getLongitude 424
getSpeed 424
getTrack 424
Position 424

pound 409
power 64
PowerPC 64
ppc 64
Preferences 306, 312

absolutePath 314
childrenNames 314
clear 314
flush 314
get 315
getBoolean 315
getByteArray 315
getDouble 316
getFloat 316
getInt 317
getLong 317
keys 318
name 318
node 318
OSGi Service-Platform Release 3 575-588

nodeExists 318
parent 319
put 319
putBoolean 319
putByteArray 320
putDouble 320
putFloat 320
putInt 321
putLong 321
remove 322
removeNode 322
sync 322

Preferences Service 305
PreferencesService 322

getSystemPreferences 323
getUserPreferences 323
getUsers 323

preferred type 343
prefix 290
presence 493, 496
presentation 408
PRESENTATION_URL 510, 516
primary key 183
primitive 68
primitive type 309
printer 225, 493
priority 160, 280

high 138
privacy 35
private key 258
privilege 82, 147, 256
privileged 82
privileged state 81
probability 404
processor 63, 112
processordef 54
procnto 64
procurement 24
PRODUCE 337, 365
produce 365
Producer 327, 328, 330, 350, 423

consumersConnected 351
polled 352

producersConnected 332, 333, 338, 349
PRODUCER_EXCEPTION 345, 358
profile 52, 381, 427
Properties 305, 381
properties 377

automatic 189
configuration 188
consumer 331
EE 53
environment 63
getting service 71
Jini 492
marker 507
name 63

name-space 69
objectclass 69
pre-defined 69
preference 305, 307, 309
pre-process 68
propagation of 188
registration 67
service 68, 69
service object 66, 67, 71
service registration 68
service types of 69
ServiceReference 66
service.id 69
service.pid 70
service.ranking 70
service.vendor 70
System 499
system 49, 55, 64, 65
UPnP 507, 510
user 255, 256, 261
wire admin 326, 334, 344
XML parser 368, 369, 371

proportional 342
proprietary 24, 483
proprietary devices 505
protected 161
protected resource 82
ProtectionDomain 46, 56, 262
protocol 277, 287, 498

OSGi specific 538
provision 34, 530, 533

XML parser 372
Provisioning Dictionary 531, 541, 543
Provisioning Service 531
ProvisioningService 543

addInformation 545
getInformation 546
MIME_BUNDLE 544
MIME_BUNDLE_URL 544
MIME_BYTE_ARRAY 544
MIME_STRING 544
PROVISIONING_AGENT_CONFIG 544
PROVISIONING_REFERENCE 544
PROVISIONING_ROOTX509 545
PROVISIONING_RSH_SECRET 545
PROVISIONING_SPID 545
PROVISIONING_START_BUNDLE 545
PROVISIONING_UPDATE_COUNT 545
setInformation 546

provisioning.agent.config 544
provisioning.reference 545
provisioning.rootx509 545
provisioning.rsh.secret 545
provisioning.spid 545
provisioning.start.bundle 545
provisioning.update.count 545
PROVISIONING_AGENT_CONFIG 533,
576-588 OSGi Service-Platform Release 3

535, 544
PROVISIONING_REFERENCE 532, 533,
544
PROVISIONING_ROOTX509 536, 545
PROVISIONING_RSH_SECRET 541, 545
PROVISIONING_SPID 533, 545
PROVISIONING_START_BUNDLE 532,
545
PROVISIONING_UPDATE_COUNT 545
proxy 156, 159, 161, 490, 492, 496, 499
pruning 237
psc1k 64

public key 35, 257
Public Key Infrastructure 543
pull 330
pure consuming driver 235
push 330
put 319
putBoolean 319
putByteArray 320
putDouble 320
putFloat 320
putInt 321
putLong 321

Q QNX 64
qualified name 45, 47
qualifier 427, 428
qualifying 70

quantitatively derived 404
query 65, 504, 511
QueryStateVariable 509

R race condition 192, 198, 202, 236, 241
configuration 195

rad 418
radian 422
rate 339
READ 284
read back 310
readability

PID 185
READ_WRITE 284
realHandler 165
receive 333
reclamation

driver bundle 245
record 172
recursive data type 383
reference 72
referral 233, 244
referring driver 233, 237
refine 507
refining driver 232, 241, 245
reflection 377
refresh 131, 132
refreshPackages 61, 133, 135
REGISTER 70, 83, 124
register 60, 65, 70, 83, 124, 495

device 226
device service 226, 246
device, driver service simultaneous 246
driver service 235, 246
managed service factory 195
multiple service interfaces 67
resources 290
scope names 337
services 66
servlets 288
servlet, resource 292
single service interface 67

REGISTERED 122, 174, 245
registerResources 302

registerService 67, 68, 105, 106
registerServlet 302
registrate

driver service 235, 246
registration authority 21
relative address 483
relative delta 342
relative path 149

preference 308
release

driver service 236
service 76

reliability 305
remote 182, 307
remote controller 504, 508, 509
remote execution 496
remote management 24, 203, 205, 378
Remote Manager 32, 142, 529
remote service 499
remote user 296
REMOTE_USER 296, 299
remove 322, 399

role 261
removeBundleListener 106
removedService 238, 394, 399, 400
removeFrameworkListener 107
removeLogListener 178
removeMember 266
removeNode 322
removeRole 270
removeServiceListener 107
replay attack 538, 541
repository

role 256
user admin 261

representation
device 225

request
authentication 295
authorization 295
OSGi Service-Platform Release 3 577-588

HTTP 293, 295
requested start level 139
REQUIRED 388
required member 259
required role 255
resident 260
residential gateway 22, 23, 481
resolve 42, 45, 48, 49, 50, 59

bundle 59
dependencies 59

RESOLVED 57, 59, 60, 89
resources 42, 45, 49, 51, 55, 56, 62, 287

Http Service 290
register 290
registrate 263
security 297

restart 61, 142
retrieve 172, 305

log 172, 173
manifest headers 43

returning
bundle permissions 84
registered services 72

reverse domain name 380, 485
RMI 498
ROLE 267

Role 267
getName 267
getProperties 267
getType 268
GROUP 267
ROLE 267
USER 267

role 255
role based model 258
roleChanged 272
ROLE_CHANGED 271
ROLE_CREATED 271
ROLE_REMOVED 271
root 306, 485
root certificate 536
root device 503, 507
root node 307, 308
router 23, 26, 481
RSH 540, 541, 542
rsh

scheme 541
run-level 137
RuntimePermission 53
r4 524
r8 524

S S 418
s 418
safe mode 138, 142
Salutation 225, 228
sameFile 166, 168
SampleManagedService 192
SAX 367, 368, 369, 371
SAXCLASSFILE 371, 374
SAXFACTORYNAME 371, 374
SAXParserFactory 369, 371
scalable 39
scalar value 306
scheme 158, 163, 278, 281, 535
scope 204, 337

attribute 379
modify 338

scope name 336
SC_FORBIDDEN 296
SC_UNAUTHORIZED 296
search 66, 69, 71, 73

configuration 199
secret 256, 257, 543
secure 27, 34, 39, 296

card 257
security 27, 35, 62, 71, 78, 80, 84, 487

architecture 489
association 34
device access 246
driver locator 237
Framework 80
implementing 205

location binding 187
log 175
lone term 543
Package Admin 132
permission 205
Permission Admin 150
reference architecture 27
stubs 80
URL 164
user admin 262
wire admin 347
XML parser 372

SecurityException 70, 77, 80, 86, 87, 187
select 250
SELECT_NONE 243, 250
self configuration

configuration

self 506
semaphore 79
sendsEvents 526
sensitive information 543
sensor 328
serial number 20, 227

PID 186
serial port 194, 228, 232, 235, 238, 278
serialization 346, 381, 490, 496
SerialPort 238
SERIAL_NUMBER 516
serverfg 538
service 39, 42, 504

device 225
578-588 OSGi Service-Platform Release 3

interface 65
object 65
registry 40

Service Aggregator 19
Service Application 18
Service Deployment Manager 18, 22, 26
Service Developer 19
service factories

using 74
Service Factory 74
service id

Jini 495
service interface 66, 67, 70, 71, 72

accessing 66
service object 65, 66, 67, 69, 70, 71, 75, 76,
77

authorized 81
cached 72, 75
expose 81
meta information 66
permission 70, 78
properties 67, 68
register 67, 82, 83
release 76, 77
resource access 81
Service Factory 74
service.pid 70
stale references 72
unique 75
unregister 66, 67, 76
usage count 71, 75, 76, 77

Service Operations Support 18, 19, 22
Service Platform 42, 53
Service Platform Identifier 20, 531, 533,
537, 540
Service Platform Server 19, 20, 22, 63
Service Platform Server Manufacturer 19
Service Platform Server Owner 19
Service Provider 18, 22
service reference object

get 66
Service Registrar 489, 492, 493
service registration properties 330
service registry 65, 66, 69, 76, 77

properties 189
service template 494
service usage 72
Service User 18, 19, 26
serviceChanged 124
ServiceEvent 77, 78, 121, 122, 174

getServiceReference 122
getType 122
MODIFIED 122
REGISTERED 122
ServiceEvent 122
UNREGISTERING 122

ServiceFactory 68, 72, 75, 82, 123, 311

getService 123
ungetService 123

ServiceListener 78, 82, 124
serviceChanged 124

ServicePermission 70, 71, 72, 81, 82, 83,
124, 132, 143, 150, 246

equals 125
GET 124
getActions 125
hashCode 125
implies 125
newPermissionCollection 125
REGISTER 124
ServicePermission 124

service-platform 18
service-platform-server 18
ServiceReference 66, 67, 70, 74, 75, 125

getBundle 126
getProperty 126
getPropertyKeys 126
getUsingBundles 127

ServiceRegistrar 493
ServiceRegistration 67, 68, 76, 86, 127

getReference 127
setProperties 127
unregister 127

services 65
exporting 76
importing 76
obtaining 70
registering 66
releasing 76
returning registered 72
unregistering 76

ServiceTemplate 492
ServiceTracker 238, 395, 396, 397, 509

addingService 397
close 397
context 396
filter 396
finalize 397
getService 397, 398
getServiceReference 398
getServiceReferences 398
getServices 398
getTrackingCount 398
modifiedService 399
open 399
remove 399
removedService 399
ServiceTracker 396, 397
size 399
waitForService 399

ServiceTrackerCustomizer 400
addingService 400
modifiedService 400
removedService 400
OSGi Service-Platform Release 3 579-588

service.bundleLocation 189, 213
service.cmRanking 203
service.description 69, 115
service.factoryPid 189, 213
service.id 69, 115, 240, 281
service.pid 70, 115, 182, 185, 189, 227, 329,
331
service.ranking 70, 116, 240, 281
service.vendor 70, 116
SERVICE_BUNDLELOCATION 213
SERVICE_DESCRIPTION 69, 115
SERVICE_FACTORYPID 213
SERVICE_ID 71, 115, 492, 495, 497, 501
SERVICE_PID 70, 115, 185
service_platform_id 537, 542
SERVICE_RANKING 71, 116, 159
SERVICE_VENDOR 116
servlet 256, 258, 263, 287, 294, 378, 394,
510

register 288
ServletConfig 289
ServletContext 289, 294
setBundleLocation 211
setBundleStartLevel 145
setContentHandlerFactory 159
setDefaultPermissions 151
setDOMProperties 374
setInformation 546
setInitialBundleStartLevel 145
setPermissions 149, 152
setProperties 127
setSAXProperties 375
setServiceTemplates 501
setStartLevel 145
setURL 161, 166, 168
setURLStreamHandlerFactory 159
severity 171
shared secret 35, 257, 538, 540, 543
sharing 45, 71

package 46
SHORT 385
shutdown 79, 80, 137, 139, 141
SI 404, 405, 407, 408, 421
sibling 308
signature 21, 51, 63, 257, 427, 428
signed 538
signer 256, 257
simplicity 305
singleton 132, 148, 190, 240, 241
size 399
SLP 493
small variation 342
smart-card 20, 530, 532, 542
SMS 24
sms: scheme 279
snapshot 78
SNMP 203, 204, 377, 379

SocketPermission 297
socket: scheme 279
software company 19
software PID 186
Solaris 64
SOS 19
sound 290, 506
source code 42
space 51, 369
Sparc 64
specification

device catetogy 228
specification version 48, 63

lower 50
specification-version 47, 115
speed 421
SPID 20
splash screen 138, 142
split 50
SPS 19, 22, 26
SPSM 19
SSL 296
stable 39, 51
stacking depth 234
stack-trace 173
stale reference 173
standard 378
standardized devices 505
start 44, 50, 57, 58, 59, 60, 82, 93, 97, 139,
375

bundle 59
Start Level 58, 59, 80
start level 137
STARTED 86, 108, 118, 142, 174
STARTING 57, 80, 90
starting

device manager 241
StartLevel 143

getBundleStartLevel 144
getInitialBundleStartLevel 144
getStartLevel 144
isBundlePersistentlyStarted 144
setBundleStartLevel 145
setInitialBundleStartLevel 145
setStartLevel 145

STARTLEVEL_CHANGED 118, 140
startup 79
start-up 137

preference 311
State 403, 409, 415

equals 415
getName 416
getTime 416
getValue 416
hashCode 416
State 415
toString 416
580-588 OSGi Service-Platform Release 3

state 59, 61, 80
state variable 504, 507, 509, 511
static initializers 82, 86
stop 44, 57, 58, 59, 60, 65, 67, 72, 80, 94, 98,
139, 375

bundle 60
STOPPED 108, 174
STOPPING 57, 80, 90
storage area 305

permission 149
store 305
StreamConnection 279
StreamConnectionNotifier 279
strictfp 428
STRING 385
string 524
stubs 86
sub 414, 415
sub domain 482
sub-device 506
SubjectDomainCombiner 262
subscription 20
sub-string

Http Service 292
subtraction 403
SunOS 64
suspended 80

switch 540
symmetry 394
sync 310, 322
synchronize 79, 196, 333, 428, 511
SynchronousBundleListener 78, 128, 148
synchronously 68, 77, 78, 200
syntax

Bundle-Classpath 51
Bundle-NativeCode 53
Export-Package 47
filter 73
scope name 337, 339

System Bundle 80, 116, 132
system bundle 132
system classloader 56
system classpath 56
system data 305
system properties 307

XML parser 369
system root 311
system service 132
system user 260
Systéme International dÚnité 407
Systéme International d’Unité 404
System.currentTimeMillis 405
SYSTEM_BUNDLE_LOCATION 116

T T 418
telephone number 255
telephony 483
Telia 27
temperature 328
Template 490
template 191
temporary port 485
tenant 19
text 531

MIME 294
text/plain 544
text/x-osgi-bundle-url 544
thread 60, 78, 79, 282
threat 489, 499
Throwable 173
time 511, 524

log 173
time-out 79, 393
time-stamp 405
time.tz 511, 524
toExternalForm 166, 168
token-card 253, 256
top domain 482, 483
topology 231, 325, 328, 329, 343
toString 117, 154, 275, 366, 415, 416, 419
track 78, 344
tracking count 393
trademark 503
traffic 23

trajectory 403
transient information 202
transition 140
traverse 201, 307, 309
tree 306, 307, 308
triggered 541
Trojan horse 246
truck-roll 27
true north 422
trust 19, 256
trusted bundles 282
trusted source 258
tuner 506
TV 505, 506
TYPE 510, 516, 520
type

meta 377
MIME 294
permission 82

type safe 384
type-safe 377
TYPE_BIN_BASE64 522
TYPE_BIN_HEX 522
TYPE_BOOLEAN 522
TYPE_CHAR 522
TYPE_DATE 522
TYPE_DATETIME 523
TYPE_DATETIME_TZ 523
TYPE_FIXED_14_4 523
TYPE_FLOAT 523
OSGi Service-Platform Release 3 581-588

TYPE_INT 524
TYPE_I1 523
TYPE_I2 523
TYPE_I4 523
TYPE_NUMBER 524
TYPE_R4 524
TYPE_R8 524
TYPE_STRING 524

TYPE_TIME 524
TYPE_TIME_TZ 524
TYPE_UI1 525
TYPE_UI2 525
TYPE_UI4 525
TYPE_URI 525
TYPE_UUID 525
TZ 511

U UDN 504, 507, 510, 517
UDP 503
ui1 525
ui2 525
ui4 525
unattach 236
ungetService 75, 107, 123, 375
unicast 498
Unicode 339
Unidata API 409
Uniform Resource Name 486
uninstall 51, 58, 59, 61, 94, 131

bundle 61
preference 311

UNINSTALLED 43, 57, 61, 90, 108, 174,
245
unique 57, 67, 69, 70, 185, 380, 485, 504

property 257
tokens 257

Unit 416
A 416
C 416
cd 416
equals 418
F 416
Gy 417
hashCode 419
Hz 417
J 417
K 417
kat 417
kg 417
lx 417
m 417
mol 417
m_s 417
m_s2 417
m2 417
m3 417
N 418
Ohm 418
Pa 418
rad 418
S 418
s 418
T 418
toString 419
unity 418
V 418

W 418
Wb 418

unit 403, 422
unity 418
UNREGISTER 245
unregister 60, 65, 72, 76, 127, 261, 303

device service 227
driver service 236
services 76

unregistered 65, 73
UNREGISTERING 77, 122, 174
UPC 517
update 39, 51, 57, 59, 60, 61, 95, 97, 131,
195, 211, 212, 330, 333, 338, 355

bundle 60
configuration 200
driver bundle 245
dynamic 224
wire admin 341

UPDATED 108, 174
updated 219, 221, 349
updateWire 357
upgrade 29
UPnP 228, 514
UPnP Forum 503, 505
UPnPAction 513

getInputArgumentNames 513
getName 513
getOutputArgumentNames 513
getReturnArgumentName 513
getStateVariable 513
invoke 513

UPnPDevice 514
CHILDREN_UDN 514
DEVICE_CATEGORY 514
FRIENDLY_NAME 514
getDescriptions 517
getIcons 517
getService 518
getServices 518
ID 515
MANUFACTURER 515
MANUFACTURER_URL 515
MATCH_GENERIC 515
MATCH_MANUFACTURER_MODEL

515
MATCH_MANUFACTURER_MODEL_R

EVISION 515
MATCH_MANUFACTURER_MODEL_R
582-588 OSGi Service-Platform Release 3

EVISION_SERIAL 515
MATCH_TYPE 515
MODEL_DESCRIPTION 515
MODEL_NAME 515
MODEL_NUMBER 516
MODEL_URL 516
PARENT_UDN 516
PRESENTATION_URL 516
SERIAL_NUMBER 516
TYPE 516
UDN 517
UPC 517
UPNP_EXPORT 517

UPnPEventListener 510, 518
notifyUPnPEvent 518
UPNP_FILTER 518

UPnPEventListenerService 510
UPnPIcon 508, 519

getDepth 519
getHeight 519
getInputStream 519
getMimeType 519
getSize 519
getWidth 520

UPnPService 504, 520
getAction 520
getActions 520
getId 520
getStateVariable 521
getStateVariables 521
getType 521
getVersion 522
ID 520
TYPE 520

UPnPStateVariable 504, 522
getAllowedValues 525
getDefaultValue 525
getJavaDataType 525
getMaximum 526
getMinimum 526
getName 526
getStep 526
getUPnPDataType 526
sendsEvents 526
TYPE_BIN_BASE64 522
TYPE_BIN_HEX 522
TYPE_BOOLEAN 522
TYPE_CHAR 522
TYPE_DATE 522
TYPE_DATETIME 523
TYPE_DATETIME_TZ 523
TYPE_FIXED_14_4 523
TYPE_FLOAT 523
TYPE_INT 524
TYPE_I1 523
TYPE_I2 523
TYPE_I4 523

TYPE_NUMBER 524
TYPE_R4 524
TYPE_R8 524
TYPE_STRING 524
TYPE_TIME 524
TYPE_TIME_TZ 524
TYPE_UI1 525
TYPE_UI2 525
TYPE_UI4 525
TYPE_URI 525
TYPE_UUID 525

UpnPStateVariable 510
UPnP.device.childrenUDN 514
UPnP.device.friendlyName 515
UPnP.device.manufacturer 515
UPnP.device.manufacturerURL 515
UPnP.device.modelDescription 515
UPnP.device.modelName 516
UPnP.device.modelNumber 516
UPnP.device.modelURL 516
UPnP.device.parentUDN 516
UPnP.device.serialNumber 516
UPnP.device.type 516
UPnP.device.UDN 515, 517
UPnP.device.UPC 517
UPnP.export 517
upnp.filter 510, 518
UPnP.presentationURL 516
UPnP.service.id 520
UPnP.service.type 520
upnp.ssdp.address 512
UPNP_EXPORT 508, 510, 517
UPNP_FILTER 518
URI 278, 287, 295
uri 525
URL 156, 292, 481
URLConnection 156, 163
URLConstants 166

URL_CONTENT_MIMETYPE 167
URL_HANDLER_PROTOCOL 167

URLStreamHandler 84, 155, 160
URLStreamHandlerFactory 156, 160
URLStreamHandlerService 156, 167

equals 167
getDefaultPort 167
getHostAddress 167
hashCode 167
hostsEqual 167
openConnection 167
parseURL 167
sameFile 168
toExternalForm 168

URLStreamHandlerSetter 156, 168
setURL 168

url.content.mimetype 167
url.handler.protocol 167
URL_CONTENT_MIMETYPE 167
OSGi Service-Platform Release 3 583-588

URL_HANDLER_PROTOCOL 167
URN 481, 486
US-ASCII 483
USB 225, 228, 238
USER 267
User 268

getCredentials 268
hasCredential 269

user 253, 505
authentication 295
new 306
preference 305, 306

User Admin 81, 253, 296
user group 260
user interface 325, 344, 379, 380, 505, 509
user management 306
user root 311
UserAdmin 269

createRole 269
getAuthorization 270
getRole 270
getRoles 270
getUser 270
removeRole 270

UserAdminEvent 271

getRole 271
getServiceReference 271
getType 272
ROLE_CHANGED 271
ROLE_CREATED 271
ROLE_REMOVED 271
UserAdminEvent 271

UserAdminListener 272
roleChanged 272

UserAdminPermission 81, 272, 274
ADMIN 274
CHANGE_CREDENTIAL 274
CHANGE_PROPERTY 274
equals 274
getActions 274
GET_CREDENTIAL 274
hashCode 274
implies 274
newPermissionCollection 275
toString 275
UserAdminPermission 274

using
service tracker 393

uuid 525

V V 408, 418
valid 328
validate 368, 369, 370, 378, 380, 387
value 405
variation 381
vehicle 23
vendor 44, 63, 70
vendor-specific 294
verification

scope 337
version 44, 47, 48, 50

migration 61
operating system 64
specification 63

version specification 45
versioning 384
vertical speed 422
video

camera 345
MIME 294

virtual 26
virus 489, 499
visitor pattern 336
VM 19, 59, 77, 496
volatile 428
volt 408
VPN 536
VxWorks 64

W W 418
waitForService 393, 399
WAN 22, 23, 24, 534
WAP 24
warning 172
watchdog 190
watt 408
Wb 418
web 287
WGS-84 421
whiteboard 510
white-space

permission 150
WiFi 26
wildcard 49, 56, 83, 339

scope 337
WinCE 65

windows registry 308
WindowsCE 65
WindowsNT 65
WindowsXP 65
Windows2000 65
Windows95 64
Windows98 64
WinNT 65
WinXP 65
Win2000 65
Win95 64
Win98 64
Wire 327, 330, 336, 352

getFlavors 353
getLastValue 353
getProperties 353
getScope 353
584-588 OSGi Service-Platform Release 3

hasScope 354
isConnected 354
isValid 354
poll 355
update 355

Wire Admin 421, 423
WireAdmin 356

createWire 356
deleteWire 357
getWires 357
updateWire 357

WireAdminEvent 344, 358, 360
CONSUMER_EXCEPTION 358
getServiceReference 360
getThrowable 360
getType 360
getWire 361
PRODUCER_EXCEPTION 358
WireAdminEvent 360
WIRE_CONNECTED 359
WIRE_CREATED 359
WIRE_DELETED 359
WIRE_DISCONNECTED 359
WIRE_TRACE 359
WIRE_UPDATED 360

wireAdminEvent 361
WireAdminListener 344, 361

wireAdminEvent 361
wireadmin.consumer.composite 362
wireadmin.consumer.flavors 332, 362
wireadmin.consumer.pid 362
wireadmin.consumer.scope 362
wireadmin.events 362
wireadmin.filter 363
wireadmin.pid 363
wireadmin.producer.composite 363
wireadmin.producer.filters 329, 364
wireadmin.producer.flavors 329, 364
wireadmin.producer.pid 364
wireadmin.producer.scope 364
WIREADMIN_CONSUMER_COMPOSIT
E 335, 362
WIREADMIN_CONSUMER_FLAVORS
362
WIREADMIN_CONSUMER_PID 334, 362
WIREADMIN_CONSUMER_SCOPE 337,
362
WIREADMIN_EVENTS 344, 362
WIREADMIN_FILTER 334, 339, 362
WIREADMIN_PID 334, 363
WIREADMIN_PRODUCER_COMPOSITE
335, 363
WIREADMIN_PRODUCER_FILTERS 341,
363
WIREADMIN_PRODUCER_FLAVORS
364
WIREADMIN_PRODUCER_PID 334, 364

WIREADMIN_PRODUCER_SCOPE 337,
364
WIREADMIN_SCOPE_ALL 338, 364
WireConstants 361

WIREADMIN_CONSUMER_COMPOSIT

E 362
WIREADMIN_CONSUMER_FLAVORS

362
WIREADMIN_CONSUMER_PID 362
WIREADMIN_CONSUMER_SCOPE 362
WIREADMIN_EVENTS 362
WIREADMIN_FILTER 362
WIREADMIN_PID 363
WIREADMIN_PRODUCER_COMPOSIT

E 363
WIREADMIN_PRODUCER_FILTERS 363
WIREADMIN_PRODUCER_FLAVORS

364
WIREADMIN_PRODUCER_PID 364
WIREADMIN_PRODUCER_SCOPE 364
WIREADMIN_SCOPE_ALL 364
WIREVALUE_CURRENT 364
WIREVALUE_DELTA_ABSOLUTE 364
WIREVALUE_DELTA_RELATIVE 365
WIREVALUE_ELAPSED 365
WIREVALUE_PREVIOUS 365

wireless 23, 223
WirePermission 337, 339, 365

CONSUME 365
equals 365
getActions 365
hashCode 366
implies 366
newPermissionCollection 366
PRODUCE 365
toString 366
WirePermission 365

wirevalue.current 364
wirevalue.delta.absolute 364
wirevalue.delta.relative 365
wirevalue.elapsed 341, 365
wirevalue.previous 365
WIREVALUE_CURRENT 340, 364
WIREVALUE_DELTA_ABSOLUTE 340,
364
WIREVALUE_DELTA_RELATIVE 340,
365
WIREVALUE_ELAPSED 340, 365
WIREVALUE_PREVIOUS 340, 365
WIRE_CONNECTED 345, 359
WIRE_CREATED 345, 359
WIRE_DELETED 345, 359
WIRE_DISCONNECTED 345, 359
WIRE_TRACE 345, 359
WIRE_UPDATED 345, 360
wiring 325
worm 489, 499
OSGi Service-Platform Release 3 585-588

WRITE 284 WWW-Authenticate 296

X xlmns 369
XML 287, 367, 368, 381, 383, 503

Schema 511
XML parser 370
XMLParserActivator 370, 371, 373, 374

DOMCLASSFILE 373
DOMFACTORYNAME 373
getService 374
PARSER_NAMESPACEAWARE 374
PARSER_VALIDATING 374
SAXCLASSFILE 374
SAXFACTORYNAME 374
setDOMProperties 374

setSAXProperties 375
start 375
stop 375
ungetService 375
XMLParserActivator 374

x-osgi- bundle-url 531
x-osgi-bundle 531, 535
x-osgi-bundle-URL 535
xsl 369
X.500 379, 380
X.509 537
x86 64

Y yard 409

Z ZIP 42, 531 extra field 531

Symbols /META-INF/services/javax.xml.pars-
ers.DocumentBuilderFactory 373

/META-INF/services/javax.xml.pars-
ers.SAXParserFactory 374

Numerics 68k 63
586-588 OSGi Service-Platform Release 3

OSGi Service-Platform Release 3 587-588

588-588 OSGi Service-Platform Release 3

End Of Document

	1 Introduction
	1.1 Sections
	1.2 What is New In Release 3
	1.3 Reader Level
	1.4 Conventions and Terms
	1.4.1 Typography
	1.4.2 Object Oriented Terminology
	1.4.3 Diagrams
	1.4.4 Key Words

	1.5 The Specification Process
	1.6 Version Information
	1.7 Compliance Program
	1.7.1 Compliance Claims.

	1.8 References

	Reference Section
	2 Reference Architecture
	2.1 Introduction
	2.1.1 Essentials
	2.1.2 Entities

	2.2 Entity Descriptions
	2.2.1 Service Platform
	2.2.2 Service Platform Server
	2.2.3 Operator
	2.2.4 Service Application
	2.2.5 Service User
	2.2.6 Service Provider
	2.2.7 Service Deployment Manager
	2.2.8 Service Operations Support
	2.2.9 Service Developer
	2.2.10 Service Aggregator
	2.2.11 Manufacturer
	2.2.12 Owner
	2.2.13 Service Platform Identifier
	2.2.14 Service Customer
	2.2.15 Network Provider
	2.2.16 Charging Provider
	2.2.17 Certification Authority

	2.3 The Service Gateway Model
	2.3.1 System environment for a service gateway

	2.4 Other Models
	2.4.1 Industrial Model
	2.4.2 Self-Managed Model
	2.4.3 Virtual Gateway Model

	2.5 Security
	2.6 References

	3 Remote Management Reference Architecture
	3.1 Introduction
	3.1.1 Essentials
	3.1.2 Entities

	3.2 Scope
	3.2.1 Remote Manager
	3.2.2 Management Agent

	3.3 Communications
	3.3.1 Connectivity
	3.3.2 Protocols
	3.3.3 Secure Connections
	3.3.4 Network Restrictions

	3.4 Initial Provisioning
	3.5 Security
	3.6 References

	Normative Section
	4 Framework Specification
	4.1 Introduction
	4.1.1 Entities

	4.2 Bundles
	4.2.1 The System Bundle

	4.3 Manifest Headers
	4.3.1 Retrieving Manifest Headers
	4.3.2 Manifest Headers

	4.4 The Bundle Name-space
	4.4.1 Bundles and Classloaders
	4.4.2 Sharing Packages
	4.4.3 Exporting Packages
	4.4.4 Importing Packages
	4.4.5 Dynamically Importing Packages
	4.4.6 Importing a Lower Version Than Exporting
	4.4.7 Code Executed Before Started
	4.4.8 Recommended Export Strategy
	4.4.9 Bundle Classpath

	4.5 Execution Environment
	4.5.1 Naming of Execution Environments

	4.6 Loading Native Code Libraries
	4.6.1 Native Code Algorithm

	4.7 Finding Classes and Resources
	4.7.1 Resources
	4.7.2 Automatically Importing java.*

	4.8 The Bundle Object
	4.8.1 Bundle Identifier
	4.8.2 Bundle Location
	4.8.3 Bundle State
	4.8.4 Installing Bundles
	4.8.5 Resolving Bundles
	4.8.6 Starting Bundles
	4.8.7 Stopping Bundles
	4.8.8 Updating Bundles
	4.8.9 Uninstalling Bundles

	4.9 The Bundle Context
	4.9.1 Getting Bundle Information
	4.9.2 Persistent Storage
	4.9.3 Environment Properties

	4.10 Services
	4.10.1 ServiceReference Objects
	4.10.2 Service Interfaces
	4.10.3 Registering Services
	4.10.4 Early Need For ServiceRegistration Object
	4.10.5 Service Registration Properties
	4.10.6 Permission Check
	4.10.7 Obtaining Services
	4.10.8 Getting Service Properties
	4.10.9 Getting Service Objects
	4.10.10 Information About Registered Services

	4.11 Stale References
	4.12 Filters
	4.13 Service Factories
	4.14 Importing and Exporting Services
	4.15 Releasing Services
	4.16 Unregistering Services
	4.17 Configurable Services
	4.18 Events
	4.18.1 Listeners
	4.18.2 Delivering Events
	4.18.3 Synchronization Pitfalls

	4.19 Framework Startup and Shutdown
	4.19.1 Startup
	4.19.2 Shutdown

	4.20 Security
	4.20.1 Permission Checks
	4.20.2 Privileged Callbacks
	4.20.3 Permission Types
	4.20.4 AdminPermission
	4.20.5 Service Permission
	4.20.6 Package Permission
	4.20.7 Bundle Permissions

	4.21 The Framework on Java 1.1
	4.21.1 ClassLoader.getResource
	4.21.2 ClassLoader.findLibrary
	4.21.3 Resource URL
	4.21.4 Comparable

	4.22 Changes
	4.22.1 Dynamic Import
	4.22.2 Automatic Import of Java
	4.22.3 Native Code
	4.22.4 Synchronization Pitfalls
	4.22.5 New Constants
	4.22.6 Different Default File Permissions
	4.22.7 Use of System Properties
	4.22.8 Registering Services Under Classes of Non Imported Packages
	4.22.9 Removed Reference to BigInteger/BigDecimal
	4.22.10 Security
	4.22.11 Bundle-RequiredExcecutionEnvironment
	4.22.12 Filter name allows spaces
	4.22.13 Source of FrameworkEvent.STARTED
	4.22.14 Early Access to ServiceRegistration
	4.22.15 Minor clarifications

	4.23 org.osgi.framework
	4.23.1 Summary
	4.23.2 public final class AdminPermission extends BasicPermission
	4.23.3 public interface Bundle
	4.23.4 public interface BundleActivator
	4.23.5 public interface BundleContext
	4.23.6 public class BundleEvent extends EventObject
	4.23.7 public class BundleException extends Exception
	4.23.8 public interface BundleListener extends EventListener
	4.23.9 public interface Configurable
	4.23.10 public interface Constants
	4.23.11 public interface Filter
	4.23.12 public class FrameworkEvent extends EventObject
	4.23.13 public interface FrameworkListener extends EventListener
	4.23.14 public class InvalidSyntaxException extends Exception
	4.23.15 public final class PackagePermission extends BasicPermission
	4.23.16 public class ServiceEvent extends EventObject
	4.23.17 public interface ServiceFactory
	4.23.18 public interface ServiceListener extends EventListener
	4.23.19 public final class ServicePermission extends BasicPermission
	4.23.20 public interface ServiceReference
	4.23.21 public interface ServiceRegistration
	4.23.22 public interface SynchronousBundleListener extends BundleListener

	4.24 References

	5 Package Admin Service Specification
	5.1 Introduction
	5.1.1 Essentials
	5.1.2 Entities
	5.1.3 Operation

	5.2 Package Admin
	5.3 Security
	5.4 Changes
	5.5 org.osgi.service.packageadmin
	5.5.1 Summary
	5.5.2 public interface ExportedPackage
	5.5.3 public interface PackageAdmin

	6 Start Level Service Specification
	6.1 Introduction
	6.1.1 Essentials
	6.1.2 Entities

	6.2 Start Level Service
	6.2.1 The Concept of a Start Level
	6.2.2 Changing the Active Start Level
	6.2.3 Startup sequence
	6.2.4 Shutdown Sequence
	6.2.5 Changing a Bundle’s Start Level
	6.2.6 Starting a Bundle
	6.2.7 Exceptions in the Bundle Activator
	6.2.8 System Bundle

	6.3 Compatibility Mode
	6.4 Example Applications
	6.4.1 Safe Mode Startup Scheme
	6.4.2 Splash Screen Startup Scheme

	6.5 Security
	6.6 org.osgi.service.startlevel
	6.6.1 public interface StartLevel

	7 Permission Admin Service Specification
	7.1 Introduction
	7.1.1 Essentials
	7.1.2 Entities
	7.1.3 Operation

	7.2 Permission Admin service
	7.2.1 FilePermission for Relative Path Names

	7.3 Security
	7.4 Changes
	7.5 org.osgi.service.permissionadmin
	7.5.1 Summary
	7.5.2 public interface PermissionAdmin
	7.5.3 public class PermissionInfo

	8 URL Handlers Service Specification
	8.1 Introduction
	8.1.1 Essentials
	8.1.2 Entities
	8.1.3 Operation

	8.2 Factories in java.net
	8.3 Framework Procedures
	8.3.1 Constructing a Proxy and Handler
	8.3.2 Built-in Handlers
	8.3.3 Finding Built-in Handlers
	8.3.4 Protected Methods and Proxy

	8.4 Providing a New Scheme
	8.5 Providing a Content Handler
	8.6 Security Considerations
	8.7 org.osgi.service.url
	8.7.1 Summary
	8.7.2 public abstract class AbstractURLStreamHandlerService extends URLStreamHandler implements U...
	8.7.3 public interface URLConstants
	8.7.4 public interface URLStreamHandlerService
	8.7.5 public interface URLStreamHandlerSetter

	8.8 References

	9 Log Service Specification
	9.1 Introduction
	9.1.1 Entities

	9.2 The Log Service Interface
	9.3 Log Level and Error Severity
	9.4 Log Reader Service
	9.5 Log Entry Interface
	9.6 Mapping of Events
	9.6.1 Bundle Events Mapping
	9.6.2 Service Events Mapping
	9.6.3 Framework Events Mapping

	9.7 Security
	9.8 Changes
	9.9 org.osgi.service.log
	9.9.1 Summary
	9.9.2 public interface LogEntry
	9.9.3 public interface LogListener extends EventListener
	9.9.4 public interface LogReaderService
	9.9.5 public interface LogService

	10 Configuration Admin Service Specification
	10.1 Introduction
	10.1.1 Essentials
	10.1.2 Operation
	10.1.3 Entities

	10.2 Configuration Targets
	10.3 The Persistent Identity
	10.3.1 PID Syntax

	10.4 The Configuration Object
	10.4.1 Location Binding
	10.4.2 Configuration Properties
	10.4.3 Property Propagation
	10.4.4 Automatic Properties
	10.4.5 Equality

	10.5 Managed Service
	10.5.1 Networks
	10.5.2 Singletons
	10.5.3 Configuring Managed Services
	10.5.4 Race Conditions
	10.5.5 Examples of Managed Service
	10.5.6 Deletion

	10.6 Managed Service Factory
	10.6.1 When to Use a Managed Service Factory
	10.6.2 Registration
	10.6.3 Deletion
	10.6.4 Managed Service Factory Example
	10.6.5 Multiple Consoles Example

	10.7 Configuration Admin Service
	10.7.1 Creating a Managed Service Configuration Object
	10.7.2 Creating a Managed Service Factory Configuration Object
	10.7.3 Accessing Existing Configurations
	10.7.4 Deletion
	10.7.5 Updating a Bundle’s Own Configuration

	10.8 Configuration Plugin
	10.8.1 Limiting The Targets
	10.8.2 Example of Property Expansion
	10.8.3 Configuration Data Modifications
	10.8.4 Forcing a Callback
	10.8.5 Calling Order

	10.9 Remote Management
	10.9.1 Common Information Model
	10.9.2 Simple Network Management Protocol

	10.10 Meta Typing
	10.11 Security
	10.11.1 Permissions
	10.11.2 Forging PIDs
	10.11.3 Configuration and Permission Administration

	10.12 Configurable Service
	10.13 Changes
	10.13.1 Clarifications
	10.13.2 Removal of Bundle Location Property
	10.13.3 Plug-in Usage
	10.13.4 BigInteger/BigDecimal
	10.13.5 Equals
	10.13.6 Constant for service.factoryPid

	10.14 org.osgi.service.cm
	10.14.1 Summary
	10.14.2 public interface Configuration
	10.14.3 public interface ConfigurationAdmin
	10.14.4 public class ConfigurationException extends Exception
	10.14.5 public interface ConfigurationPlugin
	10.14.6 public interface ManagedService
	10.14.7 public interface ManagedServiceFactory

	10.15 References

	11 Device Access Specification
	11.1 Introduction
	11.1.1 Essentials
	11.1.2 Operation
	11.1.3 Entities

	11.2 Device Services
	11.2.1 Device Service Registration
	11.2.2 Device Service Attachment

	11.3 Device Category Specifications
	11.3.1 Device Category Guidelines
	11.3.2 Sample Device Category Specification
	11.3.3 Match Example

	11.4 Driver Services
	11.4.1 Driver Bundles
	11.4.2 Driver Taxonomy
	11.4.3 Driver Service Registration
	11.4.4 Driver Service Unregistration
	11.4.5 Driver Service Methods
	11.4.6 Idle Driver Bundles

	11.5 Driver Locator Service
	11.5.1 The DriverLocator Interface
	11.5.2 A Driver Example

	11.6 The Driver Selector Service
	11.7 Device Manager
	11.7.1 Device Manager Startup
	11.7.2 The Device Attachment Algorithm
	11.7.3 Legend
	11.7.4 Optimizations
	11.7.5 Driver Bundle Reclamation
	11.7.6 Handling Driver Bundle Updates
	11.7.7 Simultaneous Device Service and Driver Service Registration

	11.8 Security
	11.9 Changes
	11.10 org.osgi.service.device
	11.10.1 Summary
	11.10.2 public interface Constants
	11.10.3 public interface Device
	11.10.4 public interface Driver
	11.10.5 public interface DriverLocator
	11.10.6 public interface DriverSelector
	11.10.7 public interface Match

	11.11 References

	12 User Admin Service Specification
	12.1 Introduction
	12.1.1 Essentials
	12.1.2 Entities
	12.1.3 Operation

	12.2 Authentication
	12.2.1 Repository
	12.2.2 Basic Authentication
	12.2.3 Certificates

	12.3 Authorization
	12.3.1 The Authorization Object
	12.3.2 Authorization Example

	12.4 Repository Maintenance
	12.5 User Admin Events
	12.6 Security
	12.6.1 UserAdminPermission

	12.7 Relation to JAAS
	12.7.1 JDK 1.3 Dependencies
	12.7.2 Existing OSGi Mechanism
	12.7.3 Future Road Map

	12.8 Changes
	12.9 org.osgi.service.useradmin
	12.9.1 Summary
	12.9.2 public interface Authorization
	12.9.3 public interface Group extends User
	12.9.4 public interface Role
	12.9.5 public interface User extends Role
	12.9.6 public interface UserAdmin
	12.9.7 public class UserAdminEvent
	12.9.8 public interface UserAdminListener
	12.9.9 public final class UserAdminPermission extends BasicPermission

	12.10 References

	13 IO Connector Service Specification
	13.1 Introduction
	13.1.1 Essentials
	13.1.2 Entities

	13.2 The Connector Framework
	13.3 Connector Service
	13.4 Providing New Schemes
	13.4.1 Orphaned Connection Objects

	13.5 Execution Environment
	13.6 Security
	13.7 org.osgi.service.io
	13.7.1 Summary
	13.7.2 public interface ConnectionFactory
	13.7.3 public interface ConnectorService

	13.8 References

	14 Http Service Specification
	14.1 Introduction
	14.1.1 Entities

	14.2 Registering Servlets
	14.3 Registering Resources
	14.4 Mapping HTTP Requests to Servlet and Resource Registrations
	14.5 The Default Http Context Object
	14.6 Multipurpose Internet Mail Extension (MIME) Types
	14.7 Authentication
	14.8 Security
	14.8.1 Accessing Resources in Bundles
	14.8.2 Accessing Other Types of Resources

	14.9 Configuration Properties
	14.10 Changes
	14.10.1 Example
	14.10.2 Use of single /
	14.10.3 MIME Type Table

	14.11 org.osgi.service.http
	14.11.1 Summary
	14.11.2 public interface HttpContext
	14.11.3 public interface HttpService
	14.11.4 public class NamespaceException extends Exception

	14.12 References

	15 Preferences Service Specification
	15.1 Introduction
	15.1.1 Essentials
	15.1.2 Entities
	15.1.3 Operation

	15.2 Preferences Interface
	15.2.1 Hierarchies
	15.2.2 Naming
	15.2.3 Tree Traversal Methods
	15.2.4 Properties
	15.2.5 Storing and Retrieving Properties
	15.2.6 Defaults

	15.3 Concurrency
	15.4 PreferencesService Interface
	15.5 Cleanup
	15.6 Changes
	15.7 org.osgi.service.prefs
	15.7.1 Summary
	15.7.2 public class BackingStoreException extends Exception
	15.7.3 public interface Preferences
	15.7.4 public interface PreferencesService

	15.8 References

	16 Wire Admin Service Specification
	16.1 Introduction
	16.1.1 Wire Admin Service Essentials
	16.1.2 Wire Admin Service Entities
	16.1.3 Operation Summary

	16.2 Producer Service
	16.2.1 Producer Properties
	16.2.2 Connections
	16.2.3 Producer Example
	16.2.4 Push and Pull
	16.2.5 Producers and Flavors

	16.3 Consumer Service
	16.3.1 Consumer Properties
	16.3.2 Connections
	16.3.3 Consumer Example
	16.3.4 Polling or Receiving a Value
	16.3.5 Consumers and Flavors

	16.4 Implementation issues
	16.5 Wire Properties
	16.5.1 Display Service Example

	16.6 Composite objects
	16.6.1 Identification
	16.6.2 Scope
	16.6.3 Access Control
	16.6.4 Composites and Flavors
	16.6.5 Scope name syntax

	16.7 Wire Flow Control
	16.7.1 Filtering by Time
	16.7.2 Filtering by Change
	16.7.3 Hysteresis

	16.8 Flavors
	16.9 Converters
	16.10 Wire Admin Service Implementation
	16.11 Wire Admin Listener Service Events
	16.12 Connecting External Entities
	16.13 Related Standards
	16.13.1 Java Beans

	16.14 Security
	16.14.1 Separation of Consumer and Producer Services
	16.14.2 Using Wire Admin Service
	16.14.3 Wire Permission

	16.15 org.osgi.service.wireadmin
	16.15.1 Summary
	16.15.2 public class BasicEnvelope implements Envelope
	16.15.3 public interface Consumer
	16.15.4 public interface Envelope
	16.15.5 public interface Producer
	16.15.6 public interface Wire
	16.15.7 public interface WireAdmin
	16.15.8 public class WireAdminEvent
	16.15.9 public interface WireAdminListener
	16.15.10 public interface WireConstants
	16.15.11 public final class WirePermission extends BasicPermission

	16.16 References

	17 XML Parser Service Specification
	17.1 Introduction
	17.1.1 Essentials
	17.1.2 Entities
	17.1.3 Operations

	17.2 JAXP
	17.3 XML Parser service
	17.4 Properties
	17.5 Getting a Parser Factory
	17.6 Adapting a JAXP Parser to OSGi
	17.6.1 JAR Based Services
	17.6.2 XMLParserActivator
	17.6.3 Adapting an Existing JAXP Compatible Parser

	17.7 Usage of JAXP
	17.8 Security
	17.9 org.osgi.util.xml
	17.9.1 public class XMLParserActivator implements BundleActivator , ServiceFactory

	17.10 References

	18 Metatype Specification
	18.1 Introduction
	18.1.1 Essentials
	18.1.2 Entities
	18.1.3 Operation

	18.2 Attributes Model
	18.3 Object Class Definition
	18.4 Attribute Definition
	18.5 Meta Type Provider
	18.6 Metatype Example
	18.7 Limitations
	18.8 Related Standards
	18.8.1 Beans

	18.9 Security Considerations
	18.10 Changes
	18.11 org.osgi.service.metatype
	18.11.1 Summary
	18.11.2 public interface AttributeDefinition
	18.11.3 public interface MetaTypeProvider
	18.11.4 public interface ObjectClassDefinition

	18.12 References

	19 Service Tracker Specification
	19.1 Introduction
	19.1.1 Essentials
	19.1.2 Operation
	19.1.3 Entities
	19.1.4 Prerequisites

	19.2 ServiceTracker Class
	19.3 Using a Service Tracker
	19.4 Customizing the ServiceTracker class
	19.4.1 Symmetry

	19.5 Customizing Example
	19.6 Security
	19.7 Changes
	19.8 org.osgi.util.tracker
	19.8.1 Summary
	19.8.2 public class ServiceTracker implements ServiceTrackerCustomizer
	19.8.3 public interface ServiceTrackerCustomizer

	20 Measurement and State Specification
	20.1 Introduction
	20.1.1 Measurement Essentials
	20.1.2 Measurement Entities

	20.2 Measurement Object
	20.2.1 Value
	20.2.2 Error
	20.2.3 Time-stamp

	20.3 Error Calculations
	20.4 Comparing Measurements
	20.4.1 Identity and Equality
	20.4.2 Comparing Measurement Objects

	20.5 Unit Object
	20.5.1 Quantitive Differences
	20.5.2 Why Use SI Units?

	20.6 State Object
	20.7 Related Standards
	20.7.1 JSR 108 Units Specification
	20.7.2 GNU Math Library in Kawa

	20.8 Security Considerations
	20.9 org.osgi.util.measurement
	20.9.1 Summary
	20.9.2 public class Measurement implements Comparable
	20.9.3 public class State
	20.9.4 public class Unit

	20.10 References

	21 Position Specification
	21.1 Introduction
	21.1.1 Essentials
	21.1.2 Entities

	21.2 Positioning
	21.3 Units
	21.4 Optimizations
	21.5 Errors
	21.6 Using Position With Wire Admin
	21.7 Related Standards
	21.7.1 JSR 179

	21.8 Security
	21.9 org.osgi.util.position
	21.9.1 public class Position

	21.10 References

	22 Execution Environment Specification
	22.1 Introduction
	22.1.1 Essentials
	22.1.2 Entities

	22.2 About Execution Environments
	22.2.1 Signatures
	22.2.2 Semantics

	22.3 OSGi Defined Execution Environments
	22.4 References

	Recommended Section
	23 Name-space Specification
	23.1 Introduction
	23.1.1 OSGi Name-space Essentials
	23.1.2 Entities
	23.1.3 OSGi Name Format
	23.1.4 Relative Addressing
	23.1.5 Port Names
	23.1.6 International Names

	23.2 Related Standards
	23.2.1 Uniform Resource Name (URN)

	23.3 Security
	23.4 References

	24 Jini™ Driver Service Specification
	24.1 Introduction
	24.1.1 Essentials
	24.1.2 Entities
	24.1.3 Prerequisites
	24.1.4 Operation

	24.2 The Jini Driver Service
	24.3 Discovering Services
	24.3.1 Finding a Jini Service in the OSGi Service Registry
	24.3.2 Using the Jini Service Registrar

	24.4 Importing a Jini Service
	24.5 Exporting an OSGi Service to Jini
	24.5.1 Example

	24.6 Package Management
	24.6.1 Jini Service Interfaces
	24.6.2 Java RMI Package
	24.6.3 Jini Packages

	24.7 Configuration
	24.8 Security
	24.9 org.osgi.service.jini
	24.9.1 public interface JiniDriver

	24.10 References

	25 UPnP™ Device Service Specification
	25.1 Introduction
	25.1.1 Essentials
	25.1.2 Entities
	25.1.3 Operation Summary

	25.2 UPnP Specifications
	25.2.1 UPnP Base Driver

	25.3 UPnP Device
	25.3.1 Root Device
	25.3.2 Exported Versus Imported Devices
	25.3.3 Icons

	25.4 Device Category
	25.5 UPnPService
	25.5.1 State Variables

	25.6 Working With a UPnP Device
	25.7 Implementing a UPnP Device
	25.8 Event API
	25.8.1 Initial Event Delivery

	25.9 Localization
	25.10 Dates and Times
	25.11 Configuration
	25.12 Networking considerations
	25.12.1 The UPnP Multicasts

	25.13 Security
	25.14 org.osgi.service.upnp
	25.14.1 Summary
	25.14.2 public interface UPnPAction
	25.14.3 public interface UPnPDevice
	25.14.4 public interface UPnPEventListener
	25.14.5 public interface UPnPIcon
	25.14.6 public interface UPnPService
	25.14.7 public interface UPnPStateVariable

	25.15 References

	26 Initial Provisioning
	26.1 Introduction
	26.1.1 Essentials
	26.1.2 Entities

	26.2 Procedure
	26.3 Special Configurations
	26.3.1 Branded Service Platform Server
	26.3.2 Non-connected Service Platform

	26.4 The Provisioning Service
	26.5 Management Agent Environment
	26.6 Mapping To File Scheme
	26.6.1 Example With File Scheme

	26.7 Mapping To HTTP(S) Scheme
	26.7.1 HTTPS Certificates
	26.7.2 Certificate Encoding
	26.7.3 URL Encoding

	26.8 Mapping To RSH Scheme
	26.8.1 Shared Secret
	26.8.2 Request Coding
	26.8.3 Response Coding
	26.8.4 RSH URL
	26.8.5 Extensions to the Provisioning Service Dictionary
	26.8.6 RSH Transport

	26.9 Security
	26.9.1 Concerns
	26.9.2 Service Platform Long-Term Security
	26.9.3 Permissions

	26.10 org.osgi.service.provisioning
	26.10.1 public interface ProvisioningService

	26.11 References

	27 Method Overview
	Index

		2003-03-26T01:55:44+0100
	OSGi

