
OSGi Service Platform

Release 2
October 2001

ii OSGi Service-Platform Release 2

Copyright © 2000-2001

The Open Services Gateway Initiative
Bishop Ranch 2
2694 Bishop Drive
Suite 275
San Ramon
CA 94583 USA

All Rights Reserved.

LEGAL TERMS AND CONDITIONS REGARDING SPECIFICATION
Implementation of certain elements of the Open Services Gateway Initiative (OSGi)
Specification may be subject to third party intellectual property rights, including
without limitation, patent rights (such a third party may or may not be a member of
OSGi). OSGi is not responsible and shall not be held responsible in any manner for
identifying or failing to identify any or all such third party intellectual property rights.

THE RECIPIENT ACKNOWLEDGES AND AGREES THAT THE SPECIFICATION IS
PROVIDED "AS IS" AND WITH NO WARRANTIES WHATSOEVER, WHETHER
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS OF ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE. THE RECIPIENT'S USE OF THE
SPECIFICATION IS SOLELY AT THE RECIPIENT'S OWN RISK. THE RECIPIENT'S USE
OF THE SPECIFICATION IS SUBJECT TO THE RECIPIENT'S OSGi MEMBER
AGREEMENT, IN THE EVENT THAT THE RECIPIENT IS AN OSGi MEMBER.

IN NO EVENT SHALL OSGi BE LIABLE OR OBLIGATED TO THE RECIPIENT OR ANY
THIRD PARTY IN ANY MANNER FOR ANY SPECIAL, NON-COMPENSATORY,
CONSEQUENTIAL, INDIRECT, INCIDENTAL, STATUTORY OR PUNITIVE DAMAGES
OF ANY KIND, INCLUDING, WITHOUT LIMITATION, LOST PROFITS AND LOST
REVENUE, REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT,
TORT, NEGLIGENCE, STRICT PRODUCT LIABILITY, OR OTHERWISE, EVEN IF OSGi
HAS BEEN INFORMED OF OR IS AWARE OF THE POSSIBILITY OF ANY SUCH
DAMAGES IN ADVANCE.

THE LIMITATIONS SET FORTH ABOVE SHALL BE DEEMED TO APPLY TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW AND NOTWITHSTANDING
THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY LIMITED REMEDIES
AVAILABLE TO THE RECIPIENT. THE RECIPIENT ACKNOWLEDGES AND AGREES
THAT THE RECIPIENT HAS FULLY CONSIDERED THE FOREGOING ALLOCATION OF
RISK AND FINDS IT REASONABLE, AND THAT THE FOREGOING LIMITATIONS ARE
AN ESSENTIAL BASIS OF THE BARGAIN BETWEEN THE RECIPIENT AND OSGi.

IF THE RECIPIENT USES THE SPECIFICATION, THE RECIPIENT AGREES TO ALL OF
THE FOREGOING TERMS AND CONDITIONS. IF THE RECIPIENT DOES NOT AGREE
TO THESE TERMS AND CONDITIONS, THE RECIPIENT SHOULD NOT USE THE
SPECIFICATION AND SHOULD CONTACT OSGi IMMEDIATELY.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of The Open Services
Gateway Initiative in the US and other countries. Java is a trademark, registered
trademark, or service mark of Sun Microsystems, Inc. in the US and other countries. All
other trademarks, registered trademarks, or service marks used in this document are the
property of their respective owners and are hereby recognized.

Feedback

This specification can be downloaded from the OSGi web site:
http:// www.osgi .org . Comments about this specification can be mailed to:
speccomments@mail .osgi .org

Table of contents
2 1 Introduction
3 1.1 Reader Level
3 1.2 Conventions and Terms
7 1.3 The Specification Process
8 1.4 Version Information
9 1.5 Compliance
9 1.6 References

11 2 Framework Specification
11 2.1 Introduction
14 2.2 Bundles
15 2.3 Manifest Headers
16 2.4 The Bundle Namespace
21 2.5 Loading Native Code Libraries
23 2.6 Finding Classes and Resources
24 2.7 The Bundle Object
28 2.8 The Bundle Context
31 2.9 Services
37 2.10 Filters
38 2.11 Service Factories
39 2.12 Importing and Exporting Services
39 2.13 Releasing Services
40 2.14 Unregistering Services
40 2.15 Configurable Services
41 2.16 Events
42 2.17 Security
45 2.18 Framework Startup and Shutdown
46 2.19 The Framework on JDK 1.1
47 2.20 Changes since 1.0
50 2.21 org.osgi.framework
91 2.22 References

93 3 Package Admin Service Specification
93 3.1 Introduction
94 3.2 Package Admin
94 3.3 Security
95 3.4 org.osgi.service.packageadmin
OSGi Service-Platform Release 2 iii

99 4 Permission Admin Service Specification
99 4.1 Introduction

100 4.2 Permission Admin service
101 4.3 Security
101 4.4 org.osgi.service.permissionadmin

107 5 Service Tracker Specification
107 5.1 Introduction
108 5.2 ServiceTracker Class
108 5.3 Using a Service Tracker
109 5.4 Customizing the ServiceTracker class
110 5.5 Customizing Example
110 5.6 Security
110 5.7 org.osgi.util.tracker

117 6 Log Service Specification
117 6.1 Introduction
118 6.2 The Log Service Interface
119 6.3 Log Level and Error Severity
120 6.4 Log Reader Service
121 6.5 Mapping of Events
123 6.6 Security
123 6.7 Changes Since Release 1.0
123 6.8 org.osgi.service.log

129 7 Http Service Specification
129 7.1 Introduction
130 7.2 Registering Servlets
132 7.3 Registering Resources
134 7.4 Mapping HTTP Requests to Servlet and Resource Registrations
135 7.5 The Default Http Context Object
136 7.6 MIME Types
137 7.7 Authentication
139 7.8 Security
140 7.9 Configuration Properties
140 7.10 org.osgi.service.http
145 7.11 References

147 8 Device Access Specification
147 8.1 Introduction
149 8.2 Device Services
152 8.3 Device Category Specifications
iv OSGi Service-Platform Release 2

154 8.4 Driver Services
160 8.5 Driver Locator Service
163 8.6 The Driver Selector Service
164 8.7 Device Manager
170 8.8 Security
170 8.9 Changes Since 1.0
171 8.10 org.osgi.service.device
175 8.11 References

177 9 Configuration Admin Service Specification
177 9.1 Introduction
180 9.2 Configuration Targets
181 9.3 The Persistent Identity
183 9.4 The Configuration Object
185 9.5 Managed Service
189 9.6 Managed Service Factory
193 9.7 Configuration Admin Service
195 9.8 Configuration Plugin
197 9.9 Remote Management
199 9.10 Meta Typing
199 9.11 Security
201 9.12 Configurable Service
202 9.13 org.osgi.service.cm
213 9.14 References

215 10 Metatype Specification
215 10.1 Introduction
217 10.2 Attributes Model
217 10.3 Object Class Definition
218 10.4 Attribute Definition
218 10.5 Meta Type Provider
218 10.6 Metatype Example
221 10.7 Related Standards
221 10.8 Security Considerations
221 10.9 org.osgi.service.metatype
226 10.10 References

227 11 Preferences Service Specification
227 11.1 Introduction
229 11.2 Preferences Interface
232 11.3 Concurrency
233 11.4 PreferencesService Interface
233 11.5 Cleanup
OSGi Service-Platform Release 2 v

233 11.6 JSR 10
234 11.7 org.osgi.service.prefs
244 11.8 References

247 12 User Admin Service Specification
247 12.1 Introduction
250 12.2 Authentication
251 12.3 Authorization
254 12.4 Repository Maintenance
255 12.5 User Admin Events
255 12.6 Security
256 12.7 Relation to JAAS
257 12.8 org.osgi.service.useradmin
268 12.9 References

269 Index
vi OSGi Service-Platform Release 2

Foreword
We've come a long way since the Open Services Gateway Initiative was created
in March of 1999. From that early start of 15 member companies it has now
grown to more than 80, with face to face meetings of over 150 people held
three times a year all over the planet. In these times of increasing austerity it's
testament to the importance that these member companies place on OSGi that
we have such active membership.

When we started this work the original intention was to create a specification
to allow services to be remotely deployed onto home network gateways –
things like Set Top Boxes and DSL Modems. The first release of the specifica-
tion explicitly addressed this market. This specification was extremely suc-
cessful with many companies creating frameworks compatible with it.

Following the release of that spec many new companies joined the initiative
and we started to experience pressure to increase the scope of the OSGi – tak-
ing it away from that narrow definition to become more of a horizontal plat-
form, applicable in whole new environments that we never really foresaw in
those early days, in markets as far apart as consumer electronics and automo-
tive systems, security products and mobile phones.

Indeed, during the last year, in the face of all of this interest, we've had to go
away and formally write down exactly what we're about to ensure all of this
new blood didn't cause us to lose focus – the result of that was that we now
have a clear, inclusive, statement of purpose; OSGi exists to create open specifi-
cations for the managed delivery of multiple services over wide-area networks
to local networks and devices.

It's become apparent that OSGi principles are applicable in any environment
where managed lifecycles, long uptimes and highly resilient, remotely man-
aged platforms are requirements, and this breadth of applicability quite
frankly took us a little by surprise considering the narrow focus we'd started
from.

You'll see some of the early results of this expansion of focus in this document;
new APIs such as Preferences and User Administration have been added and
all of the existing capabilities have been enhanced. Despite this, one thing
we've been very careful to do is to not alienate our early adopters, so you'll find
very few incompatibilities between this specification and earlier ones.

We will continue expanding the specification and implementers can rest
assured we'll give the same attention to backwards compatibility in the future.

As we said before, we're privileged to have world class people working on this
initiative. This document is the product of the Core Platform Expert Group
and those guys deserve a special pat on the back for their efforts.

Finally, we really do mean the Open in our name, so if the OSGi mission is
important to you then please come and join us, and together we'll be able to
make future releases even better…

So, here it is, the OSGi Service Platform, Release 2. Enjoy…

John Barr, President OSGi
OSGi Service-Platform Release 2 1-282

 Introduction
1 Introduction
The Open Services Gateway Initiative (OSGi) was founded in March 1999. Its
mission is to create open specifications for the network delivery of managed
services to local networks and devices. With over 80 member companies
today, OSGi is the leading standard for the next-generation Internet services to
homes, cars, small offices and other environments.

The OSGi service platform specification delivers an open, common architec-
ture for service providers, developers, software vendors, gateway operators and
equipment vendors to develop, deploy and manage services in a coordinated
fashion. It enables an entirely new category of smart devices due to its flexible
and managed deployment of services. The primary targets for the OSGi specifi-
cations are set top boxes, service gateways, cable modems, consumer electron-
ics, PC's, industrial computers, cars and more. These OSGi enabled devices will
enable service providers like Telcos, Cable Operators, Utilities, and others to
deliver differentiated and value added services over their networks.

Release 1.0 of the OSGi Service Gateway specification contained a specification
for a service framework. This framework provides an execution environment
for electronically downloadable services, called bundles. Deployed bundles are
executed inside that framework and find a well-defined and protected environ-
ment. This environment includes a Java runtime and adds life cycle manage-
ment, persistent data storage, version management and a service registry.

Services are Java objects implementing a concisely defined interface. The pow-
erful OSGi framework registry is used to exchange services between bundles in
a secure and controlled manner. Through this registry, bundles may provide
services to other bundles as well as use services from other bundles. The regis-
try is fully security protected, allowing the operator full control over the plat-
form. Release 1.0 of the OSGi Service Gateway specification included the
Framework and three basic service specifications: logging, a web server and
device access.

This is the second release of the OSGi service platform specification developed
by representatives from OSGi member companies. The first release has been
available since May, 2000, and has set a standard for how managed services can
be delivered over wide area networks to local area networks and devices.

This release represents the collective experience of implementors over the past
year and the incorporation of new features to satisfy additional requirements.
These new features have been developed by members of the OSGi Core Plat-
form Expert Group, reviewed and approved by the entire expert group, and
finally reviewed and approved by all of the OSGi member company represen-
tatives.

OSGi Service Platform Release 2 improves and extends the existing APIs. The
modifications are backward compatible so that applications for the first
release should run unmodified on release 2 Frameworks. And, the version
management mechanisms allow bundles written for the new release to adapt
to the old Framework implementations, if necessary.
2-282 OSGi Service-Platform Release 2

Introduction Reader Level
The Framework specification is improved and clarified. Additionally, a num-
ber of features are added to simplify programming bundles. Security is
strengthened and it is now possible to let a special management bundle fully
define and control the security aspects of a bundle, in real time. Version man-
agement of bundles is hardened and interfaces are defined to make related
information and control available to the management bundle. This release
also includes a number of new service specifications.

1.1 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical
experience in writing Java programs. Experience with embedded systems and
server environments is a plus. Application developers must be aware that the
OSGi environment is significantly more dynamic than traditional desktop or
even server environments.

System developers require a very deep understanding of Java. At least three
years of Java coding experience in a system environment is recommended. A
Framework implementation will use areas of Java that are not normally
encountered in traditional applications. Detailed understanding is required of
class loaders, garbage collection, Java 2 security, and Java native library load-
ing.

Architects should focus on the introduction of each subject. This introduction
contains a general overview of the subject, the requirements that influenced
its design, and a short description of its operation as well as the entities that are
used. The introductory sections require knowledge of Java concepts like
classes and interfaces, but should not require coding experience.

Most of this specification is equally applicable to application developers and
system developers. Items that are only relevant to system developers are
marked appropriately, so that application developers can skip them.

1.2 Conventions and Terms

1.2.1 Typography
A fixed width, non-serif typeface (sample) indicates the term is a Java package,
class, interface, or member name. Text written in this typeface is always
related to coding.

Emphasis (sample) is used the first time an important concept is introduced.
OSGi Service-Platform Release 2 3-282

Conventions and Terms Introduction
1.2.2 Object Oriented Terminology
Concepts like classes, interfaces, objects, and services are distinct but subtly
different. For example, “LogService” could mean an instance of the class
LogService, could refer to the class LogService, or could indicate the function-
ality of the overall Log Service. Experts usually understand the meaning from
the context, but this understanding requires mental effort. To highlight these
subtle differences, the following conventions are used.

When the class is intended, its name is spelled exactly as in the Java source
code and displayed in a fixed width typeface: for example the “HttpServ ice
class”, “a method in HttpContext” or “a javax.servlet .Servlet object”. A class
name is fully qualified, like javax.servlet .Serv let , when the package is not
obvious from the context nor is it in one of the well known java packages like
java. lang , java. io , java.ut i l and java.net . Otherwise, the package is omitted like
in Str ing .

Exception and permission classes are not followed by the word object. Read-
ability is improved when the “object” suffix is avoided. For example, “to throw
a Secur i tyException” and to “to have Fi lePermiss ion” instead of "to have a
Fi lePermiss ion object".

Permissions can further be qualified with their actions. Serv icePermis-
s ion[GET,REGISTER] means a ServicePermiss ion with the action GET and
REGISTER .

When discussing functionality of a class rather than the implementation
details, the class name is written as normal text. This convention is often used
when discussing services. For example, “the User Admin service”.

Some services have the word “Service” embedded in their class name. In those
cases, the word “service” is only used once but is written with an upper case S.
For example, “the Log Service performs”.

Service objects are registered with the Framework. Registration consists of the
service object, a set of properties, and a list of classes and interfaces imple-
mented by this service object. The classes and interfaces are used for type
safety and naming. Therefore it is said that a service object is registered under a
class/interface. For example, “This service object is registered under Permis-
s ionAdmin.”

1.2.3 Diagrams
The diagrams in this document illustrate the specification and are not norma-
tive. Their purpose is to provide a high-level overview on a single page. The fol-
lowing paragraphs describe the symbols and conventions used in these
diagrams.

Classes or interfaces are depicted as rectangles, as in Figure 1. Interfaces are
indicated with the qualifier << interface>> as the first line. The name of the
class/interface is indicated in bold when it is part of the specification. Imple-
mentation classes are sometimes shown to demonstrate a possible implemen-
tation. Implementations class names are shown in plain text.
4-282 OSGi Service-Platform Release 2

Introduction Conventions and Terms
Figure 1 Class and interface symbol

If an interface or class is used as a service object, it will have the qualifier <<ser-
vice>> and a black triangle in the bottom right corner.

Figure 2 Service symbol

Inheritance (the extends or implements keyword in Java class definitions) is
indicated with an arrow. Figure 3 shows that User implements or extends Role.

Figure 3 Inheritance (implements or extends) symbol

Relations are depicted with a line. The cardinality of the relation is given
explicitly when relevant. Figure 4 shows that each (1) BundleContext object is
related to 0 or more BundleListener objects, and that each BundleListener
object is related to a single BundleContext object. Relations usually have some
description associated with them. This description should be read from left to
right and top to bottom, and includes the classes on both sides. For example: “A
BundleContext object delivers bundle events to 0 or more BundleListener
objects.”

Figure 4 Relations symbol

Associations are depicted with a dashed line. Associations are between classes,
and an association can be placed on a relation. For example, “every Service-
Registrat ion object has an associated ServiceReference object.” This associa-
tion does not have to be a hard relationship, but could be derived in some way.

When a relationship is qualified by a name or an object, it is indicated by draw-
ing a dotted line perpendicular to the relation and connecting this line to a
class box or a description. Figure 5 shows that the relationship between a Use-
rAdmin class and a Role class is qualified by a name. Such an association usu-
ally is implemented with a Dict ionary object.

<<interface>>
BundleContext

Admin
Permission

UserAdmin
Implementation

class interface implementation class

<<service>>
BundleContext

<<interface>>
Role

<<interface>>
User

<<interface>>
BundleListener

<<interface>>
BundleContext 0..n1 delivers bundle events
OSGi Service-Platform Release 2 5-282

Conventions and Terms Introduction
Figure 5 Associations symbol

Bundles are entities that are visible in normal application programming. For
example, when a bundle is stopped, all its services will be unregistered. There-
fore, the classes/interfaces that are grouped in bundles are shown on a grey
rectangle.

Figure 6 Bundles

1.2.4 Key Words
This specification consistently uses the words may, should, and must. Their
meaning is well defined in [1] Bradner, S., Key words for use in RFCs to Indicate
Requirement Levels. A summary follows.

• must – An absolute requirement. Both the Framework implementation and
bundles have obligations that are required to be fulfilled to conform to this
specification.

• should – Recommended. It is strongly recommended to follow the
description, but reasons may exist to deviate from this recommendation.

• may – Optional. Implementations must still be interoperable when these
items are not implemented.

1.2.5 Term Definitions
• Operator - The operator is the organization that manages the OSGi Envi-

ronment. It has full authority to modify the environment.
• Service Platform - A service platform is a Framework and a set of core service

bundles.
• OSGi environment – The OSGi Framework is executed on supported

hardware platforms in a Java Runtime Environment (JRE). The combi-
nation of JRE and the OSGi Framework is called the OSGi environment. The
OSGi environment is extended by installing bundles.

<<interface>>
Role

<<service>>
UserAdmin 0..n1

name

<<interface>>
Role

<<service>>
UserAdmin 0..n1 has

name

UserAdminImpl RoleImplImplementation
bundle

Permission

0..n

1

6-282 OSGi Service-Platform Release 2

Introduction The Specification Process
Figure 7 The OSGi Environment

1.3 The Specification Process
Within the OSGi, specifications are developed by Expert Groups (EG). If a
member company wants to participate in an EG, it must sign a Statement Of
Work (SOW). The purpose of an SOW is to clarify the legal status of the mate-
rial discussed in the EG. An EG will discuss material which already has Intel-
lectual Property (IP) rights associated with it, and may also generate new IP
rights. The SOW, in conjunction with the member agreement, clearly defines
the rights and obligations related to IP rights of the participants and other
OSGi members.

To initiate work on a specification, a member company first requests for a pro-
posal. This request is reviewed by the Market Requirement Committee which
can either submit it to the Technical Steering Committee (TSC) or reject it. The
TSC subsequently assigns the request to an EG to be implemented.

The EG will draft a number of proposals that meet the requirements from the
request. Proposals usually contain Java code defining the API and semantics of
the services under consideration. When the EG is satisfied with a proposal, it
votes on it.

To assure that specifications can be implemented, reference implementations
are created to implement the proposal. Test suites are also developed, usually
by a different member company, to verify that the reference implementation (
and future implementations by OSGi member companies) fulfills the require-
ments of the specification. Reference implementations and test suites are only
available to member companies.

Specifications combine a number of proposals to form a single consistent doc-
ument. The proposals are edited to form a consistent specification, which is
voted on again by the EG. The specification is then submitted to all the mem-
ber companies for review. During this review period, member companies must
disclose any IP claims they have on the specification. After this period, the
OSGi board of directors publishes the specification.

This Service Platform Release 2 specification was developed by the Core Plat-
form Expert Group (CPEG).

Bundle

Hardware

Operating System

Java Runtime Environment

OSGi Framework
OSGi Service-Platform Release 2 7-282

Version Information Introduction
1.4 Version Information
This document specifies OSGi Service Platform Release 2. This specification is
backward compatible, unless indicated in the appropriate section, with the [2]
OSGi Service Gateway Specification 1.0 that was published by OSGi in May 2000.
It specified the following components:

• Framework
• Log Service
• Http Service
• Device Access

This specification incorporates revisions of these components. Changes have
been described in the description of each component.

New for this specification are the following components:

• Package Administration service
• Permission Administration service
• Configuration Administration service
• Preferences service
• User Administration service
• Metatyping
• Service Tracker utility (a version for Framework 1.0 is created as well)

Components in this specification have their own specification-version, inde-
pendent of the OSGi Service Platform, Release 2 specification. The following
table summarizes the packages and specification-versions for the different sub-
jects.

A specification-version is needed in the declaration of the Import-Package or
Export-Package manifest headers. Package versioning is described in Sharing
Packages on page 17.

Item Package(s) Specification-version

Framework org.osgi. f ramework 1.1

Service Tracker org.osgi.ut i l . t racker 1.1

Permiss ion Admin service org.osgi.serv ice.permiss ionadmin 1.0

Package Admin serv ice org.osgi.serv ice.packageadmin 1.0

Log Service org.osgi.serv ice. log 1.1

Http Service org.osgi.serv ice.http 1.1

Device Access org.osgi.serv ice.device 1.1

Configurat ion Admin serv ice org.osgi.serv ice.cm 1.0

Preferences Serv ice org.osgi.serv ice.prefs 1.0

User Admin serv ice org.osgi.serv ice.useradmin 1.0

Metatype org.osgi.serv ice.metatype 1.0

Table 1 Packages and versions
8-282 OSGi Service-Platform Release 2

Introduction Compliance
1.5 Compliance
OSGi environments that are designed to be compliant with this specification
must provide:

• An implementation of the Framework as specified in this document.
• None of the other services or utility packages need to be implemented

because they are all optional. However, when implementations of these ser-
vices are provided, they should strictly follow the specifications in this doc-
ument.

Conforming implementations must not add any new methods or fields to any
of the classes or interfaces defined in the OSGi specification (though, they may
add them to subclasses, or classes that implement the interfaces), nor may
they add any new classes or packages to the org.osgi package tree.

1.6 References
[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels

RFC2119, March 1997.

[2] OSGi Service Gateway Specification 1.0
www.osgi.org
OSGi Service-Platform Release 2 9-282

References Introduction
10-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Introduction
2 Framework Specification
Version 1.1

2.1 Introduction
The Framework forms the core of the OSGi Service Platform Specification. It
provides a general-purpose, secure, managed Java framework that supports the
deployment of extensible and downloadable service applications known as
bundles.

OSGi-compliant devices can download and install OSGi bundles, and remove
them when they are no longer required. Installed bundles can register a num-
ber of services that can be shared with other bundles under strict control of the
Framework.

The Framework manages the installation and update of bundles in an OSGi
environment in a dynamic and scalable fashion, and manages the dependen-
cies between bundles and services.

It provides the bundle developer with the resources necessary to take advan-
tage of Java’s platform independence and dynamic code-loading capability in
order to easily develop, and deploy on a large scale, services for small-memory
devices.

Equally important, the Framework provides a concise and consistent program-
ming model for Java bundle developers, simplifying the development and
deployment of services by decoupling the service’s specification (Java inter-
face) from its implementations. This model allows bundle developers to bind
to services solely from their interface specification. The selection of a specific
implementation, optimized for a specific need or from a specific vendor, can
thus be deferred to runtime.

A consistent programming model helps bundle developers cope with scalabil-
ity issues – critical because the Framework is intended to run on a variety of
devices whose differing hardware characteristics may affect many aspects of a
service implementation. Consistent interfaces insure that the software compo-
nents can be mixed and matched, and still result in stable systems.

As an example, a service developed to run on a high-end device could store
data on a local hard drive. Conversely, on a diskless device, data would have to
be stored non-locally. Application developers that use this service can develop
their bundles using the defined service interface, without regard to which ser-
vice implementation will be used when the bundle is deployed.

The Framework allows bundles to select an available implementation at runt-
ime through the Framework service registry. Bundles register new services,
receive notifications about the state of services, or look up existing services to
adapt to the current capabilities of the device. This aspect of the Framework
makes an installed bundle extensible after deployment: new bundles can be
installed for added features, or existing bundles can be modified and updated
without requiring the system to be restarted.
OSGi Service-Platform Release 2 11-282

Introduction Framework Specification Version 1.1
The Framework provides mechanisms to support this paradigm which aid the
bundle developer with the practical aspects of writing extensible bundles.
These mechanisms are designed to be simple so that developers can quickly
achieve fluency with the programming model.

2.1.1 Entities
Figure 8 on page 13 provides an overview of the classes and interfaces used in
the org.osgi . framework package. It shows the relationships between the dif-
ferent Framework entities. This diagram is for illustrative purposes only. It
shows details that may be implemented in different ways.
12-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Introduction
Figure 8 Class Diagram org.osgi . framework

<<interface>>
Bundle

<<interface>>
BundleContext

<<interface>>
Service
Registration

<<interface>>
Service
Reference

Admin
Permission

<<interface>>
Bundle
Activator

Bundle
Event

<<interface>>
Synchronous
BundleListener

Framework
Event

<<interface>>
Framework
Listener

<<interface>>
Service
Listener

ServiceEvent

<<interface>>
Service
Factory

<<interface>>
BundleListener

Package
Permission

Service
Permission

<<interface>>
Filter

InvalidSyntax
Exception

<<service>>
Configurable

Bundle
Exception

java.security.
Permission

java.lang.Object
service
implementation

implementation
code of bundle

service controller
impl

bundle controller
impl

framework
impl

1

11

0..n

0..n

1

1

1

1 1 1

1

1

1

1

0..n 0..n 0..n

1..n 1

java.lang.
Throwable

0,1

1 1 1

<<interface>>
Constants

represented by

used
through

registers service

represented by

owned by

optionally
 implements

start/stop
bundle

uses service
0..n 0..n

service events

framework eventsbundle events

0,1

1

associated
with

1

1

1

1

associated
with

manages

implemented by
security
permissions

used
through
OSGi Service-Platform Release 2 13-282

Bundles Framework Specification Version 1.1
2.2 Bundles
In the OSGi environment, bundles are the only entities for deploying Java-
based applications. A bundle comprises Java classes and other resources which
together can provide functions to end-users and provide components to other
bundles, called services. A bundle is deployed as a Java ARchive (JAR) file. JAR
files are used to store applications and their resources in a standard ZIP-based
Java file format.

A bundle is a JAR file that:

• Contains the resources to implement zero or more services. These resources
may be class files for the Java programming language, as well as other data
such as HTML files, help files, icons, and so on.

• Contains a manifest file describing the contents of the JAR file and pro-
viding information about the bundle. This file uses headers to specify
parameters that the Framework needs in order to correctly install and
activate a bundle.

• States dependencies on other resources, such as Java packages, that must be
available to the bundle before it can run. The Framework must resolve
these packages prior to starting a bundle. See Sharing Packages on page 17.

• Designates a special class in the bundle to act as Bundle Activator. The
Framework must instantiate this class and invoke the start and stop
methods to start or stop the bundle respectively. The bundle’s implemen-
tation of the Bundle Act ivator interface allows the bundle to initialize (for
example, registering services) when started, and to perform cleanup opera-
tions when stopped.

• Can contain optional documentation in the OSGI-OPT directory of the JAR
file or one of its sub-directories. Any information in this directory must not
be required to run the bundle. It can, for example, be used to store the
source code of a bundle. Management systems may remove this infor-
mation to save storage space in the OSGi environment.

Once a bundle is started, its functionality is provided and services are exposed
to other bundles installed in the OSGi environment.

2.2.1 The System Bundle
In addition to normal bundles, the Framework is itself represented as a bundle.
The bundle representing the Framework is referred to as the system bundle.

Through the system bundle, the Framework may register services that may be
used by other bundles. Examples of such services are the Package Admin and
Permission Admin services.

The system bundle is listed in the set of installed bundles returned by Bundle-
Context .getBundles() , although it differs from a normal bundle in the follow-
ing ways:

• The system bundle is always assigned a bundle identifier of zero (0).
• The system bundle getLocat ion method returns the string: "System

Bundle", as defined in the Constants interface.
• The system bundle cannot be lifecycle-managed like normal bundles. Its

lifecycle methods must behave as follows:
• start – This method does nothing because the system bundle is already

started.
14-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Manifest Headers
• stop – Returns immediately and shuts down the Framework on another
thread.

• update – Stops and then restarts the Framework.
• uninstall – The Framework must throw a BundleExcept ion indicating

that the system bundle cannot be uninstalled.
See Framework Startup and Shutdown on page 45 for more information about
the starting and stopping of the Framework.

• The system bundle’s Bundle.getHeaders method returns a Dict ionary
object with implementation-specific manifest headers. For example, the
system bundle’s manifest file should contain an Export-Package header
declaring which packages are to be exported by the Framework (for
example, org.osgi . f ramework).

2.2.2 Management Bundles
The OSGi Framework specification provides mechanisms but no policies. The
implementation of the policies – for example, from what location a bundle is
loaded – are provided by so-called management bundles. Management bundles
have permissions to perform administrative functions on the Framework and
provide the required policies.

Management bundles are normal bundles and should follow all the rules.

This specification does not define how an initial management bundle is
installed in the Framework, because the installation process may differ for dif-
ferent deployment schemes. This pattern allows the operator to define the
required policy in a simple and consistent way.

2.3 Manifest Headers
A bundle can carry descriptive information about itself in the manifest file
that is contained in its JAR file under the name of META-INF/MANIFEST.MF.

The Framework defines OSGi manifest headers such as Export-Package and
Bundle-Activator, which bundle developers can use to supply descriptive
information about a bundle. Manifest headers must strictly follow the rules for
manifest headers as defined in [11] Manifest Format.

All manifest headers are optional and any standard manifest headers not speci-
fied have no value by default (except for Bundle-Classpath that has dot (.) as
default when it is not specified).

Consult the Constants interface for a list of standard manifest headers that
may be declared in a bundle’s manifest file.

A Framework implementation must:

• Process the main section of the manifest. Individual sections of the man-
ifest may be ignored.

• Ignore undefined manifest headers. Additional manifest headers may be
defined by the bundle developer as needed.

• Ignore unknown attributes on OSGi-defined manifest headers.
OSGi Service-Platform Release 2 15-282

The Bundle Namespace Framework Specification Version 1.1
2.3.1 Retrieving Manifest Headers
The Bundle interface defines a method to return manifest header information:
getHeaders() . This method returns a Dict ionary object that contains the bun-
dle’s manifest headers and values as key/value pairs.

This method requires AdminPermiss ion because some of the manifest header
information may be sensitive: for example, the packages listed in the Export-
Package header.

The getHeaders methods must continue to provide the manifest header infor-
mation after the bundle enters the UNINSTALLED state.

2.3.2 Manifest Header Grammar
OSGi-defined manifest header values are declared using an augmented Backus-
Naur Form (BNF) grammar similar to that used by [3] The Standard for the For-
mat of ARPA Internet Text Messages. This augmented BNF is also specified by [4]
The Hypertext Transfer Protocol - HTTP/1.1 Section 2: Notational Conventions
and Generic Grammar.

According to the BNF grammar, a manifest attribute value with spaces is
parsed as a single word if the attribute is wrapped in double-quote marks.

2.4 The Bundle Namespace
This section addresses the issues related to classloading in the Framework and
the details necessary to implement a Framework.

A classloader (ClassLoader object), loads classes into the Java Virtual Machine.
When such classes refer to other classes or resources, they are found through
the same classloader. This classloader may load the class itself or delegate the
loading to another classloader. This approach effectively creates a namespace
for classes: A class is uniquely identified by its fully qualified name and the
classloader that created it. This implies that a class can be loaded multiple
times from different classloaders.

2.4.1 Bundles and classloaders
Each bundle installed in the Framework that is resolved must have a class-
loader associated with it (Frameworks may have multiple classloaders per
bundle). This classloader provides each bundle with its own namespace, to
avoid name conflicts, and allows package sharing with other bundles. The
bundle's classloader must find classes and resources in the bundle by search-
ing the bundle's classpath as specified by the Bundle-Classpath header in the
bundle's manifest. See Bundle Classpath on page 20 for more information on
this header.

Bundles collaborate by sharing objects that are an instance of a mutually
agreed class (or interface). This class must be loaded from the same classloader
for both bundles, otherwise, using the shared object will result in a ClassCast-
Exception . Therefore, the Framework must ensure that all importers of a class
in an exported package use the same classloader to load that class or interface.
16-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 The Bundle Namespace
For example, a bundle may register a service object under a class com.acme.C
with the Framework service registry. It is crucial that the bundle that created
the service object ("Bundle A") and the one retrieving it from the service regis-
try ("Bundle B") share the same class com.acme.C of which the service object
must be an instance. If Bundle A and Bundle B used different classloaders to
load class com.acme.C , Bundle B's attempt to cast the service object to its ver-
sion of class com.acme.C would result in a ClassCastException .

A bundle's classloader also sets the Protect ionDomain object for classes loaded
from the bundle, as well as participates in requests to load native libraries
selected by the Bundle-NativeCode manifest header. The classloader for a bun-
dle is created during the process of resolving the bundle.

2.4.2 Sharing Packages
A bundle may offer to export all the classes and resources in a package by spec-
ifying the package name in the Export-Package header in its manifest. For each
package offered for export, the Framework must choose one bundle that will
be the provider of the classes and resources in that package to all bundles
which import that package, or other bundles which offer to export the same
package.

Selecting a single package among all the exporters ensures that all bundles
share the same class and resource definitions. If a bundle does not participate
in the sharing of a package – in other words, the bundle does not have an
Export-Package or Import-Package manifest header referencing the package –
then attempts by the bundle to load a class or resource from the package must
not search the shared package. Only the system classpath and the bundle’s jar
file are searched for this package.

Figure 9 Package and class sharing

com.acme.a

javax.servlet

javax.servlet.http

com.elmer.fudd

javax.comm

javax.servlet

manifest manifest

classloader
bundle B

classloader
bundle A

instances
bundle A

instances
bundle B

instances compatible

javax.servlet

javax.comm

namespace
 database

when classes
exported or imported

 JAR file JAR file
OSGi Service-Platform Release 2 17-282

The Bundle Namespace Framework Specification Version 1.1
Package sharing for a bundle is established during the process of resolving the
bundle. A bundle must only participate in sharing packages if the bundle can
be successfully resolved. A bundle that is not resolved must neither export nor
import packages. A bundle must have the necessary PackagePermiss ion to par-
ticipate in the sharing of a package.

A bundle declares the resources it offers to provide to other bundles using
Export-Package manifest headers, and declares the resources it needs using
Import-Package manifest headers.

2.4.3 Exporting Packages
The Export-Package manifest header allows a bundle to export Java packages
to the OSGi environment, exposing the packages to other bundles.

The Framework must guarantee that classes and resources in the exported
package’s namespace are loaded from the exporting bundle. Additionally, the
package’s classes and resources must be shared among bundles that import the
package, see Importing Packages on page 19.

If more than one bundle declares the same package in its Export-Package man-
ifest header, the Framework controls the selection of the exporting bundle.
The Framework must pick the bundle offering the highest version of the
declared package.

In order to export a package, a bundle must have PackagePermiss ion [EXPORT].

The Export-Package manifest header must conform to the following syntax:

Export-Package =
package-description
*("," package-description)

package-description =
package-name *(";" parameter)

package-name =
<fully qualified package name>

parameter =
attribute "=" value

attribute = token
value = token | quoted-string

The only package-descr ipt ion parameter recognized by the Framework is the
attribute speci f icat ion-vers ion . Its string value must conform to the seman-
tics described in the [9] The Java 2 Package Versioning Specification.

As an example, the following Export-Package manifest header declares that
the bundle provides all classes defined by version 2.1 of the javax.servlet and
javax.serv let .http packages.

Export-Package: javax.servlet;
specification-version="2.1",

javax.servlet.http;
specification-version="2.1"
18-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 The Bundle Namespace
2.4.4 Importing Packages
The Import-Package manifest header allows a bundle to request access to pack-
ages that have been exported by other bundles in the OSGi environment.

The Framework must guarantee that while a bundle is resolved, the bundle is
only exposed to one version of a package it has imported.

The fully qualified package name must be declared in the bundle’s Import-
Package manifest header for all packages a bundle needs, except for package
names beginning with:

java.

In order to be allowed to import a package, a bundle must have PackagePer-
miss ion [IMPORT] or PackagePermiss ion [EXPORT].

PackagePermission on page 82 for more information.

The Import-Package manifest header must conform to the following syntax:

Import-Package =
package-description
*("," package-description)

package-description =
package-name *(";" parameter)

package-name =

<fully qualified package name>

parameter = attribute "=" value
attribute = token
value = token | quoted-string

The only package-descr ipt ion parameter recognized by the Framework is the
attribute speci f icat ion-vers ion . Its string value must conform to the seman-
tics described in the [9] The Java 2 Package Versioning Specification.

As an example, the following Import-Package manifest header requires that
the bundle be resolved against the javax.servlet package version 2.1 or above:

Import-Package: javax.servlet;
specification-version="2.1"

2.4.5 Importing a Lower Version Than Exporting
Exporting a package does not imply that the exporting bundle will actually
use the classes it offers for export. Multiple bundles can offer to export the
same package; the Framework must select only one of those bundles as the
exporter.

A bundle will implicitly import the same package name and version level as it
exports, and therefore a separate Import-Package manifest header for this
package is unnecessary. If the bundle can function using a lower specification
version of the package than it exports, then the lower version can be specified
in an Import-Package manifest header.
OSGi Service-Platform Release 2 19-282

The Bundle Namespace Framework Specification Version 1.1
2.4.6 Code Executed Before Started
Packages exported from a bundle are exposed to other bundles as soon as the
bundle has been resolved. This condition could mean that another bundle
might call methods in an exported package before the bundle exporting the
package is started.

2.4.7 Recommended Export Strategy
Although a bundle can export all of its classes to other bundles, this practice is
discouraged except in the case of particularly stable library packages that will
need updating only infrequently. The reason for this caution is that the Frame-
work may not be able to promptly reclaim the space occupied by the exported
classes if the bundle is updated or uninstalled.

Bundle designs that separate interfaces from their implementations are
strongly preferred. The bundle developer should put the interfaces into a sepa-
rate Java package to be exported, while keeping the implementation classes in
a different package hidden from the outside world.

If the same interface has multiple implementations in multiple bundles, the
bundle developer can package the interface package into all of these bundles;
the Framework must select one, and only one, of the bundles to export the
package, and the interface classes must be loaded from that bundle. Interfaces
with the same package and class name should have exactly the same method
signatures. Because a modification to an interface affects all of its callers, inter-
faces should be carefully designed and remain stable once deployed.

2.4.8 Bundle Classpath
Intra-bundle classpath dependencies are declared in the Bundle-Classpath
manifest header. This declaration allows a bundle to declare its internal class-
path using one or more JAR files that it contains.

The Bundle-Classpath manifest header is a list of comma-separated file names.
A file name can be either dot (" . ") or the path of a JAR file contained in the
bundle’s JAR file. The dot represents the bundle’s JAR file itself.

Classpath dependencies must be resolved as follows:

• If a Bundle-Classpath header is not declared, the default value of dot (.) is
used, which specifies the bundle’s JAR file.

• If a Bundle-Classpath manifest header is declared and dot (.) is not an
element of the classpath, the bundle’s JAR file must not be searched. In this
case, only the JAR files specified within the bundle’s JAR file must be
searched.

The Bundle-Classpath manifest header must conform to the following syntax:

Bundle-Classpath =
path *("," path)

path =
<path name of nested JAR file with

"/"-separated components>
20-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Loading Native Code Libraries
For example, the following declaration in a bundle’s manifest file would
expose all classes and resources stored in the JAR file, but also all classes and
resources defined in servlet . jar , to the bundle:

Bundle-Classpath: .,
lib/servlet.jar

2.5 Loading Native Code Libraries
If a bundle has a Bundle-NativeCode manifest header, the bundle contains
native code libraries that must be available for the bundle to execute. When a
bundle makes a request to load a native code library, the f indLibrary method of
the caller's classloader must be called to return the file path name in which the
Framework has made the requested native library available.

The bundle must have the required RuntimePermiss ion [loadL ibrary.< l ibrary
name>] in order to load native code in the OSGi environment.

The Bundle-NativeCode manifest header must conform to the following syn-
tax:

Bundle-NativeCode =
nativecode-clause *("," nativecode-clause)

nativecode-clause =

nativepaths *(";" env-parameter)

nativepaths =

nativepath *(";" nativepath)

nativepath = </ separated path>

env-parameter = (
processordef |
osnamedef |
osversiondef |
languagedef

)

processordef = "processor" "=" value
osnamedef = "osname" "=" value
osversiondef = "osversion" "=" value
languagedef = "language" "=" value

value = token | quoted-string

If a Bundle-NativeCode clause contains duplicate env-parameter entries, the
corresponding values must be or’ed together.

If multiple native code libraries need to be installed on one platform, they
must be specified in the same clause for that platform.
OSGi Service-Platform Release 2 21-282

Loading Native Code Libraries Framework Specification Version 1.1
The following is an example of native code declaration in a bundle’s manifest
file:

Bundle-NativeCode: /lib/http.DLL ;
/lib/zlib.dll ;

osname = Windows95 ;
osname = Windows98 ;
osname = WindowsNT ;
osversion = "5.1" ;
processor = x86 ;
language = en ;
language = se ,

/lib/solaris/libhttp.so ;
osname = Solaris ;
osname = SunOS ;
processor = sparc,

/lib/linux/libhttp.so ;
osname = Linux ;
processor = mips

2.5.1 Native Code Algorithm
1. Pick the clauses that match the processor and operating system of the

Framework host computer.
• The specified processor (attribute processor) and operating system-

names (attribute osname) are compared to the Framework properties
org.osgi. f ramework.processor and org.osgi . framework.os.name
respectively. Case differences are ignored and aliases of the osname or
processor attributes may be used.

• If no clause matches both the required processor and operating system,
the bundle installation fails.

2. Pick the clauses that best match the operating system version of the Frame-
work host computer.
• The specified operating system version (attribute osversion) is com-

pared to the value specified in the Framework property: org.osgi. f rame-
work.os.vers ion .

• If there is only one clause with an exact match, it can be used as the best
match and returned.

• If there is more than one clause that matches the property, they must be
picked to perform the next step.

• Operating system versions are taken to be backward compatible. If there
is no exact match in the clauses, clauses with operating system versions
lower than the value specified in org.osgi . f ramework.os.vers ion must
be picked as the best match. If there is only one clause that has a compat-
ible operating system version, it can be used as the best match.

• Otherwise, all clauses with compatible operating system versions will go
through the next step.

• If no clause has a matching or compatible operating system version, the
clause that does not have an operating system version specified must be
picked as the best match.

• If that is not possible, the bundle installation fails.
22-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Finding Classes and Resources
3. Pick the clause that best matches the language of the Framework host com-
puter.
• The specified language (clause attribute language) is matched against

the system property: org.osgi. f ramework. language
• If more than one clause remains at that point, then the Framework is free

to pick among them randomly.
• If no clauses have the exact match with the value of the org.osgi . frame-

work. language property, the clause that does not have a language speci-
fied must be picked as the best match.

• If that is not possible, the bundle installation fails.

2.6 Finding Classes and Resources
Framework implementations must follow the rules defined in this section
regarding class and resource loading to create a predictable environment for
bundle developers.

A bundle's classloader responds to requests by the bundle to load a resource or
class. The bundle's classloader uses a delegation model. Upon a request to load
a resource or class, the following classloaders are searched for the first occur-
rence of the class or resource, in the following order:

1. The system classloader.

2. The classloader of the bundle that exports the shared package to which the
resource belongs (if the package is shared and the caller has the appropriate
PackagePermiss ion[IMPORT]).

3. The bundle’s own classloader. The bundle is searched in the order specified
in the Bundle-Classpath manifest header. See Bundle Classpath on page 20.

A class loaded from a bundle always belongs to that bundle's Protect ionDo-
main object.

2.6.1 Resources
In order to have access to a resource in a bundle, appropriate permissions are
required. A bundle must always be given the necessary permissions by the
Framework to access the resources contained in its JAR file (these permissions
are Framework implementation dependent), as well as permission to access
any resources in shared packages for which the bundle has PackagePermis-
s ion[IMPORT] .

When f indResource is called on a bundle's classloader, the caller is checked for
the appropriate permission to access the resource. If the caller does not have
the necessary permission, the resource is not accessible and nul l must be
returned. If the caller has the necessary permission, then a URL object to the
resource must be returned. Once the URL object is returned, no further permis-
sion checks are performed when the contents of the resource are accessed. The
URL object must use a protocol defined by the Framework implementation,
and only the Framework implementation must be able to construct such URL
objects of this protocol. The external form of this URL object must also be
defined by the implementation.
OSGi Service-Platform Release 2 23-282

The Bundle Object Framework Specification Version 1.1
A resource in a bundle may also be accessed by using the Bundle.getResource
method. This method calls getResource on the bundle's classloader to perform
the search. The caller of Bundle.getResource must have AdminPermission .

2.7 The Bundle Object
For each bundle installed in the OSGi environment, there is an associated
Bundle object. The Bundle object for a bundle can be used to manage the bun-
dle’s lifecycle. A management bundle is responsible for managing the lifecycle
of other bundles.

2.7.1 Bundle Identifier
The bundle identifier is unique and persistent and has the following proper-
ties:

• The identifier is of type long .
• Once its value is assigned to a bundle, that value must not be reused for

another bundle, even if the original bundle is reinstalled.
• Its value must not change as long as the bundle remains installed.
• Its value must not change when the bundle is updated.

The Bundle interface defines a getBundleId() method for returning a bundle’s
Identifier attribute.

2.7.2 Bundle Location
The bundle location is the location string of the bundle that was specified
when the bundle was installed. The Bundle interface defines a getLocat ion()
method for returning a bundle’s location attribute.

A location string uniquely identifies a bundle.

2.7.3 Bundle State
A bundle may be in one of the following states:

• INSTALLED – The bundle has been successfully installed.
• RESOLVED – All Java classes and/or native code that the bundle needs are

available. This state indicates that the bundle is either ready to be started or
has stopped.

• STARTING – The bundle is being started, and the BundleActivator.start
method has been called and has not yet returned.

• STOPPING – The bundle is being stopped, and the BundleActivator.stop
method has been called and has not yet returned.

• ACTIVE – The bundle has successfully started and is running.
• UNINSTALLED – The bundle has been uninstalled. It cannot move into

another state.
24-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 The Bundle Object
Figure 10 State diagram Bundle

When a bundle is installed, it is stored in the persistent storage of the Frame-
work and remains there until it is explicitly uninstalled. Whether a bundle has
been started or stopped is recorded in the persistent storage of the Framework.
A bundle that has been persistently recorded as started must be started when-
ever the Framework starts until the bundle is explicitly stopped.

The Bundle interface defines a getState() method for returning a bundle’s
state.

Bundle states are expressed as a bit-mask to conveniently determine the state
of a bundle; a bundle can only be in one state physically at any time. The fol-
lowing code sample can be used to determine if a bundle is in the RESOLVED
state:

if ((b.getState() & RESOLVED) != 0)
...

2.7.4 Installing Bundles
The BundleContext interface, which is given to the Bundle Activator of a bun-
dle, defines the methods for installing a bundle:

• instal lBundle(Str ing) – Installs a bundle from the specified location string.
• instal lBundle(Str ing, InputStream) – Installs a bundle from the specified

InputStream .

Every bundle is uniquely identified by its location string. If an installed bundle
is using the specified location, the instal lBundle methods must return the Bun-
dle object for that bundle.

The installation of a bundle in the Framework must be:

• Persistent – The bundle must remain installed across Framework and Java
Virtual Machine invocations, until it is explicitly uninstalled.

INSTALLED

UNINSTALLED

STARTING STOPPING

ACTIVE

update

uninstall

uninstall resolve

start

stop

install

RESOLVED

Explicit transition

Automatic transition
OSGi Service-Platform Release 2 25-282

The Bundle Object Framework Specification Version 1.1
• Atomic – The install method must completely install the bundle or, if the
installation fails, the OSGi environment must be left in the same state as it
was in before the method was called.

When installing a bundle, the Framework attempts to resolve the bundle’s
native code dependencies. If this attempt fails, the bundle must not be
installed, see Loading Native Code Libraries on page 21.

Once a bundle has been installed, a Bundle object is created and all remaining
lifecycle operations must be performed upon this object. The returned Bundle
object can be used to start, stop, update, and uninstall the bundle.

2.7.5 Resolving Bundles
A bundle can enter the RESOLVED state when the Framework has successfully
resolved the bundle's code dependencies. These dependencies include the bun-
dle’s:

• Classpath dependencies from its Bundle-Classpath manifest header.
• Native Code dependencies from its Bundle-NativeCode manifest header.
• Package dependencies from its Export-Package and Import-Package man-

ifest headers.

If the bundle’s dependencies are resolved, all the packages declared in the bun-
dle’s Export-Package manifest header are exported to the OSGi environment.

A bundle may be resolved at the Framework implementation’s discretion once
the bundle is installed.

2.7.6 Starting Bundles
The Bundle interface defines the start() method for starting a bundle. If this
method succeeds, the bundle’s state is set to ACTIVE and it remains in this state
until it is stopped.

In order to be started, a bundle must be resolved. The Framework must
attempt to resolve the bundle, if not already resolved, when trying to start the
bundle. If the bundle fails to resolve, the start method must throw a BundleEx-
ception .

If the bundle is resolved, the bundle must be activated by calling its Bundle
Activator object, if any. The BundleAct ivator interface defines methods that
the Framework invokes when it starts and stops the bundle.

To inform the OSGi environment of the fully qualified class name serving as
its Bundle Activator, a bundle developer must declare a Bundle-Activator man-
ifest header in the bundle’s manifest file. The Framework must instantiate an
object of this class and cast it to a BundleAct ivator . It must then call the start
method to start the bundle.

The following is an example of a Bundle-Activator manifest header:

Bundle-Activator: com.acme.BA

A BundleAct ivator class must implement the BundleAct ivator interface and be
declared publ ic and have a public default constructor so an instance of it may
be created with Class .newInstance .
26-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 The Bundle Object
Supplying a Bundle Activator is optional. For example, a library bundle that
only exports a number of packages usually does not need to define a Bundle
Activator. A bundle providing a service should do so, however, because this is
the only way for the bundle to obtain its BundleContext object and get control
when started.

The BundleAct ivator interface defines these methods for starting and stopping
a bundle:

• start(BundleContext) – This method can allocate resources that a bundle
needs and start threads, and also usually registers the bundle’s services. If
this method does not register any services, the bundle can register the ser-
vices it needs at a later time, for example in a callback, as long as it is in the
ACTIVE state.

• stop(BundleContext) – This method must undo all the actions of the
BundleAct ivator.start(BundleContext) method.

2.7.7 Stopping Bundles
The Bundle interface defines the stop() method for stopping a bundle. This
stops a bundle and sets the bundle’s state to RESOLVED .

The BundleAct ivator interface defines a stop(BundleContext) method, which
is invoked by the Framework to stop a bundle. This method must release any
resources allocated since activation. All threads associated with the stopping
bundle should be stopped immediately. The threaded code may no longer use
Framework related objects (such as services and BundleContext objects) once
its stop method returns.

This method may unregister services. However, if the stopped bundle had reg-
istered any services, either through its BundleAct ivator .start method, or while
the bundle was in the ACTIVE state, the Framework must automatically unreg-
ister all registered services when the bundle is stopped.

The Framework guarantees that if a BundleAct ivator .start method has exe-
cuted successfully, that same BundleAct ivator object must receive a call to its
BundleAct ivator .stop method when the bundle is deactivated.

Packages exported by a bundle continue to be available to other bundles. This
continued export implies that other bundles can execute code from a stopped
bundle, and the designer of a bundle should assure that this is not harmful.
Exporting only interfaces is one way to prevent this execution when the bun-
dle is not started. Interfaces do not contain executable code so they cannot be
executed.

2.7.8 Updating Bundles
The Bundle interface defines two methods for updating a bundle:

• update() – This method updates a bundle.
• update(InputStream) – This method updates a bundle from the specified

InputStream.

The update process supports migration from one version of a bundle to a
newer, backward-compatible version of the same bundle.

As an example, a bundle Newer , is backward compatible with another bundle,
Older if:
OSGi Service-Platform Release 2 27-282

The Bundle Context Framework Specification Version 1.1
• Newer provides at least the services provided by Older .
• Each service interface in Newer is compatible (as defined in [6] The Java Lan-

guage Specification, Section 13.5) with its counterpart in Older .
• For any packages exported by Older , Newer must export the same package,

which must be compatible with its counterpart in Older .

A Framework must guarantee that only one version of a bundle’s classes is
available at any time. If the updated bundle had exported any packages, those
packages must not be updated; their old versions must remain exported until
the org.osgi .serv ice.admin.PackageAdmin.refreshPackages method has been
called or the Framework is restarted.

2.7.9 Uninstalling Bundles
The Bundle interface defines a method for uninstalling a bundle from the
Framework: uninstal l () . This method causes the Framework to notify other
bundles that the bundle is being uninstalled, and sets the bundle’s state to
UNINSTALLED . The Framework must remove any resources related to the bun-
dle that it is able to remove. This method must always uninstall the bundle
from the persistent storage of the Framework.

Once this method returns, the state of the OSGi Environment must be the
same as if the bundle had never been installed, unless the uninstalled bundle
has exported any packages (via its Export-Package manifest header) and was
selected by the Framework as the exporter of these packages.

If the bundle did export any packages, the Framework must continue to make
these packages available to their importing bundles until one of the following
conditions is satisfied:

• The org.osgi.service.admin.PackageAdmin .ref reshPackages method has
been called.

• The Framework is restarted.

2.8 The Bundle Context
The relationship between the Framework and its installed bundles is realized
by the use of BundleContext objects. A BundleContext object represents the
execution environment of a single bundle within the OSGi environment, and
acts as a proxy to the underlying Framework.

A BundleContext object is created by the Framework when a bundle is started.
The bundle can use this private BundleContext object for the following pur-
poses:

• Installing new bundles into the OSGi environment. See Installing Bundles on
page 25.

• Interrogating other bundles installed in the OSGi environment. See Getting
Bundle Information on page 29.

• Obtaining a persistent storage area for the installed bundle. See Persistent
Storage on page 29.

• Retrieving service objects of registered services. See ServiceReference Objects
on page 31.

• Registering services in the Framework service. See Registering Services on
page 32.
28-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 The Bundle Context
• Subscribing or unsubscribing to events broadcast by the Framework. See
Events on page 41.

When a bundle is started, the Framework creates BundleContext object and
provides this object as an argument to the start(BundleContext) method of
the bundle’s Bundle Activator. Each bundle is provided with its own Bundle-
Context object; these objects should not be passed between bundles, as the
BundleContext object is related to the security aspects of a bundle.

After the stop(BundleContext) method is called, the BundleContext object
must no longer be used. Framework implementations must throw an excep-
tion if the BundleContext object is used after a bundle is stopped.

2.8.1 Getting Bundle Information
The BundleContext interface defines methods which can be used to retrieve
information about bundles installed in the OSGi environment:

• getBundle() – Returns the single Bundle object associated with the Bundle-
Context object.

• getBundles() – Returns an array of the bundles currently installed in the
Framework.

• getBundle(long) – Returns the Bundle object specified by the unique iden-
tifier, or nul l if no matching bundle is found.

Bundle access is not restricted; any bundle can enumerate the set of installed
bundles. Information that can identify a bundle, however (such as its location,
or its header information), is only provided to callers that have AdminPermis-
s ion .

2.8.2 Persistent Storage
The Framework should provide a private persistent storage area for each
installed bundle on platforms with some file system support.

The BundleContext interface defines access to this storage in terms of the Fi le
class, which supports platform-independent definitions of file and directory
names.

The BundleContext interface defines a method to access the private persistent
storage area: getDataFi le(Str ing) . This method takes a relative file name as an
argument and translates it into an absolute file name in the bundle’s persistent
storage area and returns a Fi le object. This method returns nul l if there is no
support for persistent storage.

If a persistent area is given, the Framework must give the bundle the appropri-
ate permissions to access this storage area.

2.8.3 Environment Properties
The BundleContext interface defines a method for returning information per-
taining to Framework properties: getProperty(Str ing) . This method can be
used to return the following Framework properties:
OSGi Service-Platform Release 2 29-282

The Bundle Context Framework Specification Version 1.1
Property name Description

org.osgi. f ramework.vers ion The version of the Framework.

The vendor of the Framework implementation. org.osgi. f ramework.vendor

org.osgi. f ramework. language The language being used is ISO 639, International Standards Organization See
[10] Codes for the Representation of Names of Languages for valid values.

org.osgi. f ramework.processor Processor name. The following table defines a list of processor names. New
processors are defined on the OSGi web site. Names should be matched case
insensitive.

Name Aliases Description

68k 68000 and up

ARM Intel Strong ARM

Alpha Compaq

Ignite psc1k PTSC

Mips SGI

PAr isc Hewlett Packard

PowerPC power ppc Motorola/IBM

Sparc SUN

x86 pent ium i386 i486
i586 i686

Intel

org.osgi. f ramework.os.name The name of the operating system (OS) of the host computer. The following
table defines a list of OS names. New OS names are defined on the OSGi web
site. Names should be matched case insensitive.

Name Aliases Description

AIX IBM

Digita lUnix Compaq

FreeBSD Free BSD

HPUX Hewlett Packard

IRIX Si l l icon Graphics

Linux Open source

MacOS Apple

Netware Novell

OpenBSD Open source

NetBSD Open source

OS2 OS/2 IBM

QNX procnto QNX

Solar is Sun Micro Systems

SunOS Sun Micro Systems

VxWorks WindRiver Systems

Table 2 Property Names
30-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Services
2.9 Services
In the OSGi environment, bundles are built around a set of cooperating ser-
vices available from a shared service registry. Such an OSGi service is defined
by its service interface and implemented as a service object.

Services are provided in the Framework as service objects. Service objects imple-
ment one or more service interfaces under which the service is registered with
the Framework.

The semantics and behavior of the service object are defined by a service inter-
face. This interface should be specified with as few implementation details as
possible. OSGi has specified many interfaces for common needs and will spec-
ify more in the future.

The service object is owned by and runs within a bundle; this bundle must reg-
ister the service with the Framework service registry so that the service’s func-
tionality is available to other bundles under control of the Framework.

Dependencies between the bundle owning the service and the bundles using it
are managed by the Framework. For example, when a bundle is stopped, all the
services registered with the Framework by that bundle must be automatically
unregistered.

The Framework maps services to their underlying service objects, and provides
a simple but powerful query mechanism that enables an installed bundle to
request the services it needs. The Framework also provides an event mecha-
nism so that bundles can receive events of service objects that are registered,
modified, or unregistered.

2.9.1 ServiceReference Objects
In general, registered services are referenced through Serv iceReference
objects. This avoids creating unnecessary dynamic service dependencies
between bundles.

Windows95 Win95
Windows 95

Microsoft Windows 95

Windows98 Win98
Windows 98

Microsoft Windows 98

WindowsNT WinNT
Windows NT

Microsoft Windows NT

WindowsCE WinCE
Windows CE

Microsoft Windows CE

Windows2000 Win2000
Windows 2000

Microsoft Windows 2000

Property name Description

Table 2 Property Names
OSGi Service-Platform Release 2 31-282

Services Framework Specification Version 1.1
A ServiceReference object can be stored and passed on to other bundles with-
out the implications of dependencies. When a bundle wishes to use the ser-
vice, it can be obtained by passing the ServiceReference object to
BundleContext .getService(ServiceReference) , see Obtaining Services on page
35.

A ServiceReference object encapsulates the properties and other meta infor-
mation about the service object it represents. This meta information can be
queried by a bundle to assist in the selection of a service that best suits its
needs.

When a bundle queries the Framework service registry for services, if one or
more of the registered services meet the request criteria, the Framework pro-
vides the requesting bundle with ServiceReference objects, rather than with
the services themselves.

2.9.2 Service Interfaces
A service interface is the specification of the service’s public methods.

In practice, a bundle developer creates a service object by implementing its ser-
vice interface, and registers the service with the Framework service registry.
Once a bundle has registered a service object under an interface/class name,
the associated service can be acquired by bundles under that interface name,
and its methods can be accessed by way of its service interface.

A bundle registers a service under the names of one or more interfaces or
classes that the service object implements. Properties that describe the service
object (vendor, version, etc.) can be specified as registration arguments. See
Properties on page 33 for more information about these properties.

When requesting a service object from the Framework, a bundle can specify
the name of the service interface that the requested service object must imple-
ment. In the request, the bundle may optionally specify a filter string to fur-
ther narrow the search.

Many service interfaces are defined and specified by organizations such as
OSGi. A service interface that has been accepted as a standard can be imple-
mented and used by any number of bundle developers.

2.9.3 Registering Services
A bundle introduces a service into the service by registering its service object
with the Framework service registry. A service object registered with the
Framework is exposed to other bundles installed in the OSGi environment.

During registration, a service object can be given a set of key/value properties
to support a sophisticated retrieval mechanism based on attribute compari-
sons.

Every registered service object has a unique ServiceRegistrat ion object, and
has one or more Serv iceReference objects that refer to it. These ServiceRefer-
ence objects expose the registration properties of the service object, including
the set of service interfaces/classes it implements. The ServiceReference
object can then be used to acquire a service object that implements the desired
service.
32-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Services
The Framework permits bundles to register and unregister service objects
dynamically. Therefore, a bundle is permitted to register service objects from
the time its BundleAct ivator .start method is called until its BundleActiva-
tor .stop method is called and returns.

A bundle registers a service object with the Framework by calling one of the
BundleContext .registerServ ice methods on its BundleContext object:

• registerServ ice(String, Object , Dict ionary) – For a service object registered
under a single service interface, of which it is an instance.

• registerServ ice(String[] , Object , Dict ionary) – For a service object regis-
tered under multiple service interfaces, of which it is an instance.

The names of the service interface under which a bundle wants to register its
service are provided as arguments to the BundleContext . registerService
method. The Framework must ensure that the service object actually is an
instance of all the service interfaces specified by the arguments.

The service object being registered may be further described by a Dict ionary
object, which contains the properties of the service as a collection of key/value
pairs.

The service interface names under which a service object has been successfully
registered are automatically added to the service object’s properties under the
key objectClass . This value must be set automatically by the Framework and
any value provided by the bundle is overridden.

If the service object is successfully registered, the Framework returns a Ser-
viceRegistrat ion object to the caller. A service object can be unregistered only
by the holder of its ServiceRegistrat ion object (see unregister()). Every suc-
cessful service object registration must yield a unique Serv iceRegistrat ion
object, even if the same service object is registered multiple times.

Using the Serv iceRegistrat ion object is the only way to reliably change the ser-
vice object’s properties after it has been registered (see setPropert ies(Dict io-
nary)). Modifying a service object’s Dict ionary object after the service obect is
registered may not have any effect on the service properties.

2.9.4 Properties
Properties hold information as key/value pairs. The key is a Str ing object and
the value can be any type, but using a type recognized by Fi lter objects for com-
parison is recommended (see Filters on page 37 for a list). Multiple values for
the same key are supported with arrays ([]) and Vector objects.

The values of properties should be limited to primitive or standard Java types
to prevent unwanted inter-bundle dependencies. The Framework cannot
detect dependencies that are created by the exchange of objects between bun-
dles.

The key of a property is not case sensitive. ObjectClass , OBJECTCLASS and
objectc lass all are the same property key. A Framework must, however, return
the key in ServiceReference.getPropertyKeys in exactly the same case as it
was last set. When a Dict ionary object is passed that contains keys that only
differ in case, the Framework must raise an exception.
OSGi Service-Platform Release 2 33-282

Services Framework Specification Version 1.1
The properties of a ServiceRegistrat ion object are intended to provide infor-
mation about the service object. The properties should normally not be used to
participate in the actual function of the service. Modifying the properties for
the service registration is a potentially expensive operation; for example, a
Framework may pre-process the properties into an index during registration,
to speed up later look ups.

The Fi l ter interface supports complex filtering and may be used to find match-
ing service objects. Therefore, all properties share a single namespace in the
Framework service registry. As a result, it is important to use descriptive
names or formal definitions of shorter names to prevent conflicts. Several
OSGi specifications reserve parts of this namespace. All properties starting
with service . and the property objectClass are reserved for use by OSGi.

Table 3 Standard Framework Service Registry Properties contains a list of pre-
defined properties. The first column contains the exact name of each property,
and the next column contans a reference to the Constants interface where this
property is defined in a constant with that name.

Property Key Type Constants Property Description

objectClass Str ing[] OBJECTCLASS The objectClass property contains the set of
classes and interfaces under which a service object
is registered with the Framework. The Framework
sets this property automatically. The Framework
must guarantee that when a service object is
retrieved with BundleContext .getService(Ser-
viceReference) it can be cast to any of these
classes or interfaces.

serv ice.descr ipt ion Str ing SERVICE_DESCRIPTION The service.descr ipt ion property is intended to be
used as documentation and is optional. The regis-
tering bundle can provide this property. Frame-
works and bundles can use this property to
provide a short description of a registered service
object. The purpose is mainly for debugging
because there is no support for localization.

serv ice. id Long SERVICE_ID Every registered service object is assigned a ser-
vice. id by the Framework, which is added to the
service object’s properties. The Framework
assigns a unique value to every registered service
object that is larger than values provided to all
previously registered service objects.

Table 3 Standard Framework Service Registry Properties
34-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Services
2.9.5 Security Check
The process of registering a service object is subject to a security check. The
registering bundle must have ServicePermission[REGISTER] to register the
service object under all the service interfaces specified.

Otherwise, the service object must not be registered, and a Secur ityExcept ion
must be thrown. See Permission Types on page 44 for more information.

2.9.6 Obtaining Services
In order to use a service object and call its methods, a bundle must first obtain
a ServiceReference object referencing the service object. The BundleContext
interface defines two methods a bundle can call to obtain Serv iceReference
objects from the Framework:

• getServiceReference(Str ing) – This method returns a ServiceReference
object to a service object that implements, and was registered under, the
name of the service interface specified as Str ing . If multiple such service
objects exist, the service object with the highest SERVICE_RANKING is
returned. If there is a tie in ranking, the service object with the lowest
SERVICE_ID (the service object that was registered first) is returned.

• getServiceReferences(Str ing, Str ing) – This method returns an array of
ServiceReference objects that:
• Implement and were registered under the service interface.
• Satisfy the search filter specified. The filter syntax is further explained in

Filters on page 37.

serv ice.pid Str ing SERVICE_PID The serv ice.pid property optionally identifies a
persistent, unique name for the service object.
This name must be assigned by the bundle regis-
tering and should be a unique Str ing object. Every
time this service object is registered, including
after a restart of the Framework, this service
object should be registered under the same ser-
vice.pid property. The value can be used by other
bundles to persistently store information about
this service object.

serv ice.ranking Integer SERVICE_RANKING When registering a service object, a bundle may
optionally specify a serv ice.ranking number as
one of the service object’s properties. If multiple
qualifying service interfaces exist, a service’s
SERVICE_RANKING number, along with its
SERVICE_ID, determine which service object is
returned by the Framework.

serv ice.vendor Str ing SERVICE_VENDOR This optional property can be used by the bundle
registering the service object to define the vendor.
The serv ice.vendor property can be used by
Framework to identify the service object.

Property Key Type Constants Property Description

Table 3 Standard Framework Service Registry Properties
OSGi Service-Platform Release 2 35-282

Services Framework Specification Version 1.1
Both methods must return null if no matching service objects are returned.
Otherwise the caller receives one or more ServiceReference objects. These
objects can be used to retrieve properties of the underlying service object, or
they can be used to obtain the actual service object via the BundleContext
object.

2.9.7 Getting Service Properties
To allow for interrogation of service objects, the Serv iceReference interface
defines these two methods:

• getPropertyKeys() – Returns an array of the property keys that are
available.

• getProperty(Str ing) – Returns the value of a property.

Both of these methods must continue to provide information about the refer-
enced service object, even after it has been unregistered from the Framework.
This requirement can be useful when a ServiceReference object is stored with
the Log Service.

2.9.8 Getting Service Objects
The BundleContext object is required to obtain the actual service object so that
the Framework can account for the dependencies. If a bundle retrieves a ser-
vice object, it becomes dependent upon the registered service object. This
dependency is tracked by the BundleContext object used to obtain the service
object, and is one reason that it is important to be careful when sharing
BundleContext objects with other bundles.

The method BundleContext .getService(ServiceReference) returns an object
that implements the interfaces as defined by the objectClass property.

This method has the following characteristics:

• Returns nul l if the underlying service object has been unregistered.
• Determines if the caller has ServicePermiss ion[GET] , to get the service

object using at least one of the service interfaces under which the service
was registered. This permission check is necessary so that ServiceReference
objects can be passed around freely, without compromising security.

• Increments the bundle usage count of the service object by one.
• If the service object implements the ServiceFactory interface it is not

returned, but used to customize the service object for the calling bundle. If
the bundle usage of the service object is one, the ServiceFactory object is
called to obtain a new service. Else, a cached copy of this customized object
is returned. See Service Factories on page 38 for more information about Ser-
viceFactory objects.

Both of the BundleContext .getServiceReference methods require that the
caller have the required ServicePermiss ion[GET] to get the service object for
the specified service interface names. If the caller lacks the required permis-
sion, these methods return nul l .

Getting a Serv iceReference object from a ServiceRegistrat ion object does not
require any permission.

A ServiceReference object is valid only as long as the service object it refer-
ences has not been unregistered, but the properties remain available.
36-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Filters
A service object can be used by casting it to one of the Java object types of
which it is an instance, and calling the methods defined by that type.

2.9.9 Stale References
The Framework must manage the dependencies between bundles. This man-
agement is, however, restricted to Framework structures. Bundles must listen
to events generated by the Framework to clean up and remove stale references.

A stale reference is a reference to a Java object that belongs to the classloader of
a bundle that is stopped or is associated with a service object that is unregis-
tered. Standard Java does not provide any means to clean up these stale refer-
ences, and bundle developers must analyze their code carefully to ensure that
stale references are deleted.

Stale references are potentially harmful because they hinder the Java garbage
collector from harvesting the classes, and possible the instances, of stopped
bundles. The following means are available to minimize stale references:

• Use the Service Tracker, a utility class which greatly simplifies tracking
service objects. See Service Tracker Specification on page 107.

• Implement service objects using the ServiceFactory interface. The methods
in the ServiceFactory interface simplify tracking bundles that use these
service objects. See Service Factories on page 38.

• Use indirection in the service object implementations. Service objects
handed out to other bundles should use an pointer to the actual service
object implementation. When the service object becomes invalid, the
pointer is set to nul l , effectively removing the reference to the actual service
object.

2.9.10 Registered Services
The Bundle interface defines these two methods for returning information per-
taining to installed bundles:

• getRegisteredServ ices() – Returns the service objects that the bundle has
registered with the Framework.

• getServices InUse() – Returns the service objects that the bundle is using.

2.10 Filters
The Framework provides a Fi lter interface, and uses a search filter syntax in
the getServiceReference methods that is based on an RFC 1960-based search
filter string. Filter objects can be created by calling BundleContext.createFi l-
ter(Str ing) with the chosen filter string. For the syntax, see Filter on page 77.

A Fi l ter object can be used numerous times to determine if the match argu-
ment, a Serv iceReference or a Dict ionary object, matches the filter string that
was used to create the Fi l ter object.

A filter matches a key that has multiple values if it matches at least one of
those values. For example,

Dictionary dict = new Hashtable();
dict.put("cn", new String[] { "a", "b", "c" });

The dict will match true against a filter with "(cn=a)" but also "(cn=b)" .
OSGi Service-Platform Release 2 37-282

Service Factories Framework Specification Version 1.1
Comparison of values is dependent on the type of the value. Str ing objects are
compared differently than numbers, and it is possible for a key be associated
with multiple values. Note that keys in the match argument must always be
Str ing objects. The comparison is defined by the object type of the key’s value.

The Fi l ter . toString method must always return the filter string in canonical
form. Unnecessary white space must be removed, although that does not make
filters completely canonical, because the ordering of sub-expressions is not
defined.

2.11 Service Factories
A Service Factory allows customization of the service object that is returned
when a bundle calls BundleContext .getService(ServiceReference) .

Normally, the service object that is registered by a bundle is returned. If, how-
ever, the service object that is registered implements the Serv iceFactory inter-
face, the Framework must call methods on this object to create a unique
service object for each bundle that gets the service.

When the service object is no longer used by a bundle – for example, when
that bundle is stopped – then the Framework must notify the ServiceFactory
object.

ServiceFactory objects help manage bundle dependencies that are not explic-
itly managed by the Framework. By binding a returned service object to the
requesting bundle, the service object can listen to events related to that bundle
and remove objects (for example, listeners) registered by that bundle when it is
stopped. Normally, listening to events is not even necessary, because the
Framework must inform the ServiceFactory object when a service object is
released by a bundle, which happens automatically when a bundle is stopped.

The Serv iceFactory interface defines these the following methods:

• getService(Bundle, ServiceRegistrat ion) – Is called by the Framework if a
call is made to BundleContext .getService and:
• The specified ServiceReference argument points to a service object that

implements the ServiceFactory interface.
• The bundle’s usage count of that service object is zero; that is, the bundle

currently does not have any dependencies on the service object.
The call to BundleContext .getService must be routed by the Framework to
this method, passing to it the Bundle object of the caller. The Framework
must cache the mapping of the requesting bundle-to-service, and return the
cached service object to the bundle on future calls to BundleContext .get-
Service, as long as the requesting bundle's usage count of the service object
is greater than zero.
The Framework must check the service object returned by this method; if it
is not an instance of all the classes named when the service factory was reg-
istered, nul l is returned to the caller that called getService .

• ungetService(Bundle, ServiceRegistrat ion, Object) – This method is called
by the Framework if a call is made to BundleContext .ungetService and:
• The specified ServiceReference argument points to a service object that

implements the ServiceFactory interface.
38-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Importing and Exporting Services
• The bundle’s usage count for that service object must drop to zero after
this call returns; that is, the bundle is about to release its last dependency
on the service object.

The call to BundleContext .ungetService must be routed by the Framework
to this method, so the Serv iceFactory object can release the service object
previously created.
Additionally, the cached copy of the previously created service object must
be unreferenced by the Framework so it may be garbage collected.

2.12 Importing and Exporting Services
The Export-Service manifest header, explained in Manifest Headers on page 15,
declares the interfaces that a bundle may register. It provides advisory infor-
mation that is not used by the Framework. This header is intended for use by
server-side management tools.

The Export-Service manifest header must conform to the following syntax:

Export-Service =
class-name * ("," class-name)

class-name = <fully qualified class name>

The Import-Service manifest header declares the interfaces the bundle may
use. It provides advisory information that is not used by the Framework. This
header is also intended for use by server-side management tools.

The Import-Service manifest header must conform to the following syntax:

Import-Service =
class-name *("," class-name)

class-name = <fully qualified class name>

2.13 Releasing Services
In order for a bundle to release a service object, it must remove the dynamic
dependency on the bundle that registered the service object. The Bundle
Context interface defines a method to release service objects: ungetServ ice(
ServiceReference) . A reference to the service object is passed as the argument
of this method.

This method returns a boolean value:

• fa lse if the bundle’s usage count of the service object is already zero when
the method is being called, or the service object has already been unregis-
tered.

• true if the bundle’s usage count of the service object was more than 0 before
it was decremented.
OSGi Service-Platform Release 2 39-282

Unregistering Services Framework Specification Version 1.1
2.14 Unregistering Services
The Serv iceRegistrat ion interface defines the unregister() method to unregis-
ters the service object. This removes the ServiceRegistrat ion object from the
Framework service registry. The ServiceReference object for this ServiceReg-
istrat ion object can no longer be used to access the service object.

The fact that this method is on the ServiceRegistrat ion object ensures that
only the bundle holding this object can unregister the associated service
object. The bundle that unregisters a service object, however, might not be the
same bundle that registered it. As an example, the registering bundle could
have passed the ServiceRegistrat ion object to another bundle, endowing that
bundle with the responsibility of unregistering the service object. Passing Ser-
viceRegistrat ion objects should be done with caution.

After Serv iceRegistrat ion.unregister successfully completes, the service
object is:

• Completely removed from the Framework service registry. As a conse-
quence, ServiceReference objects obtained for that service object can no
longer be used to access the service object. Calling BundleContext .get-
Service method with the ServiceReference object must return nul l .

• Unregistered, even if other bundles had dependencies upon it. Bundles
must be notified of the unregistration through the publishing of a Service-
Event object of type Serv iceEvent.UNREGISTERING . This event is sent syn-
chronously in order to give bundles the opportunity to release the service
object.
After receiving an event of type ServiceEvent.UNREGISTERING the bundle
should release the service object and releasing any references it has to this
object, so that the service object can be garbage collected by the Java Virtual
Machine.
For each bundle whose usage count for the service object remains greater
than zero after all invoked Serv iceL istener objects have returned, the usage
count must be set to zero and the service object must be released.

2.15 Configurable Services
A Configurable service is one that can be configured dynamically at runtime,
to change its behavior. As an example, a configurable Http Service may sup-
port an option to set the port number it should listen.

A service object is administered as configurable by implementing the
Conf igurable interface, which has one method: getConfigurat ionObject() .
This method returns an Object instance that holds the configuration data of
the service. As an example, a configuration object could be implemented as a
Java Bean.

The configuration object handles all the configuration aspects of a service so
that the service object itself does not have to expose its configuration proper-
ties.
40-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Events
Before returning the configuration object, getConf igurat ionObject should
check that the caller has the required permission to access and manipulate it,
and if not, it should throw a Securi tyExcept ion . Note that the required permis-
sion is implementation-dependent.

The Configurable interface is a minimalistic approach to configuration man-
agement. The OSGi also has a more comprehensive Configuration Manage-
ment specification. The Configurable service is intended to be superseded by
the Configuration Admin service, see Configuration Admin Service Specification
on page 177.

2.16 Events
The OSGi Framework supports the following types of events:

• ServiceEvent – Reports registration, unregistration, and property changes
for service objects. All events of this kind must be delivered synchronously.

• BundleEvent – Reports changes in the lifecycle of bundles.
• FrameworkEvent – Reports that the Framework is started, or has encoun-

tered errors.

2.16.1 Listeners
A listener interface is associated with each type of event.

• ServiceL istener – Called with an event of type Serv iceEvent when a service
object has been registered or modified, or is in the process of unregistering.

• BundleListener and SynchronousBundleListener – Called with an event of
type BundleEvent when a bundle has been installed, started, stopped,
updated, or uninstalled. SynchronousBundleListener objects are called syn-
chronously during the processing of the event, and must be called before
the BundleListener objects are called.

• FrameworkListener – Called with an event of type FrameworkEvent when
the Framework starts or when asynchronous errors occur.

A security check is performed for each registered listener when a Serv iceEvent
occurs. The listener must not be called unless it has the required permission to
get the service object.

BundleContext interface methods are defined which can be used to add and
remove each type of listener.

A bundle that uses a service object should register a Serv iceListener object to
track the availability of the service object, and take appropriate action when
the service object is unregistering.

Events are asynchronously delivered, unless otherwise stated, meaning that
they are not necessarily delivered by the same thread that generated the event.
Which thread is used to call an event listener is not defined.

2.16.2 Delivering Events
When delivering an event asynchronously, the Framework:

• Collects a snapshot of the listener list at the time the event is published (
rather than doing so in the future just prior to event delivery), so that lis-
teners do not enter the list after the event happened, but before the event is
delivered.
OSGi Service-Platform Release 2 41-282

Security Framework Specification Version 1.1
• Ensures that listeners on the list at the time the snapshot is taken still
belong to active bundles at the time the event is delivered.

If the Framework did not capture the current listener list when the event was
published, but instead waited until just prior to event delivery, then it would
be possible for a bundle to have started and registered a listener, and the bun-
dle could see its own BundleEvent. INSTALLED event, which would be an error.

The following three scenarios illustrate this concept.

1. Scenario 1 event sequence:
• Event A is published.
• Listener 1 is registered.
• Asynchronous delivery of Event A is attempted
Expected Behavior: Listener 1 must not receive Event A, because it was not
registered at the time the event was published.

2. Scenario 2 event sequence:
• Listener 2 is registered.
• Event B is published.
• Listener 2 is unregistered.
• Asynchronous delivery of Event B is attempted.
Expected Behavior: Listener 2 receives EventB, because Listener2 was regis-
tered at the time Event B was published.

3. Scenario 3 event sequence:
• Listener 3 is registered.
• Event C is published.
• The bundle that registered Listener 3 is stopped.
• Asynchronous delivery of Event C is attempted.
Expected Behavior: Listener 3 must not receive Event C, because its Bundle
Context object is invalid.

2.17 Security
The Framework security paradigm is based on the Java 2 specification. If secu-
rity checks are performed, they must be done according to [8] The Java Security
Architecture for JDK 1.2. It is assumed that the reader is familiar with this speci-
fication.

The Java platform on which the Framework runs must provide the Java Secu-
rity APIs necessary for Java 2 permissions. On resource-constrained platforms,
these Java Security APIs may be stubs that allow the bundle classes to be
loaded and executed, but the stubs never actually perform the security checks.

Many of the Framework methods require the caller to explicitly have certain
permissions when security is enabled. Services may also have permissions spe-
cific to them that provide more finely grained control over the operations that
they are allowed to perform. Thus a bundle that exposes service objects to
other bundles may also need to define permissions specific to the exposed ser-
vice objects.

For example, the User Admin service has an associated UserAdminPermiss ion
class that is used to control access to this service.
42-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Security
2.17.1 Permission Checks
When a permission check is done, java.secur ity .AccessControl ler should
check all the classes on the call stack to ensure that every one of them has the
permission being checked.

Because service object methods often allow access to resources to which only
the bundle providing the service object normally has access, a common pro-
gramming pattern uses java.secur ity.AccessControl ler .doPr ivi legedin the
implementation of a service object. The service object can assume that the
caller is authorized to call the service object because a service can only be
obtained with the appropriate ServicePermiss ion[GET] . It should therefore
use only its own permissions when it performs its function.

As an example, the dial method of a fictitious PPP Service accesses the serial
port to dial a remote server and start up the PPP daemon. The bundle providing
the PPP Service will have permission to execute programs and access the serial
port, but the bundles using the PPP Service may not have those permissions.

When the dial method is called, the first check will be to ensure that the caller
has permission to dial. This check is done with the following code:

SecurityManager sm = System.getSecurityManager();
if (sm != null)

sm.checkPermission(new com.acme.ppp.DialPermission());

If the permission check does not throw an exception, the dial method must
now enter a privileged state to actually cause the modem to dial and start the
PPP daemon as shown in the following example.

Process proc = (Process)
AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {
Process proc = null;
if (connectToServer())

proc = startDaemon();
return proc;

}
}

);

For alternate ways of executing privileged code, see [8] The Java Security Archi-
tecture for JDK 1.2

2.17.2 Privileged Callbacks
The following interfaces define bundle callbacks that are invoked by the
Framework:

• BundleAct ivator
• ServiceFactory
• Bundle -, Serv ice -, and FrameworkListener .
OSGi Service-Platform Release 2 43-282

Security Framework Specification Version 1.1
When any of these callbacks are invoked by the Framework, the bundle that
caused the callback may still be on the stack. For example, when one bundle
installs and then starts another bundle, the installer bundle may be on the
stack when the BundleAct ivator .start method of the installed bundle is called.
Likewise, when a bundle registers a service object, it may be on the stack when
the Framework calls back the serviceChanged method of all qualifying Ser-
viceListener objects.

Whenever any of these bundle callbacks try to access a protected resource or
operation, the access contol mechanism should consider not only the permis-
sions of the bundle receiving the callback, but also those of the Framework
and any other bundles on the stack. This means that in these callbacks, bundle
programmers normally would use doPr ivi leged calls around any methods pro-
tected by a permission check (such as getting or registering service objects).

In order to reduce the number of doPr ivi leged calls by bundle programmers,
the Framework must perform a doPriv i leged around any bundle callbacks.
The Framework should have java.secur ity.Al lPermiss ion , therefore a bundle
programmer can assume that it is not further restricted except for its own per-
missions.

Bundle programmers do not need to use doPr iv i leged calls in their implemen-
tations of any callbacks registered with and invoked by the Framework.

For any other callbacks that are registered with a service object and therefore
get invoked by the service-providing bundle directly, doPr iv i leged calls must
be used in the callback implementation if the bundle’s own privileges are to be
exercised. Otherwise, the callback must fail if the bundle that initiated the call-
back lacks the required permissions.

2.17.3 Permission Types
The following permission types are defined by the Framework:

• AdminPermiss ion – Enables access to the administrative functions of the
Framework.

• ServicePermission – Controls service object registration and access.
• PackagePermiss ion – Controls importing and exporting packages.

2.17.4 AdminPermission
An AdminPermiss ion has no parameters associated with it and is always
named admin . AdminPermission is required by all sensitive functions. Admin-
Permiss ion has no actions.

2.17.5 ServicePermission
A ServicePermiss ion has the following parameters.

• Interface Name – The interface name may end with a wildcard to match mul-
tiple interface names. (See java.security .BasicPermiss ion for a discussion of
wildcards.)

• Action – Supported actions are: REGISTER – Indicates that the permission
holder may register the service object, and GET – Indicates that the holder
may get the service.

When an object is being registered as a service object using Bundle
Context . registerServ ice , the registering bundle must have the Serv icePermis-
s ion to register all of the named classes, see Registering Services on page 32.
44-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Framework Startup and Shutdown
When a ServiceReference object is obtained from the service registry using
BundleContext .getServiceReference or BundleContext .getServiceRefer-
ences respectively, the calling bundle must have the required Serv icePermis-
s ion[GET] to get the service object with the named class (see ServiceReference
Objects on page 31).

When a service object is obtained from a ServiceReference object using
BundleContext .getService(ServiceReference) , the calling code must have the
required ServicePermiss ion[GET] to get the service object for at least one of
the classes under which it was registered.

ServicePermission must be used as a filter for the service events generated by
the Framework as well as for the methods to enumerate services, including
Bundle.getRegisteredServices and Bundle.getServ icesInUse . The Framework
must assure that a bundle must not be able to detect the presence of a service
that it does not have permission to access.

2.17.6 PackagePermission
Bundles can only import and export packages for which they have the
required permission actions. A PackagePermiss ion is valid across all versions
of a package.

A PackagePermiss ion has two parameters:

• The package that may be exported. A wildcard may be used. The granularity
of the permission is the package, not the class name.

• The action, either IMPORT or EXPORT . If a bundle has permission to export
a package, the Framework must automatically grant it permission to
import the package.

A PackagePermiss ion with * and EXPORT as parameters would be able to
import and export any package.

2.17.7 Bundle Permissions
The Bundle interface defines a method for returning information pertaining to
a bundle’s permissions: hasPermiss ion(Object) . This method returns true if
the bundle has the specified permission, and fa lse if it does not or if the object
specified by the argument is not an instance of java.secur ity .Permiss ion .

The parameter type is Object so that the Framework can be implemented on
Java platforms that do not support Java 2 based security.

2.18 Framework Startup and Shutdown
A Framework implementation must be started before any services can be pro-
vided. The details of how a Framework should be started is not defined in this
specification, and may be different for different implementations. Some
Framework implementations may provide command line options, and others
may read startup information from a configuration file. In all cases, Frame-
work implementations must perform all of the following actions in exact
order.

2.18.1 Startup
When the Framework is started, the following actions must occur:
OSGi Service-Platform Release 2 45-282

The Framework on JDK 1.1 Framework Specification Version 1.1
1. Event handling is enabled; events can now be delivered to listeners. Events
are discussed in Events on page 41.

2. The system bundle enters the STARTING state. More information about the
system bundle can be found in The System Bundle on page 14.

3. A bundle’s state is persistently recorded in the OSGi environment. When
the Framework is restarted, all installed bundles previously recorded as
being started must be started as described in the Bundle.start method. Any
exceptions that occur during startup are broadcast as a Framework event of
type FrameworkEvent.ERROR . Bundles and their different states are dis-
cussed in The Bundle Object on page 24.

4. The system bundle enters the ACTIVE state.

5. A Framework event of type FrameworkEvent.STARTED is broadcast.

2.18.2 Shutdown
The Framework will also need to be shut down on occasion. Shutdown can
also be initiated by stopping the system bundle, covered in The System Bundle
on page 14. When the Framework is shut down, the following actions must
occur:

1. The system bundle enters the STOPPING state

2. All ACTIVE bundles are suspended as described in the Bundle.stop method,
except that their persistently recorded state indicates that they must be
restarted when the Framework is next started. Any exceptions that occur
during shutdown are broadcast as a Framework event of type Frame-
workEvent.ERROR .

3. Event handling is disabled.

2.19 The Framework on JDK 1.1
The Framework specification was authored assuming a Java 2 based runtime
environment. This section addresses issues in implementing and deploying
the OSGi Framework on JDK 1.1 based runtime environments.

2.19.1 ClassLoader.getResource
In JDK 1.1, the ClassLoader class does not provide the f indResource method.
Therefore, references to the f indResource method in this document should be
taken to refer to the getResource method.

2.19.2 ClassLoader.findLibrary
Java 2 introduced the f indLibrary method, which allows classloaders to partici-
pate in the loading of native libraries. In JDK 1.1, all native libraries must be
available on a single, global library path. Therefore, native libraries from differ-
ent bundles have to reside in the same directory. If libraries have the same
name, unresolvable conflicts may occur.

2.19.3 Resource URL
A bundle's classloader returns resource URL objects which use a Framework
implementation-specific URLStreamHandler subclass to capture security
information about the caller.
46-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Changes since 1.0
Prior to Java 2 no constructor which took a URLStreamHandler object argu-
ment existed, requiring the Framework implementation to register a URL-
StreamHandler object. Conceivably, then, other code than the Framework
implementation could create this type of URL objects with falsified security
information, and is thus a security threat.Therefore, the Bundle.getResource()
method cannot be implemented securely in Java versions prior to Java 2.

2.20 Changes since 1.0

2.20.1 System Bundle
This specification introduces the concept of a system bundle, which represents
the Framework and serves the following purposes:

• It is responsible for registering system services like the Package Admin
service, which are tightly integrated with the Framework.

• It appears as the exporter of any packages that are loaded off the system
classpath (including org.osgi. f ramework).

• Its lifecycle methods handle the lifecycle of the framework.

The system bundle is described in The System Bundle on page 14.

2.20.2 Service Properties
New service properties: service. id , serv ice.pid and serv ice.ranking . Further
information about these constants can be found in Properties on page 33.

2.20.3 New Bundle Manifest Header Attributes
Two new bundle manifest header attributes are introduced for cataloguing
and archiving purposes: Bundle-Copyright and Bundle-Category. Consult the
Constants interface, or see Constants on page 72, for a list of standard manifest
headers that may be declared in a bundle’s manifest file.

2.20.4 New Framework Methods
• Bundle.getResource – Calls this bundle's classloader to search for the

named resource. See getResource(String) on page 55.
• BundleContext .createFi l ter – Creates a Fi l ter object from the given filter

string, which may be used to match a ServiceReference or Dict ionary
object. See createFilter(String) on page 63.

• ServiceReference.getUsingBundles – Returns the bundles that are using
the service referenced by this Serv iceReference . See ServiceReference on
page 88.

2.20.5 New Framework Classes
• Constants – Interface containing standard names for OSGi environment

properties, service properties, and manifest headers. See Constants on page
72.

• Fi l ter – Class which encapsulates a filter string and can be used to match a
ServiceReference or Dict ionary object. See Filter on page 77 and Filters on
page 37.

• SynchronousBundleListener – A BundleListener interface which is notified
of bundle lifecycle events in a synchronous fashion. See Delivering Events on
page 41 and SynchronousBundleListener on page 91.
OSGi Service-Platform Release 2 47-282

Changes since 1.0 Framework Specification Version 1.1
2.20.6 Bundle Classloader Delegation Model
This specification defines a standard delegation model for bundle classloaders,
in order to make bundle classloading and bundle resource access consistent
across Framework implementations from different vendors.

A bundle's classloader first delegates the request to load a class or access a
resource to the system classloader, before searching any shared packages and
the bundle itself (in this order) for the requested class or resource. Any pack-
ages on the system classpath appear to be exported by the system bundle. For
further information see Finding Classes and Resources on page 23.

2.20.7 Replacing and Removing Exported Packages
In the previous release, an exported package would either remain exported
until the Framework was shut down, or it could be replaced (during a bundle
update) or removed (during a bundle uninstall) while the Framework was run-
ning, requiring the Framework to stop and resolve again all dependent bun-
dles. The latter behavior was also known as “eager bundle update” and “eager
bundle uninstall,” respectively.

This specification eliminates the possibility of an eager bundle update and
uninstall, meaning that when updating a bundle, its exported packages must
not be updated. Likewise, when uninstalling a bundle, its exported packages
must not be removed.

In order to replace or remove exported packages of bundles that were respec-
tively updated or uninstalled, the refreshPackages method of the new
org.osgi.serv ice.packageadmin.PackageAdmin service must be called, which
causes all dependent bundles to be resolved again. See Package Admin Service
Specification on page 93 for further information.

2.20.8 Bundle URL objects
This specification introduces a new type of URL object to access resources in
bundles. The URL object uses a protocol defined by the Framework implemen-
tation, and only the Framework implementation can construct URL objects of
this protocol. This type of URL object is returned by the bundle classloader's
f indResource and the newly added org.osgi . framework.Bundle.getResource
methods.

Before returning the URL object of a bundle resource, the caller is checked for
the appropriate permission to access the resource (in the case of Bundle.getRe-
source , the caller must have AdminPermission). Once the URL object is
returned, no further permission checks are performed when the contents of
the resource are accessed.

2.20.9 Optional Bundle Contents
This specification allows a bundle to carry optional resources (such as source
code and documentation) in the OSGI-OPT directory in the bundle's JAR file.

See Bundles on page 14 for more information.

2.20.10 Clarifications
• Adding Listeners BundleContext .addBundleListener and Bundle-

Context .addFrameworkL istener now state that they do nothing and simply
48-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 Changes since 1.0
return if the BundleContext object of the bundle already contains the given
listener.

• The version of BundleContext .addServiceListener that takes a filter string
now states that if the context bundle already contains the given listener,
that listener's filter (which may be null) is replaced with the given filter (
which may be null).
A compatibility issue arises from this clarification: With the previous
release, it was valid to register the same Serv iceListener object with two
mutually exclusive filters, e.g., "(objectClass=foo)" and "(object-
Class=bar)". The listener would then be called in either case. In this specifi-
cation, the Framework must only called the listener when the second filter
matches.

• The use of spaces in the filter expression is clarified. See Fi lter .

2.20.11 Case Considerations of Service Properties
ServiceReference.getPropertyKeys has been clarified to say that it is case-pre-
serving: that is, every key returned must be in exactly the same form as it was
last set. Note that this change does not affect filter matching or ServiceRefer-
ence.getProperty , which continue to treat property keys as case insensitive.

ServiceRegistrat ion.setPropert ies and BundleContext .registerServ ice now
throw an I l legalArgumentException if the Dict ionary object passed to them
contains case variants of the same key name (the same is true for Fi lter .match ,
which was added in this release).

See Properties on page 33 for a further discussion of service properties.

2.20.12 Manifest Header Syntax
When specifying the syntax of various OSGi-specific manifest headers, SG 1.0
did not clearly distinguish between tokens and strings, which created ambigu-
ities regarding spaces.

This specification uses an augmented Backus-Naur Form (BNF) similar to that
used by [12] RFC 822 Standard for the Format of ARPA Internet Text Messages as
the grammar for specifying OSGi-specific manifest headers. This is the same
augmented BNF that is used in the specification of the HTTP 1.1 protocol, [4]
The Hypertext Transfer Protocol - HTTP/1.1.

Finally, a Framework must not throw an exception when encountering any
unknown manifest header attributes. Instead, it must make all headers in the
main section accessible to bundle code by including them in the Dict ionary
object returned by Bundle.getHeaders .

For more information about the manifest syntax, see Manifest Header Grammar
on page 16.

2.20.13 Event Delivery
The previous version specified that events of type Serv iceEvent must be deliv-
ered synchronously, whereas all other types of events may be delivered asyn-
chronously. Text has been added to the specification to describe in more detail
the ramifications of delivering an event asynchronously; see Delivering Events
on page 41.
OSGi Service-Platform Release 2 49-282

org.osgi.framework Framework Specification Version 1.1
2.20.14 Bundle Location
The bundle's location identifier must not change in a bundle's lifetime, not
even during a bundle update. Therefore, the following section has been
removed from org.osgi.framework.Bundle.getLocation:

The location identifier of the bundle may change during bundle update. Calling this
method while the Framework is updating the bundle results in undefined behavior.

2.20.15 Native Code Selection Algorithm
The following sentence was removed from step 1 of the native code selection
algorithm in SG 1.0:

If only one clause matches, it can be used, otherwise, remaining steps are executed.

The native code selection algorithm in SG 1.0 has been clarified to say that if
multiple native libraries need to be installed on the same platform, they must
be specified in the same clause for that platform, rather than in separate
clauses. See Loading Native Code Libraries on page 21.

2.20.16 Registering Service Under a Single Interface
The BundleContext . registerService that registers a service under a single class
name (instead of an array of class names) now reinforces that the value of the
service's objectClass property will still be an array of strings, rather than just a
Str ing object. See registerService(String, Object, Dictionary) on page 69.

2.20.17 Bundle Callbacks Must Be Executed as Privileged Operations
Framework implementations must execute bundle callbacks as privileged
operations: that is, they must perform a doPr iv i leged method around bundle
callbacks. See Privileged Callbacks on page 43.

2.20.18 Bundle.uninstall
The publishing of the BundleEvent object has been moved to after the bundle's
state has been changed to UNINSTALLED . The reason for this change is to make
Bundle.uninstal l consistent with the other lifecycle methods in this regard.

Package
2.21 org.osgi.framework

DescriptionThe OSGi Framework Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.framework;specification-version=1.1

Class Summary

Interfaces

Bundle An installed bundle in the Framework.

BundleAct ivator Customizes the starting and stopping of this bundle.

BundleContext A bundle’s execution context within the Framework.
50-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
2.21.1 AdminPermission
Syntaxpublic final class AdminPermission

extends java.security.BasicPermission

All Implemented
Interfaces:

java.security.Guard, java.io.Serializable

DescriptionIndicates the caller’s authority to perform lifecycle operations on or to get sen-
sitive information about a bundle.

Admin Permiss ion has no actions or target.

The hash Code() method of Admin Permiss ion is inherited from
java.secur ity .Basic Permiss ion . The hash code it returns is the hash code of the
name “AdminPermission”, which is always the same for all instances of
Admin Permiss ion .

2.21.1.1 ConstructorsAdminPermission()

public AdminPermission() Creates a new Admin Permiss ion object with its name set to “Admin-
Permission”.

BundleListener A Bundle Event listener.

Configurable Supports a configuration object.

Constants Defines standard names for the OSGi environment property, service property,
and Manifest header attribute keys.

Fi l ter An RFC 1960-based Filter.

FrameworkListener A Framework Event listener.

ServiceFactory Allows services to provide customized service objects in the OSGi environ-
ment.

ServiceL istener A Service Event listener.

ServiceReference A reference to a service.

ServiceRegistrat ion A registered service.

SynchronousBundleListener A synchronous Bundle Event listener.

Classes

AdminPermiss ion Indicates the caller’s authority to perform lifecycle operations on or to get sen-
sitive information about a bundle.

BundleEvent A Framework event describing a bundle lifecycle change.

FrameworkEvent A general Framework event.

PackagePermiss ion A bundle’s authority to import or export a package.

ServiceEvent A service lifecycle change event.

ServicePermiss ion Indicates a bundle’s authority to register or get a service.

Exceptions

BundleExcept ion A Framework exception used to indicate that a bundle lifecycle problem
occurred.

Inval idSyntaxException A Framework exception.

Class Summary
OSGi Service-Platform Release 2 51-282

org.osgi.framework Framework Specification Version 1.1
AdminPermission(String, String)

public AdminPermission(java.lang.String
name, java.lang.String actions)

Creates a new Admin Permiss ion object for use by the Pol icy object to instanti-
ate new Permiss ion objects.

Parameters: name - Ignored; always set to “AdminPermission”.

act ions - Ignored.

2.21.1.2 Methodsequals(Object)

public boolean equals(java.lang.Object
obj)

Determines the equality of two Admin Permiss ion objects.

Two Admin Permiss ion objects are always equal.

Overrides: java.security.BasicPermission.equals(java.lang.Object) in class java.secu-
rity.BasicPermission

Parameters: obj - The object being compared for equality with this object.

Returns: true if obj is an Admin Permission ; fa lse otherwise.
implies(Permission)

public boolean implies(
java.security.Permission p)

Determines if the specified permission is implied by this object.

This method returns true if the specified permission is an instance of Admin-
Permiss ion .

Overrides: java.security.BasicPermission.implies(java.security.Permission) in class
java.security.BasicPermission

Parameters: p - The permission to interrogate.

Returns: true if the permission is an instance of this class; fa lse otherwise.
newPermissionCollection()

public java.security.PermissionCollection
newPermissionCollection()

Returns a new Permiss ion Col lect ion object suitable for storing Admin-
Permiss ions.

Overrides: java.security.BasicPermission.newPermissionCollection() in class java.secu-
rity.BasicPermission

Returns: A new Permiss ion Col lect ion object.

2.21.2 Bundle
Syntaxpublic interface Bundle DescriptionAn installed bundle in the Framework.

A Bundle object is the access point to define the life cycle of an installed bun-
dle. Each bundle installed in the OSGi environment will have an associated
Bundle object.

A bundle will have a unique identity, a long , chosen by the Framework. This
identity will not change during the life cycle of a bundle, even when the bun-
dle is updated. Uninstalling and then reinstalling the bundle will create a new
unique identity.

A bundle can be in one of six states:

• UNINSTALLED
• INSTALLED
• RESOLVED
• STARTING
• STOPPING
• ACTIVE
52-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
Values assigned to these states have no specified ordering; they represent bit
values that may be ORed together to determine if a bundle is in one of the valid
states.

A bundle should only execute code when its state is one of STARTING , ACTIVE ,
or STOPPING . An UNINSTALLED bundle can not be set to another state; it is a
zombie and can only be reached because invalid references are kept some-
where.

The Framework is the only entity that is allowed to create Bundle objects, and
these objects are only valid within the Framework that created them.

2.21.2.1 FieldsACTIVE

public static final int ACTIVE This bundle is now running.

A bundle is in the ACTIVE state when it has been successfully started.

The value of ACTIVE is 0x00000020.
INSTALLED

public static final int INSTALLED This bundle is installed but not yet resolved.

A bundle is in the INSTALLED state when it has been installed in the Frame-
work but cannot run.

This state is visible if the bundle’s code dependencies are not resolved. The
Framework may attempt to resolve an INSTALLED bundle’s code dependencies
and move the bundle to the RESOLVED state.

The value of INSTALLED is 0x00000002.
RESOLVED

public static final int RESOLVED This bundle is resolved and is able to be started.

A bundle is in the RESOLVED state when the Framework has successfully
resolved the bundle’s dependencies. These dependencies include:

• The bundle’s class path from its BUNDLE_CLASSPATH Manifest header.
• The bundle’s native language code from its BUNDLE_NATIVECODE Man-

ifest header.
• The bundle’s package dependencies from its EXPORT_PACKAGE and

IMPORT_PACKAGE Manifest headers.

Note that the bundle is not active yet. A bundle must be put in the RESOLVED
state before it can be started. The Framework may attempt to resolve a bundle
at any time.

The value of RESOLVED is 0x00000004.
STARTING

public static final int STARTING This bundle is in the process of starting.

A bundle is in the STARTING state when the start() method is active. A bundle
will be in this state when the bundle’s start(BundleContext) is called. If this
method completes without exception, then the bundle has successfully started
and will move to the ACTIVE state.

The value of STARTING is 0x00000008.
STOPPING

public static final int STOPPING This bundle is in the process of stopping.
OSGi Service-Platform Release 2 53-282

org.osgi.framework Framework Specification Version 1.1
A bundle is in the STOPPING state when the stop() method is active. A bundle
will be in this state when the bundle’s stop(BundleContext) method is called.
When this method completes the bundle is stopped and will move to the
RESOLVED state.

The value of STOPPING is 0x00000010.
UNINSTALLED

public static final int UNINSTALLED This bundle is uninstalled and may not be used.

The UNINSTALLED state is only visible after a bundle is uninstalled; the bundle
is in an unusable state and all references to the Bundle object should be
released immediately.

The value of UNINSTALLED is 0x00000001.

2.21.2.2 MethodsgetBundleId()

public long getBundleId() Returns this bundle’s identifier. The bundle is assigned a unique identifier by
the Framework when it is installed in the OSGi environment.

A bundle’s unique identifier has the following attributes:

• Is unique and persistent.
• Is a long .
• Its value is not reused for another bundle, even after the bundle is unin-

stalled.
• Does not change while the bundle remains installed.
• Does not change when the bundle is updated.

This method will continue to return this bundle’s unique identifier while this
bundle is in the UNINSTALLED state.

Returns: The unique identifier of this bundle.
getHeaders()

public java.util.Dictionary getHeaders()
throws java.lang.SecurityException

Returns this bundle’s Manifest headers and values. This method returns all the
Manifest headers and values from the main section of the bundle’s Manifest
file; that is, all lines prior to the first blank line.

Manifest header names are case-insensitive. The methods of the returned Dic-
t ionary object will operate on header names in a case-insensitive manner.

For example, the following Manifest headers and values are included if they
are present in the Manifest file:

Bundle-Name
Bundle-Vendor
Bundle-Version
Bundle-Description
Bundle-DocURL
Bundle-ContactAddress

This method will continue to return Manifest header information while this
bundle is in the UNINSTALLED state.

Returns: A Dict ionary object containing this bundle’s Manifest headers and values.

Throws: java. lang.Secur i tyException - If the caller does not have the Admin Permission ,
and the Java Runtime Environment supports permissions.
54-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
getLocation()

public java.lang.String getLocation()
throws java.lang.SecurityException

Returns this bundle’s location identifier.

The bundle location identifier is the location passed to instal lBundle(Str ing)
when a bundle is installed.

This method will continue to return this bundle’s location identifier while this
bundle is in the UNINSTALLED state.

Returns: The string representation of this bundle’s location identifier.

Throws: java. lang.Secur i tyException - If the caller does not have the appropriate
Admin Permiss ion , and the Java Runtime Environment supports permissions.
getRegisteredServices()

public Serv iceReference[]
getRegisteredServices()
throws java.lang.IllegalStateException

Returns this bundle’s Service Reference list for all services it has registered or
nul l if this bundle has no registered services.

If the Java runtime supports permissions, a Service Reference object to a ser-
vice is included in the returned list only if the caller has the Serv ice Permission
to get the service using at least one of the named classes the service was regis-
tered under.

The list is valid at the time of the call to this method, however, as the Frame-
work is a very dynamic environment, services can be modified or unregistered
at anytime.

Returns: An array of Service Reference objects or nul l .

Throws: java. lang. I l legalStateException - If this bundle has been uninstalled.

See Also: ServiceRegistrat ion , Serv iceReference , ServicePermiss ion
getResource(String)

public java.net.URL getResource(
java.lang.String name)
throws java.lang.IllegalStateException

Find the specified resource in this bundle. This bundle’s class loader is called to
search for the named resource. If this bundle’s state is INSTALLED , then only
this bundle will be searched for the specified resource. Imported packages can-
not be searched when a bundle has not been resolved.

Parameters: name - The name of the resource. See java. lang.Class Loader.get Resource for a
description of the format of a resource name.

Returns: a URL to the named resource, or null if the resource could not be found or if the
caller does not have the Admin Permission , and the Java Runtime Environment
supports permissions.

Throws: java. lang. I l legalStateException - If this bundle has been uninstalled.

Since: 1.1
getServicesInUse()

public Serv iceReference[]
getServicesInUse()
throws java.lang.IllegalStateException

Returns this bundle’s Serv ice Reference list for all services it is using or returns
nul l if this bundle is not using any services. A bundle is considered to be using
a service if its use count for that service is greater than zero.

If the Java Runtime Environment supports permissions, a Service Reference
object to a service is included in the returned list only if the caller has the
Service Permiss ion to get the service using at least one of the named classes the
service was registered under.

The list is valid at the time of the call to this method, however, as the Frame-
work is a very dynamic environment, services can be modified or unregistered
at anytime.
OSGi Service-Platform Release 2 55-282

org.osgi.framework Framework Specification Version 1.1
Returns: An array of Service References or nul l .

Throws: java. lang. I l legalStateException - If this bundle has been uninstalled.

See Also: ServiceReference , Serv icePermiss ion
getState()

public int getState() Returns this bundle’s current state.

A bundle can be in only one state at any time.

Returns: An element of UNINSTALLED , INSTALLED , RESOLVED , STARTING , STOPPING ,
ACTIVE .
hasPermission(Object)

public boolean hasPermission(
java.lang.Object permission)
throws java.lang.IllegalStateException

Determines if this bundle has the specified permissions.

If the Java Runtime Environment does not support permissions, this method
always returns true .

permiss ion is of type Object to avoid referencing the java.secur ity.Permiss ion
class directly. This is to allow the Framework to be implemented in Java envi-
ronments which do not support permissions.

If the Java Runtime Environment does support permissions, this bundle and
all its resources including nested JAR files, belong to the same
java.secur ity .Protect ion Domain ; that is, they will share the same set of per-
missions.

Parameters: permiss ion - The permission to verify.

Returns: true if this bundle has the specified permission or the permissions possessed
by this bundle imply the specified permission; fa lse if this bundle does not
have the specified permission or permiss ion is not an instanceof java.secu-
r ity .Permiss ion .

Throws: java. lang. I l legalStateException - If this bundle has been uninstalled.
start()

public void start()
throws BundleException,
java.lang.IllegalStateException,
java.lang.SecurityException

Starts this bundle.

The following steps are required to start a bundle:

1. If this bundle’s state is UNINSTALLED then an I l legal State Except ion is
thrown.

2. If this bundle’s state is STARTING or STOPPING then this method will wait
for this bundle to change state before continuing. If this does not occur in a
reasonable time, a Bundle Except ion is thrown to indicate this bundle was
unable to be started.

3. If this bundle’s state is ACTIVE then this method returns immediately.

4. If this bundle’s state is not RESOLVED , an attempt is made to resolve this
bundle’s package dependencies. If the Framework cannot resolve this bun-
dle, a Bundle Except ion is thrown.

5. This bundle’s state is set to STARTING .

6. The start(BundleContext) method of this bundle’s Bundle Act ivator , if one
is specified, is called. If the Bundle Act ivator is invalid or throws an excep-
tion, this bundle’s state is set back to RESOLVED .
Any services registered by the bundle will be unregistered.
56-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
Any services used by the bundle will be released.
Any listeners registered by the bundle will be removed.
A Bundle Exception is then thrown.

7. If this bundle’s state is UNINSTALLED , because the bundle was uninstalled
while the Bundle Act ivator .start method was running, a Bundle Exception
is thrown.

8. Since it is recorded that this bundle has been started, when the Framework
is restarted this bundle will be automatically started.

9. This bundle’s state is set to ACTIVE .

10.A bundle event of type STARTED is broadcast.

Preconditions

• get State() in {INSTALLED}, {RESOLVED}.

Postconditions, no exceptions thrown

• get State() in {ACTIVE}.
• Bundle Act ivator .start() has been called and did not throw an exception.

Postconditions, when an exception is thrown

• get State() not in {STARTING}, {ACTIVE}.

Throws: BundleExcept ion - If this bundle couldn’t be started. This could be because a
code dependency could not be resolved or the specified Bundle Act ivator could
not be loaded or threw an exception.

java. lang. I l legalStateException - If this bundle has been uninstalled or this
bundle tries to change its own state.

java. lang.Secur i tyException - If the caller does not have the appropriate
Admin Permisson , and the Java Runtime Environment supports permissions.
stop()

public void stop()
throws BundleException,
java.lang.IllegalStateException,
java.lang.SecurityException

Stops this bundle.

The following steps are required to stop a bundle:

1. If this bundle’s state is UNINSTALLED then an I l legal State Except ion is
thrown.

2. If this bundle’s state is STARTING or STOPPING then this method will wait
for this bundle to change state before continuing. If this does not occur in a
reasonable time, a Bundle Except ion is thrown to indicate this bundle was
unable to be stopped.

3. If this bundle’s state is not ACTIVE then this method returns immediately.

4. This bundle’s state is set to STOPPING .

5. Since it is recorded that this bundle has been stopped, Framework is
restarted this bundle will not be automatically started.

6. The stop(BundleContext) method of this bundle’s Bundle Act ivator , if one
is specified, is called. If this method throws an exception, it will continue to
stop this bundle. A Bundle Exception will be thrown after completion of the
remaining steps.

7. Any services registered by this bundle will be unregistered.
OSGi Service-Platform Release 2 57-282

org.osgi.framework Framework Specification Version 1.1
8. Any services used by this bundle will be released.

9. Any listeners registered by this bundle will be removed.

10.If this bundle’s state is UNINSTALLED , because the bundle was uninstalled
while the Bundle Act ivator .stop method was running, a Bundle Except ion is
thrown.

11.This bundle’s state is set to RESOLVED .

12.A bundle event of type STOPPED is broadcast.

Preconditions

• get State() in {ACTIVE}.

Postconditions, no exceptions thrown

• get State() not in {ACTIVE , STOPPING}.
• Bundle Act ivator .stop has been called and did not throw an exception.

Postconditions, when an exception is thrown

• None.

Throws: BundleExcept ion - If this bundle’s Bundle Act ivator could not be loaded or
threw an exception.

java. lang. I l legalStateException - If this bundle has been uninstalled or this
bundle tries to change its own state.

java. lang.Secur i tyException - If the caller does not have the appropriate
Admin Permiss ion , and the Java Runtime Environment supports permissions.
uninstall()

public void uninstall()
throws BundleException,
java.lang.IllegalStateException,
java.lang.SecurityException

Uninstalls this bundle.

This method causes the Framework to notify other bundles that this bundle is
being uninstalled, and then puts this bundle into the UNINSTALLED state. The
Framework will remove any resources related to this bundle that it is able to
remove.

If this bundle has exported any packages, the Framework will continue to
make these packages available to their importing bundles until the Package-
Admin.refresh Packages method has been called or the Framework is
relaunched.

The following steps are required to uninstall a bundle:

1. If this bundle’s state is UNINSTALLED then an I l legal State Except ion is
thrown.

2. If this bundle’s state is ACTIVE , STARTING or STOPPING , this bundle is
stopped as described in the Bundle.stop method. If Bundle.stop throws an
exception, a Framework event of type ERROR is broadcast containing the
exception.

3. This bundle’s state is set to UNINSTALLED .

4. A bundle event of type UNINSTALLED is broadcast.

5. This bundle and any persistent storage area provided for this bundle by the
Framework are removed.

Preconditions
58-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
• get State() not in {UNINSTALLED}.

Postconditions, no exceptions thrown

• get State() in {UNINSTALLED}.
• This bundle has been uninstalled.

Postconditions, when an exception is thrown

• get State() not in {UNINSTALLED}.
• This Bundle has not been uninstalled.

Throws: BundleExcept ion - If the uninstall failed.

java. lang. I l legalStateException - If this bundle has been uninstalled or this
bundle tries to change its own state.

java. lang.Secur i tyException - If the caller does not have the appropriate
Admin Permiss ion , and the Java Runtime Environment supports permissions.

See Also: stop()
update()

public void update()
throws BundleException,
java.lang.IllegalStateException,
java.lang.SecurityException

Updates this bundle.

If this bundle’s state is ACTIVE , it will be stopped before the update and started
after the update successfully completes.

If the bundle being updated has exported any packages, these packages will
not be updated. Instead, the previous package version will remain exported
until the Package Admin.refresh Packages method has been has been called or
the Framework is relaunched.

The following steps are required to update a bundle:

1. If this bundle’s state is UNINSTALLED then an I l legal State Except ion is
thrown.

2. If this bundle’s state is ACTIVE , STARTING or STOPPING , the bundle is
stopped as described in the Bundle.stop method. If Bundle.stop throws an
exception, the exception is rethrown terminating the update.

3. The download location of the new version of this bundle is determined
from either the bundle’s BUNDLE_UPDATELOCATION Manifest header (if
available) or the bundle’s original location.

4. The location is interpreted in an implementation dependent manner, typi-
cally as a URL, and the new version of this bundle is obtained from this loca-
tion.

5. The new version of this bundle is installed. If the Framework is unable to
install the new version of this bundle, the original version of this bundle
will be restored and a Bundle Except ion will be thrown after completion of
the remaining steps.

6. This bundle’s state is set to INSTALLED .

7. If this bundle has not declared an Import-Package header in its Manifest
file (specifically, this bundle does not depend on any packages from other
bundles), this bundle’s state may be set to RESOLVED .

8. If the new version of this bundle was successfully installed, a bundle event
of type UPDATED is broadcast.
OSGi Service-Platform Release 2 59-282

org.osgi.framework Framework Specification Version 1.1
9. If this bundle’s state was originally ACTIVE , the updated bundle is started as
described in the Bundle.start method. If Bundle.start throws an exception,
a Framework event of type ERROR is broadcast containing the exception.

Preconditions

• get State() not in {UNINSTALLED}.

Postconditions, no exceptions thrown

• get State() in {INSTALLED , RESOLVED , ACTIVE}.
• This bundle has been updated.

Postconditions, when an exception is thrown

• get State() in {INSTALLED , RESOLVED , ACTIVE}.
• Original bundle is still used; no update occurred.

Throws: BundleExcept ion - If the update fails.

java. lang. I l legalStateException - If this bundle has been uninstalled or this
bundle tries to change its own state.

java. lang.Secur i tyException - If the caller does not have the appropriate
Admin Permiss ion , and the Java Runtime Environment supports permissions.

See Also: stop() , start()
update(InputStream)

public void update(java.io.InputStream in) Updates this bundle from an Input Stream .

This method performs all the steps listed in Bundle.update() , except the bun-
dle will be read from the supplied Input Stream , rather than a URL .

This method will always close the Input Stream when it is done, even if an
exception is thrown.

Parameters: in - The Input Stream from which to read the new bundle.

Throws: BundleExcept ion

See Also: update()

2.21.3 BundleActivator
Syntaxpublic interface BundleActivator DescriptionCustomizes the starting and stopping of this bundle.

Bundle Act ivator is an interface that may be implemented when this bundle is
started or stopped. The Framework can create instances of this bundle’s
Bundle Act ivator as required. If an instance’s Bundle Act ivator .start method
executes successfully, it is guaranteed that the same instance’s Bundle-
Act ivator .stop method will be called when this bundle is to be stopped.

Bundle Act ivator is specified through the Bundle-Act ivator Manifest header. A
bundle can only specify a single Bundle Act ivator in the Manifest file. The
form of the Manifest header is:

Bundle-Activator: class-name

where class-name is a fully qualified Java classname.

The specified Bundle Act ivator class must have a public constructor that takes
no parameters so that a Bundle Act ivator object can be created by Class.new-
Instance().
60-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
2.21.3.1 Methodsstart(BundleContext)

public void start(BundleContext context)
throws java.lang.Exception

Called when this bundle is started so the Framework can perform the bundle-
specific activities necessary to start this bundle. This method can be used to
register services or to allocate any resources that this bundle needs.

This method must complete and return to its caller in a timely manner.

Parameters: context - The execution context of the bundle being started.

Throws: java. lang.Exception - If this method throws an exception, this bundle is
marked as stopped and the Framework will remove this bundle’s listeners,
unregister all services registered by this bundle, and release all services used by
this bundle.

See Also: start()
stop(BundleContext)

public void stop(BundleContext context)
throws java.lang.Exception

Called when this bundle is stopped so the Framework can perform the bundle-
specific activities necessary to stop the bundle. In general, this method should
undo the work that the Bundle Act ivator .start method started. There should be
no active threads when this bundle returns. A stopped bundle should be
stopped and should not call any Framework objects.

This method must complete and return to its caller in a timely manner.

Parameters: context - The execution context of the bundle being stopped.

Throws: java. lang.Exception - If this method throws an exception, the bundle is still
marked as stopped, and the Framework will remove the bundle’s listeners,
unregister all services registered by the bundle, and release all services used by
the bundle.

See Also: stop()

2.21.4 BundleContext
Syntaxpublic interface BundleContext DescriptionA bundle’s execution context within the Framework. The context is used to
grant access to other methods so that this bundle can interact with the Frame-
work.

Bundle Context methods allow a bundle to:

• Subscribe to events published by the Framework.
• Register services in the Framework service registry.
• Retrieve Service References from the Framework service registry.
• Get and release service objects for a referenced service.
• Install new bundles in the Framework.
• Get the list of bundles installed in the Framework.
• Get the Bundle object for a bundle.
• Create Fi le objects for files in a persistent storage area provided for the

bundle by the Framework.

A Bundle Context object will be created and provided to this bundle when it is
started using the start(BundleContext) method. The same Bundle Context
object will be passed to this bundle when it is stopped using the stop(
BundleContext) method. Bundle Context is generally for the private use of this
bundle and is not meant to be shared with other bundles in the OSGi environ-
ment. Bundle Context is used when resolving Service L isteners and Event-
L isteners.
OSGi Service-Platform Release 2 61-282

org.osgi.framework Framework Specification Version 1.1
The Bundle Context object is only valid during an execution instance of this
bundle; that is, during the period from when this bundle is called by Bundle-
Act ivator .start until after this bundle is called and returns from Bundle-
Act ivator .stop (or if Bundle Act ivator .start terminates with an exception). If
the Bundle Context object is used subsequently, an I l legal State Exception may
be thrown. When this bundle is restarted, a new Bundle Context object will be
created.

The Framework is the only entity that can create Bundle Context objects and
they are only valid within the Framework that created them.

Note: A single virtual machine may host multiple Framework instances at any
given time, but objects created by one Framework instance cannot be used by
bundles running in the execution context of another Framework instance.

2.21.4.1 MethodsaddBundleListener(BundleListener)

public void addBundleListener(
BundleListener listener)
throws java.lang.IllegalStateException

Adds the specified Bundle Listener object to this context bundle’s list of listen-
ers if not already present. See getBundle() for a definition of context bundle.
BundleListener objects are notified when a bundle has a lifecycle state change.

If this context bundle’s list of listeners already contains a listener l such that (
l==l istener) , this method does nothing.

Parameters: l i stener - The Bundle L istener to be added.

Throws: java. lang. I l legalStateException - If this context bundle has stopped.

See Also: BundleEvent , BundleListener
addFrameworkListener(FrameworkListener)

public void addFrameworkListener(
FrameworkListener listener)
throws java.lang.IllegalStateException

Adds the specified Framework Listener object to this context bundle’s list of lis-
teners if not already present. See getBundle() for a definition of context bun-
dle. FrameworkListeners are notified of general Framework events.

If this context bundle’s list of listeners already contains a listener l such that (
l==l istener) , this method does nothing.

Parameters: l i stener - The Framework Listener object to be added.

Throws: java. lang. I l legalStateException - If this context bundle has stopped.

See Also: FrameworkEvent , FrameworkListener
addServiceListener(ServiceListener)

public void addServiceListener(
ServiceL istener listener)
throws java.lang.IllegalStateException

Adds the specified Service Listener object to this context bundle’s list of listen-
ers.

This method is the same as calling Bundle Context .add Service L istener(
Service Listener l istener , Str ing f i lter) with f i lter set to nul l .

Parameters: l i stener - The Serv ice Listener object to be added.

Throws: java. lang. I l legalStateException - If this context bundle has stopped.

See Also: addServiceListener(ServiceListener, Str ing)
addServiceListener(ServiceListener, String)

public void addServiceListener(
ServiceL istener listener,
java.lang.String filter)
throws InvalidSyntaxException,
java.lang.IllegalStateException

Adds the specified Service Listener object with the specified f i l ter to this con-
text bundle’s list of listeners.

See getBundle() for a definition of context bundle, and Fi l ter for a description
of the filter syntax. Service Listener objects are notified when a service has a
lifecycle state change.
62-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
If this context bundle’s list of listeners already contains a listener l such that (
l==l istener) , this method replaces that listener’s filter (which may be null)
with the specified one (which may be nul l).

The listener is called if the filter criteria is met. To filter based upon the class of
the service, the filter should reference the OBJECTCLASS property. If f i l ter is
nul l , all services are considered to match the filter.

If the Java Runtime Environment supports permissions, the Service Listener
object will be notified of a service event only if the bundle that is registering it
has the Serv ice Permission to get the service using at least one of the named
classes the service was registered under.

Parameters: l i stener - The Serv ice Listener object to be added.

f i l ter - The filter criteria.

Throws: Inval idSyntaxException - If filter contains an invalid filter string which cannot
be parsed.

java. lang. I l legalStateException - If this context bundle has stopped.

See Also: ServiceEvent , ServiceListener , ServicePermiss ion
createFilter(String)

public F i lter createFilter(java.lang.String
filter)
throws InvalidSyntaxException

Creates a Fi l ter object. This Fi lter object may be used to match a Service-
Reference object or a Dict ionary object. See Fi lter for a description of the filter
string syntax.

If the filter cannot be parsed, an Inval idSyntaxException will be thrown with a
human readable message where the filter became unparsable.

Parameters: f i l ter - The filter string.

Returns: A Fi l ter object encapsulating the filter string.

Throws: Inval idSyntaxException - If filter contains an invalid filter string that cannot
be parsed.

Since: 1.1
getBundle()

public Bundle getBundle()
throws java.lang.IllegalStateException

Returns the Bundle object for this context bundle.

The context bundle is defined as the bundle that was assigned this Bundle-
Context in its Bundle Act ivator .

Returns: The context bundle’s Bundle object.

Throws: java. lang. I l legalStateException - If this context bundle has stopped.
getBundle(long)

public Bundle getBundle(long id) Returns the bundle with the specified identifier.

Parameters: id - The identifier of the bundle to retrieve.

Returns: A Bundle object, or null if the identifier does not match any installed bundle.
getBundles()

public Bundle[] getBundles() Returns a list of all installed bundles.

This method returns a list of all bundles installed in the OSGi environment at
the time of the call to this method. However, as the Framework is a very
dynamic environment, bundles can be installed or uninstalled at anytime.
OSGi Service-Platform Release 2 63-282

org.osgi.framework Framework Specification Version 1.1
Returns: An array of Bundle objects; one object per installed bundle.
getDataFile(String)

public java.io.File getDataFile(
java.lang.String filename)
throws java.lang.IllegalStateException

Creates a Fi le object for a file in the persistent storage area provided for the
bundle by the Framework. This method will return nul l if the platform does
not have file system support.

A Fi le object for the base directory of the persistent storage area provided for
the context bundle by the Framework can be obtained by calling this method
with an empty string (“ ”) as f i lename . See getBundle() for a definition of con-
text bundle.

If the Java Runtime Environment supports permissions, the Framework will
ensure that the bundle has the java. io .F i le Permiss ion with actions read , write ,
execute , delete for all files (recursively) in the persistent storage area provided
for the context bundle.

Parameters: f i lename - A relative name to the file to be accessed.

Returns: A Fi le object that represents the requested file or null if the platform does not
have file system support.

Throws: java. lang. I l legalStateException - If the context bundle has stopped.
getProperty(String)

public java.lang.String getProperty(
java.lang.String key)

Returns the value of the specified environment property.

The following standard property keys are valid:

FRAMEWORK_VERSION

The OSGi Framework version.

FRAMEWORK_VENDOR

The Framework implementation vendor.

FRAMEWORK_LANGUAGE

The language being used. See ISO 639 for possible values.

FRAMEWORK_OS_NAME

The host computer operating system.

FRAMEWORK_OS_VERSION

The host computer operating system version number.

FRAMEWORK_PROCESSOR

The host computer processor name.

Note: The last four standard properties are used by the BUNDLE_NATIVECODE
Manifest header’s matching algorithm for selecting native language code.

Parameters: key - The name of the requested property.

Returns: The value of the requested property, or null if the property is undefined.
getService(ServiceReference)

public java.lang.Object getService(
ServiceReference reference)
throws java.lang.SecurityException,
java.lang.IllegalStateException

Returns the specified service object for a service.
64-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
A bundle’s use of a service is tracked by the bundle’s use count of that service.
Each time a service’s service object is returned by getService(
ServiceReference) the context bundle’s use count for that service is incre-
mented by one. Each time the service is released by ungetServ ice(
ServiceReference) the context bundle’s use count for that service is decre-
mented by one.

When a bundle’s use count for a service drops to zero, the bundle should no
longer use that service. See getBundle() for a definition of context bundle.

This method will always return nul l when the service associated with this ref-
erence has been unregistered.

The following steps are required to get the service object:

1. If the service has been unregistered, nul l is returned.

2. The context bundle’s use count for this service is incremented by one.

3. If the context bundle’s use count for the service is currently one and the ser-
vice was registered with an object implementing the Serv ice Factory inter-
face, the getService(Bundle, Serv iceRegistrat ion) method is called to
create a service object for the context bundle. This service object is cached
by the Framework. While the context bundle’s use count for the service is
greater than zero, subsequent calls to get the services’s service object for the
context bundle will return the cached service object.
If the service object returned by the Service Factory object is not an instan-
ceof all the classes named when the service was registered or the Service-
Factory object throws an exception, nul l is returned and a Framework event
of type ERROR is broadcast.

4. The service object for the service is returned.

Parameters: reference - A reference to target service object’s service.

Returns: A service object for the service associated with reference , or nul l if the service
is not registered.

Throws: java. lang.Secur i tyException - If the caller does not have the Serv ice-
Permiss ion to get the service using at least one of the named classes the service
was registered under, and the Java Runtime Environment supports permis-
sions.

java. lang. I l legalStateException - If the context bundle has stopped.

See Also: ungetService(ServiceReference) , ServiceFactory
getServiceReference(String)

public Serv iceReference
getServiceReference(java.lang.String
clazz)

Returns a Service Reference object for a service that implements, and was reg-
istered under, the specified class.

This Serv ice Reference object is valid at the time of the call to this method,
however as the Framework is a very dynamic environment, services can be
modified or unregistered at anytime.

This method is the same as calling getServiceReferences(Str ing, Str ing) with
a nul l filter string. It is provided as a convenience for when the caller is inter-
ested in any service that implements the specified class.

If multiple such services exist, the service with the highest ranking (as speci-
fied in its SERVICE_RANKING property) is returned.
OSGi Service-Platform Release 2 65-282

org.osgi.framework Framework Specification Version 1.1
If there is a tie in ranking, the service with the lowest service ID (as specified in
its SERVICE_ID property); that is, the service that was registered first is
returned.

Parameters: clazz - The class name with which the service was registered.

Returns: A Service Reference object, or nul l if no services are registered which imple-
ment the named class.

See Also: getServiceReferences(Str ing, Str ing)
getServiceReferences(String, String)

public Serv iceReference[]
getServiceReferences(java.lang.String
clazz, java.lang.String filter)
throws InvalidSyntaxException

Returns a list of Service Reference objects. This method returns a list of
Service Reference objects for services which implement and were registered
under the specified class and match the specified filter criteria.

The list is valid at the time of the call to this method, however as the Frame-
work is a very dynamic environment, services can be modified or unregistered
at anytime.

f i l ter is used to select the registered service whose properties objects contain
keys and values which satisfy the filter. See Fi lter for a description of the filter
string syntax.

If f i l ter is null , all registered services are considered to match the filter.

If f i l ter cannot be parsed, an Inval idSyntaxException will be thrown with a
human readable message where the filter became unparsable.

The following steps are required to select a service:

1. If the Java Runtime Environment supports permissions, the caller is
checked for the Service Permiss ion to get the service with the specified
class. If the caller does not have the correct permission, null is returned.

2. If the filter string is not nul l , the filter string is parsed and the set of regis-
tered services which satisfy the filter is produced. If the filter string is null ,
then all registered services are considered to satisfy the filter.

3. If clazz is not nul l , the set is further reduced to those services which are an
instanceof and were registered under the specified class. The complete list
of classes of which a service is an instance and which were specified when
the service was registered is available from the service’s OBJECTCLASS
property.

4. An array of Service Reference to the selected services is returned.

Parameters: clazz - The class name with which the service was registered, or null for all ser-
vices.

f i l ter - The filter criteria.

Returns: An array of Service Reference objects, or nul l if no services are registered
which satisfy the search.

Throws: Inval idSyntaxException - If f i l ter contains an invalid filter string which cannot
be parsed.
66-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
installBundle(String)

public Bundle installBundle(
java.lang.String location)
throws BundleException,
java.lang.SecurityException

Installs the bundle from the specified location string. A bundle is obtained
from locat ion as interpreted by the Framework in an implementation depen-
dent manner.

Every installed bundle is uniquely identified by its location string, typically in
the form of a URL.

The following steps are required to install a bundle:

1. If a bundle containing the same location string is already installed, the Bun-
dle object for that bundle is returned.

2. The bundle’s content is read from the location string. If this fails, a
BundleExcept ion is thrown.

3. The bundle’s Bundle-Class Path and Bundle-Native Code dependencies are
resolved. If this fails, a Bundle Except ion is thrown.

4. The bundle’s associated resources are allocated. The associated resources
minimally consist of a unique identifier, and a persistent storage area if the
platform has file system support. If this step fails, a Bundle Exception is
thrown.

5. The bundle’s state is set to INSTALLED .

6. If the bundle has not declared an Import-Package Manifest header (that is,
the bundle does not depend on any packages from other OSGi bundles), the
bundle’s state may be set to RESOLVED .

7. A bundle event of type INSTALLED is broadcast.

8. The Bundle object for the newly installed bundle is returned.

Postconditions, no exceptions thrown

• get State() in {INSTALLED}, RESOLVED}.
• Bundle has a unique ID.

Postconditions, when an exception is thrown

• Bundle is not installed and no trace of the bundle exists.

Parameters: locat ion - The location identifier of the bundle to install.

Returns: The Bundle object of the installed bundle.

Throws: BundleExcept ion - If the installation failed.

java. lang.Secur i tyException - If the caller does not have the appropriate
Admin Permiss ion , and the Java Runtime Environment supports permissions.
installBundle(String, InputStream)

public Bundle installBundle(
java.lang.String location,
java.io.InputStream in)
throws BundleException

Installs the bundle from the specified Input Stream object.

This method performs all of the steps listed in Bundle Context . insta l l Bundle(
Str ing locat ion) , except that the bundle’s content will be read from the Input-
Stream object. The location identifier string specified will be used as the iden-
tity of the bundle.

This method will always close the Input Stream object, even if an exception is
thrown.

Parameters: locat ion - The location identifier of the bundle to install.
OSGi Service-Platform Release 2 67-282

org.osgi.framework Framework Specification Version 1.1
in - The Input Stream object from which this bundle will be read.

Returns: The Bundle object of the installed bundle.

Throws: BundleExcept ion - If the provided stream cannot be read.

See Also: instal lBundle(Str ing)
registerService(String[], Object, Dictionary)

public ServiceRegistrat ion
registerService(java.lang.String[]
clazzes, java.lang.Object service,
java.util.Dictionary properties)
throws
java.lang.IllegalArgumentException,
java.lang.SecurityException,
java.lang.IllegalStateException

Registers the specified service object with the specified properties under the
specified class names into the Framework. A Serv ice Registrat ion object is
returned. The Serv ice Registrat ion object is for the private use of the bundle
registering the service and should not be shared with other bundles. The regis-
tering bundle is defined to be the context bundle. See getBundle() for a defini-
tion of context bundle. Other bundles can locate the service by using either the
getServiceReferences(Str ing, Str ing) or getServiceReference(Str ing)
method.

A bundle can register a service object that implements the ServiceFactory
interface to have more flexibility in providing service objects to other bundles.

The following steps are required to register a service:

1. If service is not a Serv ice Factory , an I l legal Argument Except ion is thrown if
serv ice is not an instanceof all the classes named.

2. The Framework adds these service properties to the specified Dict ionary (
which may be null): a property named SERVICE_ID identifying the registra-
tion number of the service, and a property named OBJECTCLASS containing
all the specified classes. If any of these properties have already been speci-
fied by the registering bundle, their values will be overwritten by the
Framework.

3. The service is added to the Framework service registry and may now be
used by other bundles.

4. A service event of type REGISTERED is synchronously sent.

5. A Service Registrat ion object for this registration is returned.

Parameters: clazzes - The class names under which the service can be located. The class
names in this array will be stored in the service’s properties under the key
OBJECTCLASS .

serv ice - The service object or a Service Factory object.

propert ies - The properties for this service. The keys in the properties object
must all be Strings. See Constants for a list of standard service property keys.
Changes should not be made to this object after calling this method. To update
the service’s properties the setPropert ies(Dict ionary) method must be called.
propert ies may be null if the service has no properties.

Returns: A Service Registrat ion object for use by the bundle registering the service to
update the service’s properties or to unregister the service.

Throws: java. lang. I l legalArgumentExcept ion - If one of the following is true:

• serv ice is null.
• serv ice is not a Service Factory object and is not an instanceof all the

named classes in clazzes .
• propert ies contains case variants of the same key name.
68-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
java. lang.Secur i tyException - If the caller does not have the Serv ice-
Permiss ion to register the service for all the named classes and the Java Runt-
ime Environment supports permissions.

java. lang. I l legalStateException - If this context bundle has stopped.

See Also: ServiceRegistrat ion , Serv iceFactory
registerService(String, Object, Dictionary)

public ServiceRegistrat ion
registerService(java.lang.String clazz,
java.lang.Object service,
java.util.Dictionary properties)

Registers the specified service object with the specified properties under the
specified class name into the Framework.

This method is otherwise identical to registerService(String[] , Object ,
Dict ionary) and is provided as a convenience when serv ice will only be regis-
tered under a single class name. Note that even in this case the value of the ser-
vice’s OBJECTCLASS property will be an array of strings, rather than just a
single string.

See Also: registerServ ice(String[] , Object , Dict ionary)
removeBundleListener(BundleListener)

public void removeBundleListener(
BundleListener listener)
throws java.lang.IllegalStateException

Removes the specified Bundle L istener object from this context bundle’s list of
listeners. See getBundle() for a definition of context bundle.

If l i stener is not contained in this context bundle’s list of listeners, this method
does nothing.

Parameters: l i stener - The Bundle L istener object to be removed.

Throws: java. lang. I l legalStateException - If this context bundle has stopped.
removeFrameworkListener(FrameworkListener)

public void removeFrameworkListener(
FrameworkListener listener)
throws java.lang.IllegalStateException

Removes the specified Framework Listener object from this context bundle’s
list of listeners. See getBundle() for a definition of context bundle.

If l i stener is not contained in this context bundle’s list of listeners, this method
does nothing.

Parameters: l i stener - The Framework Listener object to be removed.

Throws: java. lang. I l legalStateException - If this context bundle has stopped.
removeServiceListener(ServiceListener)

public void removeServiceListener(
ServiceL istener listener)
throws java.lang.IllegalStateException

Removes the specified Service Listener object from this context bundle’s list of
listeners. See getBundle() for a definition of context bundle.

If l i stener is not contained in this context bundle’s list of listeners, this method
does nothing.

Parameters: l i stener - The Serv ice Listener to be removed.

Throws: java. lang. I l legalStateException - If this context bundle has stopped.
ungetService(ServiceReference)

public boolean ungetService(
ServiceReference reference)
throws java.lang.IllegalStateException

Releases the service object referenced by the specified Service Reference
object. If the context bundle’s use count for the service is zero, this method
returns fa lse . Otherwise, the context bundle’s use count for the service is dec-
remented by one. See getBundle() for a definition of context bundle.

The service’s service object should no longer be used and all references to it
should be destroyed when a bundle’s use count for the service drops to zero.

The following steps are required to unget the service object:
OSGi Service-Platform Release 2 69-282

org.osgi.framework Framework Specification Version 1.1
1. If the context bundle’s use count for the service is zero or the service has
been unregistered, fa lse is returned.

2. The context bundle’s use count for this service is decremented by one.

3. If the context bundle’s use count for the service is currently zero and the ser-
vice was registered with a Serv ice Factory object, the ungetService(Bundle,
ServiceRegistrat ion, Object) method is called to release the service object
for the context bundle.

4. true is returned.

Parameters: reference - A reference to the service to be released.

Returns: fa lse if the context bundle’s use count for the service is zero or if the service
has been unregistered; true otherwise.

Throws: java. lang. I l legalStateException - If the context bundle has stopped.

See Also: getServ ice(Serv iceReference) , ServiceFactory

2.21.5 BundleEvent
Syntaxpublic class BundleEvent extends

java.util.EventObject

All Implemented
Interfaces:

java.io.Serializable

DescriptionA Framework event describing a bundle lifecycle change.

Bundle Event objects are delivered to Bundle Listener objects when a change
occurs in a bundle’s lifecycle. A type code is used to identify the event type for
future extendability.

OSGi reserves the right to extend the set of types.

2.21.5.1 FieldsINSTALLED

public static final int INSTALLED This bundle has been installed.

The value of INSTALLED is 0x00000001.

See Also: instal lBundle(Str ing)
STARTED

public static final int STARTED This bundle has been started.

The value of STARTED is 0x00000002.

See Also: start()
STOPPED

public static final int STOPPED This bundle has been stopped.

The value of STOPPED is 0x00000004.

See Also: stop()
UNINSTALLED

public static final int UNINSTALLED This bundle has been uninstalled.

The value of UNINSTALLED is 0x00000010.

See Also: uninstal l ()
UPDATED

public static final int UPDATED This bundle has been updated.
70-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
The value of UPDATED is 0x00000008.

See Also: update()

2.21.5.2 ConstructorsBundleEvent(int, Bundle)

public BundleEvent(int type, Bundle
bundle)

Creates a bundle event of the specified type.

Parameters: type - The event type.

bundle - The bundle which had a lifecycle change.

2.21.5.3 MethodsgetBundle()

public Bundle getBundle() Returns the bundle which had a lifecycle change. This bundle is the source of
the event.

Returns: A bundle that had a change occur in its lifecycle.
getType()

public int getType() Returns the type of lifecyle event. The type values are:

• INSTALLED
• STARTED
• STOPPED
• UPDATED
• UNINSTALLED

Returns: The type of lifecycle event.

2.21.6 BundleException
Syntaxpublic class BundleException extends

java.lang.Exception

All Implemented
Interfaces:

java.io.Serializable

DescriptionA Framework exception used to indicate that a bundle lifecycle problem
occurred.

Bundle Exception object is created by the Framework to denote an exception
condition in the lifecycle of a bundle. Bundle Except ions should not be created
by bundle developers.

2.21.6.1 ConstructorsBundleException(String)

public BundleException(java.lang.String
msg)

Creates a Bundle Except ion object with the specified message.

Parameters: msg - The message.
BundleException(String, Throwable)

public BundleException(java.lang.String
msg, java.lang.Throwable throwable)

Creates a Bundle Except ion that wraps another exception.

Parameters: msg - The associated message.

throwable - The nested exception.

2.21.6.2 MethodsgetNestedException()

public java.lang.Throwable
getNestedException()

Returns any nested exceptions included in this exception.

Returns: The nested exception; nul l if there is no nested exception.
OSGi Service-Platform Release 2 71-282

org.osgi.framework Framework Specification Version 1.1
2.21.7 BundleListener
Syntaxpublic interface BundleListener extends

java.util.EventListener

All Known Sub-
interfaces:

SynchronousBundleListener

All Superinter-
faces:

java.util.EventListener

DescriptionA Bundle Event listener.

Bundle Listener is a listener interface that may be implemented by a bundle
developer.

A Bundle Listener object is registered with the Framework using the
addBundleListener(BundleListener) method. Bundle Listeners are called with
a Bundle Event object when a bundle has been installed, started, stopped,
updated, or uninstalled.

See Also: BundleEvent

2.21.7.1 MethodsbundleChanged(BundleEvent)

public void bundleChanged(BundleEvent
event)

Receives notification that a bundle has had a lifecycle change.

Parameters: event - The Bundle Event .

2.21.8 Configurable
Syntaxpublic interface Configurable DescriptionSupports a configuration object.

Conf igurable is an interface that should be used by a bundle developer in sup-
port of a configurable service. Bundles that need to configure a service may test
to determine if the service object is an instanceof Conf igurable .

2.21.8.1 MethodsgetConfigurationObject()

public java.lang.Object
getConfigurationObject()
throws java.lang.SecurityException

Returns this service’s configuration object.

Services implementing Configurable should take care when returning a ser-
vice configuration object since this object is probably sensitive.

If the Java Runtime Environment supports permissions, it is recommended
that the caller is checked for the appropriate permission before returning the
configuration object. It is recommended that callers possessing the appropri-
ate AdminPermission always be allowed to get the configuration object.

Returns: The configuration object for this service.

Throws: java. lang.Secur i tyException - If the caller does not have an appropriate per-
mission and the Java Runtime Environment supports permissions.

2.21.9 Constants
Syntaxpublic interface Constants DescriptionDefines standard names for the OSGi environment property, service property,
and Manifest header attribute keys.

The values associated with these keys are of type java. lang.Str ing , unless oth-
erwise indicated.

Since: 1.1
72-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
See Also: getHeaders() , getProperty(Str ing) , registerServ ice(String[] , Object , Dict io-
nary)

2.21.9.1 FieldsBUNDLE_ACTIVATOR

public static final java.lang.String
BUNDLE_ACTIVATOR

Manifest header attribute (named “Bundle-Activator”) identifying the bundle’s
activator class.

If present, this header specifies the name of the bundle resource class that
implements the Bundle Act ivator interface and whose start and stop methods
are called by the Framework when the bundle is started and stopped, respec-
tively.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_CATEGORY

public static final java.lang.String
BUNDLE_CATEGORY

Manifest header (named “Bundle-Category”) identifying the bundle’s category.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_CLASSPATH

public static final java.lang.String
BUNDLE_CLASSPATH

Manifest header (named “Bundle-ClassPath”) identifying a list of nested JAR
files, which are bundle resources used to extend the bundle’s classpath.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_CONTACTADDRESS

public static final java.lang.String
BUNDLE_CONTACTADDRESS

Manifest header (named “Bundle-ContactAddress”) identifying the contact
address where problems with the bundle may be reported; for example, an
email address.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_COPYRIGHT

public static final java.lang.String
BUNDLE_COPYRIGHT

Manifest header (named “Bundle-Copyright”) identifying the bundle’s copy-
right information, which may be retrieved from the Dict ionary object returned
by the Bundle.get Headers method.
BUNDLE_DESCRIPTION

public static final java.lang.String
BUNDLE_DESCRIPTION

Manifest header (named “Bundle-Description”) containing a brief description
of the bundle’s functionality.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_DOCURL

public static final java.lang.String
BUNDLE_DOCURL

Manifest header (named “Bundle-DocURL”) identifying the bundle’s documen-
tation URL, from which further information about the bundle may be
obtained.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_NAME

public static final java.lang.String
BUNDLE_NAME

Manifest header (named “Bundle-Name”) identifying the bundle’s name.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
OSGi Service-Platform Release 2 73-282

org.osgi.framework Framework Specification Version 1.1
BUNDLE_NATIVECODE

public static final java.lang.String
BUNDLE_NATIVECODE

Manifest header (named “Bundle-NativeCode”) identifying a number of hard-
ware environments and the native language code libraries that the bundle is
carrying for each of these environments.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_NATIVECODE_LANGUAGE

public static final java.lang.String
BUNDLE_NATIVECODE_LANGUAGE

Manifest header attribute (named “language”) identifying the language in
which the native bundle code is written specified in the Bundle-NativeCode
Manifest header). see ISO 639 for possible values).

The attribute value is encoded in the Bundle-NativeCode Manifest header like:

Bundle-NativeCode: http.so ; language=nl_be ...

BUNDLE_NATIVECODE_OSNAME

public static final java.lang.String
BUNDLE_NATIVECODE_OSNAME

Manifest header attribute (named “osname”) identifying the operating system
required to run native bundle code specified in the Bundle-NativeCode Mani-
fest header).

The attribute value is encoded in the Bundle-NativeCode Manifest header like:

Bundle-NativeCode: http.so ; osname=Linux ...

BUNDLE_NATIVECODE_OSVERSION

public static final java.lang.String
BUNDLE_NATIVECODE_OSVERSION

Manifest header attribute (named “osversion”) identifying the operating sys-
tem version required to run native bundle code specified in the Bundle-Native-
Code Manifest header).

The attribute value is encoded in the Bundle-NativeCode Manifest header like:

Bundle-NativeCode: http.so ; osversion=“2.34” ...

BUNDLE_NATIVECODE_PROCESSOR

public static final java.lang.String
BUNDLE_NATIVECODE_PROCESSOR

Manifest header attribute (named “processor”) identifying the processor
required to run native bundle code specified in the Bundle-NativeCode Mani-
fest header).

The attribute value is encoded in the Bundle-NativeCode Manifest header like:

Bundle-NativeCode: http.so ; processor=x86 ...

BUNDLE_UPDATELOCATION

public static final java.lang.String
BUNDLE_UPDATELOCATION

Manifest header (named “Bundle-UpdateLocation”) identifying the location
from which a new bundle version is obtained during a bundle update opera-
tion.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_VENDOR

public static final java.lang.String
BUNDLE_VENDOR

Manifest header (named “Bundle-Vendor”) identifying the bundle’s vendor.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
BUNDLE_VERSION

public static final java.lang.String
BUNDLE_VERSION

Manifest header (named “Bundle-Version”) identifying the bundle’s version.
74-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
EXPORT_PACKAGE

public static final java.lang.String
EXPORT_PACKAGE

Manifest header (named “Export-Package”) identifying the names (and option-
ally version numbers) of the packages that the bundle offers to the Framework
for export.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
EXPORT_SERVICE

public static final java.lang.String
EXPORT_SERVICE

Manifest header (named “Export-Service”) identifying the fully qualified class
names of the services that the bundle may register (used for informational
purposes only).

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
FRAMEWORK_LANGUAGE

public static final java.lang.String
FRAMEWORK_LANGUAGE

Framework environment property (named “org.osgi.framework.language”)
identifying the Framework implementation language (see ISO 639 for possible
values).

The value of this property may be retrieved by calling the Bundle Context .get-
Property method.

FRAMEWORK_OS_NAME

public static final java.lang.String
FRAMEWORK_OS_NAME

Framework environment property (named “org.osgi.framework.os.name”)
identifying the Framework host-computer’s operating system.

The value of this property may be retrieved by calling the Bundle Context .get-
Property method.

FRAMEWORK_OS_VERSION

public static final java.lang.String
FRAMEWORK_OS_VERSION

Framework environment property (named “org.osgi.framework.os.version”)
identifying the Framework host-computer’s operating system version number.

The value of this property may be retrieved by calling the Bundle Context .get-
Property method.

FRAMEWORK_PROCESSOR

public static final java.lang.String
FRAMEWORK_PROCESSOR

Framework environment property (named “org.osgi.framework.processor”)
identifying the Framework host-computer’s processor name.

The value of this property may be retrieved by calling the Bundle Context .get-
Property method.

FRAMEWORK_VENDOR

public static final java.lang.String
FRAMEWORK_VENDOR

Framework environment property (named “org.osgi.framework.vendor”) iden-
tifying the Framework implementation vendor.

The value of this property may be retrieved by calling the Bundle Context .get-
Property method.

FRAMEWORK_VERSION

public static final java.lang.String
FRAMEWORK_VERSION

Framework environment property (named “org.osgi.framework.version”)
identifying the Framework version.

The value of this property may be retrieved by calling the Bundle Context .get-
Property method.
OSGi Service-Platform Release 2 75-282

org.osgi.framework Framework Specification Version 1.1
IMPORT_PACKAGE

public static final java.lang.String
IMPORT_PACKAGE

Manifest header (named “Import-Package”) identifying the names (and option-
ally, version numbers) of the packages that the bundle is dependent on.

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
IMPORT_SERVICE

public static final java.lang.String
IMPORT_SERVICE

Manifest header (named “Import-Service”) identifying the fully qualified class
names of the services that the bundle requires (used for informational pur-
poses only).

The attribute value may be retrieved from the Dict ionary object returned by
the Bundle.get Headers method.
OBJECTCLASS

public static final java.lang.String
OBJECTCLASS

Service property (named “objectClass”) identifying all of the class names under
which a service was registered in the Framework.

This property is set by the Framework when a service is registered.
PACKAGE_SPECIFICATION_VERSION

public static final java.lang.String
PACKAGE_SPECIFICATION_VERSION

Manifest header attribute (named “specification-version”) identifying the ver-
sion of a package specified in the Export-Package or Import-Package Manifest
header.

The attribute value is encoded in the Export-Package or Import-Package Mani-
fest header like:

Import-Package: org.osgi.framework ; specification-
version=“1.1”

SERVICE_DESCRIPTION

public static final java.lang.String
SERVICE_DESCRIPTION

Service property (named “service.description”) identifying a service’s descrip-
tion.

This property may be supplied in the properties Dict ionary object passed to
the Bundle Context . register Service method.
SERVICE_ID

public static final java.lang.String
SERVICE_ID

Service property (named “service.id”) identifying a service’s registration num-
ber (of type java. lang.Long).

The value of this property is assigned by the Framework when a service is reg-
istered. The Framework assigns a unique value that is larger than all previ-
ously assigned values since the Framework was started. These values are NOT
persistent across restarts of the Framework.
SERVICE_PID

public static final java.lang.String
SERVICE_PID

Service property (named “service.pid”) identifying a service’s persistent identi-
fier.

This property may be supplied in the propert ies Dict ionary object passed to
the Bundle Context . register Service method.

A service’s persistent identifier uniquely identifies the service and persists
across multiple Framework invocations.

By convention, every bundle has its own unique namespace, starting with the
bundle’s identifier (see getBundleId()) and followed by a dot (.). A bundle may
use this as the prefix of the persistent identifiers for the services it registers.
76-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
SERVICE_RANKING

public static final java.lang.String
SERVICE_RANKING

Service property (named “service.ranking”) identifying a service’s ranking
number (of type java. lang. Integer).

This property may be supplied in the propert ies Dict ionary object passed to
the Bundle Context . register Service method.

The service ranking is used by the Framework to determine the default service
to be returned from a call to the getServiceReference(Str ing) method: If more
than one service implements the specified class, the Service Reference object
with the highest ranking is returned.

The default ranking is 0. A service with a ranking of Integer .MAX_VALUE is
very likely to be returned as the default service, whereas a service with a rank-
ing of Integer .MIN_VALUE is very unlikely to be returned.

If the supplied property value is not of type java. lang. Integer , it is deemed to
have a ranking value of 0.
SERVICE_VENDOR

public static final java.lang.String
SERVICE_VENDOR

Service property (named “service.vendor”) identifying a service’s vendor.

This property may be supplied in the properties Dict ionary object passed to
the Bundle Context . register Service method.
SYSTEM_BUNDLE_LOCATION

public static final java.lang.String
SYSTEM_BUNDLE_LOCATION

Location identifier of the OSGi system bundle, which is defined to be “System
Bundle”.

2.21.10 Filter
Syntaxpublic interface Filter DescriptionAn RFC 1960-based Filter.

Fi l ter objects can be created by calling createFi lter(Str ing) with the chosen fil-
ter string.

A Fi l ter object can be used numerous times to determine if the match argu-
ment matches the filter string that was used to create the Fi lter object.

The syntax of a filter string is the string representation of LDAP search filters
as defined in RFC 1960: A String Representation of LDAP Search Filters (available
at http://www.ietf.org/rfc/rfc1960.txt). It should be noted that RFC 2254: A
String Representation of LDAP Search Filters (available at http://www.ietf.org/rfc/
rfc2254.txt) supercedes RFC 1960 but only adds extensible matching and is not
applicable for this OSGi Framework API.
OSGi Service-Platform Release 2 77-282

org.osgi.framework Framework Specification Version 1.1
The string representation of an LDAP search filter uses a prefix format, and is
defined with the following grammar.

<filter> ::= '(' <filtercomp> ')'
<filtercomp> ::= <and> | <or> | <not> | <item>
<and> ::= '&' <filterlist>
<or> ::= '|' <filterlist>
<not> ::= '!' <filter>
<filterlist> ::= <filter> | <filter> <filterlist>
<item> ::= <simple> | <present> | <substring>
<simple> ::= <attr> <filtertype> <value>
<filtertype> ::= <equal> | <approx> | <greater> | <less>
<equal> ::= '='
<approx> ::= '~='
<greater> ::= '>='
<less> ::= '<='
<present> ::= <attr> '=*'
<substring> ::= <attr> '=' <initial> <any> <final>
<initial> ::= NULL | <value>
<any> ::= '*' <starval>
<starval> ::= NULL | <value> '*' <starval>
<final> ::= NULL | <value>

<attr> is a string representing an attribute, or key, in the properties objects of
the services registered in the Framework. Attribute names are not case sensi-
tive; that is, cn and CN both refer to the same attribute. <attr> should contain
no spaces though white space is allowed between the initial parenthesis “(”
and the start of the key, and between the end of the key and the equal sign “=”.
<value> is a string representing the value, or part of one, of a key in the proper-
ties objects of the registered services. If a <value> must contain one of the char-
acters ’* ’ or ’(’ or ’) ’, these characters should be escaped by preceding them with
the backslash ’\ ’ character. Spaces are significant in <value> . Space charactes
are defined by java. lang.Character . is White Space() . Note that although both
the <substr ing> and <present> productions can produce the 'attr=*' construct;
this construct is used only to denote a presence filter.

Examples of LDAP filters are:

“(cn=Babs Jensen)”
“(!(cn=Tim Howes))”
“(&(” + Constants.OBJECTCLASS + “=Person)(|(sn=Jensen)(

cn=Babs J*)))”
“(o=univ*of*mich*)”

The approximate match (~=) is implementation specific but should at least
ignore case and white space differences. Optional are codes like soundex or
other smart “closeness” comparisons.
78-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
Comparison of values is not straightforward. Strings are compared differently
than numbers and it is possible for a key to have multiple values. Note that
keys in the match argument must always be strings. The comparison is defined
by the object type of the key’s value. The following rules apply for comparison:

Property Value Type Comparison Type
String String comparison
Integer, Long, Float,
Double, Byte, Short,
BigInteger,BigDecimal Numerical comparison
Character Character comparison
Boolean Equality comparisons only
[] (array) Recursively applied to values
Vector Recursively applied to elements

Arrays of primitives are also supported. A filter matches a key that has multi-
ple values if it matches at least one of those values. For example,

Dictionary d = new Hashtable();
d.put(“cn”, new String[] { “a”, “b”, “c” });

d will match (cn=a) and also (cn=b)

A filter component that references a key having an unrecognizable data type
will evaluate to false .

Since: 1.1

2.21.10.1 Methodsequals(Object)

public boolean equals(java.lang.Object
obj)

Compares this Fi lter object to another object.

Overrides: java.lang.Object.equals(java.lang.Object) in class java.lang.Object

Parameters: obj - The object to compare against this Fi l ter object.

Returns: If the other object is a Fi lter object, then returns this . to Str ing() .equals(
obj.to Str ing() ; fa lse otherwise.
hashCode()

public int hashCode() Returns the hashCode for this Fi lter object.

Overrides: java.lang.Object.hashCode() in class java.lang.Object

Returns: The hashCode of the filter string; that is, this . to Str ing().hash Code() .
match(Dictionary)

public boolean match(java.util.Dictionary
dictionary)
throws IllegalArgumentException

Filter using a Dict ionary object. The Filter is executed using the Dict ionary
object’s keys and values.

Parameters: dict ionary - The Dict ionary object whose keys are used in the match.

Returns: true if the Dict ionary object’s keys and values match this filter; fa lse other-
wise.

Throws: I l legalArgumentExcept ion - If dict ionary contains case variants of the same
key name.
OSGi Service-Platform Release 2 79-282

org.osgi.framework Framework Specification Version 1.1
match(ServiceReference)

public boolean match(ServiceReference
reference)

Filter using a service’s properties.

The filter is executed using properties of the referenced service.

Parameters: reference - The reference to the service whose properties are used in the
match.

Returns: true if the service’s properties match this filter; fa lse otherwise.
toString()

public java.lang.String toString() Returns this Fi l ter object’s filter string.

The filter string is normalized by removing whitespace which does not affect
the meaning of the filter.

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: Filter string.

2.21.11 FrameworkEvent
Syntaxpublic class FrameworkEvent extends

java.util.EventObject

All Implemented
Interfaces:

java.io.Serializable

DescriptionA general Framework event.

Framework Event is the event class used when notifying listeners of general
events occuring within the OSGI environment. A type code is used to identify
the event type for future extendability.

OSGi reserves the right to extend the set of event types.

2.21.11.1 FieldsERROR

public static final int ERROR An error has occurred.

There was an error associated with a bundle.

The value of ERROR is 0x00000002.
STARTED

public static final int STARTED The Framework has started.

This event is broadcast when the Framework has started after all installed bun-
dles that are marked to be started have been started.

The value of STARTED is 0x00000001.

2.21.11.2 ConstructorsFrameworkEvent(int, Bundle, Throwable)

public FrameworkEvent(int type, Bundle
bundle, java.lang.Throwable
throwable)

Creates a Framework event with a related bundle and exception.

This constructor is used for Framework events of type ERROR .

Parameters: type - The event type.

bundle - The related bundle.

throwable - The related exception.
FrameworkEvent(int, Object)

public FrameworkEvent(int type,
java.lang.Object source)

Creates a Framework event.

This constructor is used for Framework events of type STARTED .
80-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
Parameters: type - The event type.

source - The event source object. This may not be nul l .

2.21.11.3 MethodsgetBundle()

public Bundle getBundle() Returns the bundle associated with the event.

If the event type is ERROR , this metod returns the bundle related to the error.
This bundle is also the source of the event.

Returns: A bundle if an event of type ERROR or nul l .
getThrowable()

public java.lang.Throwable getThrowable(
)

Returns the exception associated with the event.

If the event type is ERROR , this method returns the exception related to the
error.

Returns: An exception if an event of type ERROR or null .
getType()

public int getType() Returns the type of bundle state change.

The type values are:

• STARTED
• ERROR

Returns: The type of state change.

2.21.12 FrameworkListener
Syntaxpublic interface FrameworkListener

extends java.util.EventListener

All Superinter-
faces:

java.util.EventListener

DescriptionA Framework Event listener.

Framework Listener is a listener interface that may be implemented by a bun-
dle developer. A Framework Listener object is registered with the Framework
using the addFrameworkListener(FrameworkListener) method. Framework-
L istener objects are called with a Framework Event objects when the Frame-
work starts and when asynchronous errors occur.

See Also: FrameworkEvent

2.21.12.1 MethodsframeworkEvent(FrameworkEvent)

public void frameworkEvent(
FrameworkEvent event)

Receives notification of a general Framework Event object.

Parameters: event - The Framework Event object.

2.21.13 InvalidSyntaxException
Syntax

public class InvalidSyntaxException
extends java.lang.Exception

All Implemented
Interfaces:

java.io.Serializable

DescriptionA Framework exception.

An Inval id Syntax Exception object indicates that a filter string parameter has
an invalid syntax and cannot be parsed.
OSGi Service-Platform Release 2 81-282

org.osgi.framework Framework Specification Version 1.1
See Fi l ter for a description of the filter string syntax.

2.21.13.1 ConstructorsInvalidSyntaxException(String, String)

public InvalidSyntaxException(
java.lang.String msg, java.lang.String
filter)

Creates an exception of type Inval id Syntax Exception .

This method creates an Inval id Syntax Except ion object with the specified mes-
sage and the filter string which generated the exception.

Parameters: msg - The message.

f i l ter - The invalid filter string.

2.21.13.2 MethodsgetFilter()

public java.lang.String getFilter() Returns the filter string that generated the Inval id Syntax Exception object.

Returns: The invalid filter string.

See Also: getServiceReferences(Str ing, Str ing) , addServiceListener(ServiceListener ,
Str ing)

2.21.14 PackagePermission
Syntaxpublic final class PackagePermission

extends java.security.BasicPermission

All Implemented
Interfaces:

java.security.Guard, java.io.Serializable

DescriptionA bundle’s authority to import or export a package.

A package is a dot-separated string that defines a fully qualified Java package.

For example:

code>org.osgi.service.http

Package Permission has two actions: EXPORT and IMPORT . The EXPORT action
implies the IMPORT action.

2.21.14.1 FieldsEXPORT

public static final java.lang.String EXPORT The action string EXPORT .
IMPORT

public static final java.lang.String IMPORT The action string IMPORT .

2.21.14.2 ConstructorsPackagePermission(String, String)

public PackagePermission(java.lang.String
name, java.lang.String actions)

Defines the authority to import and/or export a package within the OSGi envi-
ronment.

The name is specified as a normal Java package name: a dot-separated string.
Wildcards may be used. For example:

org.osgi.service.http
javax.servlet.*
*

Package Permissions are granted over all possible versions of a package. A bun-
dle that needs to export a package must have the appropriate Package-
Permiss ion for that package; similarly, a bundle that needs to import a
package must have the appropriate Package Permssion for that package.

Permission is granted for both classes and resources.
82-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
Parameters: name - Package name.

act ions - EXPORT , IMPORT (canonical order).

2.21.14.3 Methodsequals(Object)

public boolean equals(java.lang.Object
obj)

Determines the equality of two Package Permiss ion objects. This method
checks that specified package has the same package name and Package-
Permiss ion actions as this Package Permiss ion object.

Overrides: java.security.BasicPermission.equals(java.lang.Object) in class java.secu-
rity.BasicPermission

Parameters: obj - The object to test for equality with this Package Permiss ion object.

Returns: true if obj is a Package Permiss ion , and has the same package name and actions
as this Package Permiss ion object; fa lse otherwise.
getActions()

public java.lang.String getActions() Returns the canonical string representation of the Package Permiss ion actions.

Always returns present Package Permission actions in the following order:
EXPORT , IMPORT .

Overrides: java.security.BasicPermission.getActions() in class java.security.BasicPermis-
sion

Returns: Canonical string representation of the Package Permission actions.
hashCode()

public int hashCode() Returns the hash code value for this object.

Overrides: java.security.BasicPermission.hashCode() in class java.security.BasicPermis-
sion

Returns: A hash code value for this object.
implies(Permission)

public boolean implies(
java.security.Permission p)

Determines if the specified permission is implied by this object.

This method checks that the package name of the target is implied by the
package name of this object. The list of Package Permiss ion actions must either
match or allow for the list of the target object to imply the target Package-
Permiss ion action.

The permission to export a package implies the permission to import the
named package.

x.y.*,“export” -> x.y.z,“export” is true
*,“import” -> x.y, “import” is true
*,“export” -> x.y, “import” is true
x.y,“export” -> x.y.z, “export” is false

Overrides: java.security.BasicPermission.implies(java.security.Permission) in class
java.security.BasicPermission

Parameters: p - The target permission to interrogate.

Returns: true if the specified Package Permiss ion action is implied by this object; fa lse
otherwise.
OSGi Service-Platform Release 2 83-282

org.osgi.framework Framework Specification Version 1.1
newPermissionCollection()

public java.security.PermissionCollection
newPermissionCollection()

Returns a new Permiss ion Col lect ion object suitable for storing Package-
Permiss ion objects.

Overrides: java.security.BasicPermission.newPermissionCollection() in class java.secu-
rity.BasicPermission

Returns: A new Permiss ion Col lect ion object.

2.21.15 ServiceEvent
Syntax

public class ServiceEvent extends
java.util.EventObject

All Implemented
Interfaces:

java.io.Serializable

DescriptionA service lifecycle change event.

Service Event objects are delivered to a Service Listener objects when a change
occurs in this service’s lifecycle. A type code is used to identify the event type
for future extendability.

OSGi reserves the right to extend the set of types.

See Also: ServiceL istener

2.21.15.1 FieldsMODIFIED

public static final int MODIFIED The properties of a registered service have been modified.

This event is synchronously delivered after the service properties have been
modified.

The value of MODIFIED is 0x00000002.

See Also: setPropert ies(Dict ionary)
REGISTERED

public static final int REGISTERED This service has been registered.

This event is synchronously delivered after the service has been registered with
the Framework.

The value of REGISTERED is 0x00000001.

See Also: registerServ ice(String[] , Object , Dict ionary)
UNREGISTERING

public static final int UNREGISTERING This service is in the process of being unregistered.

This event is synchronously delivered before the service has completed unreg-
istering.

If a bundle is using a service that is UNREGISTERING , the bundle should release
its use of the service when it receives this event. If the bundle does not release
its use of the service when it receives this event, the Framework will automati-
cally release the bundle’s use of the service while completing the service
unregistration operation.

The value of UNREGISTERING is 0x00000004.

See Also: unregister() , ungetService(ServiceReference)
84-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
2.21.15.2 ConstructorsServiceEvent(int, ServiceReference)

public ServiceEvent(int type,
ServiceReference reference)

Creates a new service event object.

Parameters: type - The event type.

reference - A Service Reference object to the service that had a lifecycle
change.

2.21.15.3 MethodsgetServiceReference()

public Serv iceReference
getServiceReference()

Returns a reference to the service that had a change occur in its lifecycle.

This reference is the source of the event.

Returns: Reference to the service that had a lifecycle change.
getType()

public int getType() Returns the type of event. The event type values are:

• REGISTERED
• MODIFIED
• UNREGISTERING

Returns: Type of service lifecycle change.

2.21.16 ServiceFactory
Syntaxpublic interface ServiceFactory DescriptionAllows services to provide customized service objects in the OSGi environ-
ment.

When registering a service, a Service Factory object can be used instead of a
service object, so that the bundle developer can gain control of the specific ser-
vice object granted to a bundle that is using the service.

When this happens, the Bundle Context .get Serv ice(Serv ice Reference)
method calls the Service Factory.get Serv ice method to create a service object
specifically for the requesting bundle. The service object returned by the
Service Factory object is cached by the Framework until the bundle releases its
use of the service.

When the bundle’s use count for the service equals zero (including the bundle
stopping or the service being unregistered), the Service Factory.unget Service
method is called.

Service Factory objects are only used by the Framework and are not made
available to other bundles in the OSGi environment.

See Also: getServ ice(Serv iceReference)

2.21.16.1 MethodsgetService(Bundle, ServiceRegistration)

public java.lang.Object getService(Bundle
bundle, ServiceRegistrat ion
registration)

Creates a new service object.

The Framework invokes this method the first time the specified bundle
requests a service object using the Bundle Context .get Serv ice(Serv ice-
Reference) method. The service factory can then return a specific service
object for each bundle.

The Framework caches the value returned (unless it is null), and will return
the same service object on any future call to Bundle Context .get Serv ice from
the same bundle.
OSGi Service-Platform Release 2 85-282

org.osgi.framework Framework Specification Version 1.1
The Framework will check if the returned service object is an instance of all
the classes named when the service was registered. If not, then nul l is returned
to the bundle.

Parameters: bundle - The bundle using the service.

registrat ion - The Service Registrat ion object for the service.

Returns: A service object that must be an instance of all the classes named when the ser-
vice was registered.

See Also: getServ ice(Serv iceReference)
ungetService(Bundle, ServiceRegistration, Object)

public void ungetService(Bundle bundle,
ServiceRegistrat ion registration,
java.lang.Object service)

Releases a service object.

The Framework invokes this method when a service has been released by a
bundle. The service object may then be destroyed.

Parameters: bundle - The bundle releasing the service.

registrat ion - The Service Registrat ion object for the service.

serv ice - The service object returned by a previous call to the Serv ice-
Factory.get Service method.

See Also: ungetService(ServiceReference)

2.21.17 ServiceListener
Syntaxpublic interface ServiceListener extends

java.util.EventListener

All Superinter-
faces:

java.util.EventListener

DescriptionA Service Event listener.

Service Listener is a listener interface that may be implemented by a bundle
developer.

A Service Listener object is registered with the Framework using the Bundle-
Context .add Service Listener method. Service L istener objects are called with
a Service Event object when a service has been registered or modified, or is in
the process of unregistering.

Service Event object delivery to Service L istener objects is filtered by the filter
specified when the listener was registered. If the Java Runtime Environment
supports permissions, then additional filtering is done. Serv ice Event objects
are only delivered to the listener if the bundle which defines the listener
object’s class has the appropriate Service Permiss ion to get the service using at
least one of the named classes the service was registered under.

See Also: ServiceEvent , ServicePermiss ion

2.21.17.1 MethodsserviceChanged(ServiceEvent)

public void serviceChanged(Serv iceEvent
event)

Receives notification that a service has had a lifecycle change.

Parameters: event - The Service Event object.
86-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
2.21.18 ServicePermission
Syntaxpublic final class ServicePermission

extends java.security.BasicPermission

All Implemented
Interfaces:

java.security.Guard, java.io.Serializable

DescriptionIndicates a bundle’s authority to register or get a service.

• The REGISTER Service Permiss ion action allows a bundle to register a
service on the specified names.

• The GET Serv ice Permiss ion action allows a bundle to detect a service and
get it.

Permission to get a service is required in order to detect events regarding the
service. Untrusted bundles should not be able to detect the presence of certain
services unless they have the appropriate Service Permiss ion to get the specific
service.

2.21.18.1 FieldsGET

public static final java.lang.String GET The action string get (Value is “get”).
REGISTER

public static final java.lang.String
REGISTER

The action string register (Value is “register”).

2.21.18.2 ConstructorsServicePermission(String, String)

public ServicePermission(java.lang.String
name, java.lang.String actions)

Create a new ServicePermission.

The name of the service is specified as a fully qualified class name.

ClassName ::= <class name> | <class name ending in “.*”>

Examples:

org.osgi.service.http.HttpService
org.osgi.service.http.*
org.osgi.service.snmp.*

There are two possible actions: get and register . The get permission allows the
owner of this permission to obtain a service with this name. The register per-
mission allows the bundle to register a service under that name.

Parameters: name - class name

act ions - get , register (canonical order)

2.21.18.3 Methodsequals(Object)

public boolean equals(java.lang.Object
obj)

Determines the equalty of two ServicePermission objects. Checks that speci-
fied object has the same class name and action as this Service Permiss ion .

Overrides: java.security.BasicPermission.equals(java.lang.Object) in class java.secu-
rity.BasicPermission

Parameters: obj - The object to test for equality.

Returns: true if obj is a Service Permiss ion , and has the same class name and actions as
this Service Permiss ion object; false otherwise.
OSGi Service-Platform Release 2 87-282

org.osgi.framework Framework Specification Version 1.1
getActions()

public java.lang.String getActions() Returns the canonical string representation of the actions. Always returns
present actions in the following order: get , register .

Overrides: java.security.BasicPermission.getActions() in class java.security.BasicPermis-
sion

Returns: The canonical string representation of the actions.
hashCode()

public int hashCode() Returns the hash code value for this object.

Overrides: java.security.BasicPermission.hashCode() in class java.security.BasicPermis-
sion

Returns: Hash code value for this object.
implies(Permission)

public boolean implies(
java.security.Permission p)

Determines if a Service Permiss ion object “implies” the specified permission.

Overrides: java.security.BasicPermission.implies(java.security.Permission) in class
java.security.BasicPermission

Parameters: p - The target permission to check.

Returns: true if the specified permission is implied by this object; fa lse otherwise.
newPermissionCollection()

public java.security.PermissionCollection
newPermissionCollection()

Returns a new Permiss ion Col lect ion object for storing ServicePermission
objects .

Overrides: java.security.BasicPermission.newPermissionCollection() in class java.secu-
rity.BasicPermission

Returns: A new Permiss ion Col lect ion object suitable for storing Serv ice Permiss ion
objects.

2.21.19 ServiceReference
Syntaxpublic interface ServiceReference DescriptionA reference to a service.

The Framework returns Service Reference objects from the Bundle-
Context .get Service Reference and Bundle Context .get Service References
methods.

A Service Reference may be shared between bundles and can be used to exam-
ine the properties of the service and to get the service object.

Every service registered in the Framework has a unique Service Registrat ion
object and may have multiple, distinct Serv ice Reference objects referring to
it. Service Reference objects associated with a Service Registrat ion object have
the same hash Code and are considered equal (more specifically, their equals()
method will return true when compared).

If the same service object is registered multiple times, Service Reference
objects associated with different Serv ice Registrat ion objects are not equal.

See Also: getServiceReference(Str ing) , getServiceReferences(String, Str ing) , getSer-
vice(ServiceReference)
88-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 org.osgi.framework
2.21.19.1 MethodsgetBundle()

public Bundle getBundle() Returns the bundle that registered the service referenced by this Serv ice-
Reference object.

This method will always return nul l when the service has been unregistered.
This can be used to determine if the service has been unregistered.

Returns: The bundle that registered the service referenced by this Service Reference
object; nul l if that service has already been unregistered.

See Also: registerServ ice(String[] , Object , Dict ionary)
getProperty(String)

public java.lang.Object getProperty(
java.lang.String key)

Returns the property value to which the specified property key is mapped in
the properties Dict ionary object of the service referenced by this Service-
Reference object.

Property keys are case-insensitive.

This method will continue to return property values after the service has been
unregistered. This is so references to unregistered services (for example,
Service Reference objects stored in the log) can still be interrogated.

Parameters: key - The property key.

Returns: The property value to which the key is mapped; nul l if there is no property
named after the key.
getPropertyKeys()

public java.lang.String[] getPropertyKeys(
)

Returns an array of the keys in the properties Dict ionary object of the service
referenced by this Service Reference object.

This method will continue to return the keys after the service has been unreg-
istered. This is so references to unregistered services (for example, Service-
Reference objects stored in the log) can still be interrogated.

This method is case-preserving; this means that every key in the returned array
must have the same case as the corresponding key in the properties Dict ionary
that was passed to the registerService(Str ing[] , Object , Dict ionary) or set-
Propert ies(Dict ionary) methods.

Returns: An array of property keys.
getUsingBundles()

public Bundle[] getUsingBundles() Returns the bundles that are using the service referenced by this Service-
Reference object. Specifically, this method returns the bundles whose usage
count for that service is greater than zero.

Returns: An array of bundles whose usage count for the service referenced by this
Service Reference object is greater than zero; nul l if no bundles are currently
using that service.

Since: 1.1

2.21.20 ServiceRegistration
Syntaxpublic interface ServiceRegistration DescriptionA registered service.

The Framework returns a Serv ice Registrat ion object when a Bundle-
Context . register Service method is successful. The Serv ice Registrat ion object
is for the private use of the registering bundle and should not be shared with
other bundles.
OSGi Service-Platform Release 2 89-282

org.osgi.framework Framework Specification Version 1.1
The Serv ice Registrat ion object may be used to update the properties of the
service or to unregister the service.

See Also: registerServ ice(String[] , Object , Dict ionary)

2.21.20.1 MethodsgetReference()

public Serv iceReference getReference()
throws java.lang.IllegalStateException

Returns a Service Reference object for a service being registered.

The Serv ice Reference object may be shared with other bundles.

Returns: Service Reference object.

Throws: java. lang. I l legalStateException - If this Service Registrat ion object has already
been unregistered.
setProperties(Dictionary)

public void setProperties(
java.util.Dictionary properties)
throws IllegalStateException,
IllegalArgumentException

Updates the properties associated with a service.

The OBJECTCLASS and SERVICE_ID keys cannot be modified by this method.
These values are set by the Framework when the service is registered in the
OSGi environment.

The following steps are required to modify service properties:

1. The service’s properties are replaced with the provided properties.

2. A service event of type MODIFIED is synchronously sent.

Parameters: propert ies - The properties for this service. See Constants for a list of standard
service property keys. Changes should not be made to this object after calling
this method. To update the service’s properties this method should be called
again.

Throws: I l legalStateExcept ion - If this Serv ice Registrat ion object has already been
unregistered.

I l legalArgumentExcept ion - If propert ies contains case variants of the same
key name.
unregister()

public void unregister()
throws java.lang.IllegalStateException

Unregisters a service. Remove a Serv ice Registrat ion object from the Frame-
work service registry. All Service Reference objects associated with this
Service Registrat ion object can no longer be used to interact with the service.

The following steps are required to unregister a service:

1. The service is removed from the Framework service registry so that it can
no longer be used. Service Reference objects for the service may no longer
be used to get a service object for the service.

2. A service event of type UNREGISTERING is synchronously sent so that bun-
dles using this service can release their use of it.

3. For each bundle whose use count for this service is greater than zero:

4. The bundle’s use count for this service is set to zero.

5. If the service was registered with a Serv iceFactory object, the Serv ice-
Factory.unget Service method is called to release the service object for the
bundle.

Throws: java. lang. I l legalStateException - If this Service Registrat ion object has already
been unregistered.
90-282 OSGi Service-Platform Release 2

Framework Specification Version 1.1 References
See Also: ungetService(ServiceReference) , ungetService(Bundle, ServiceRegistra-
t ion, Object)

2.21.21 SynchronousBundleListener
Syntaxpublic interface

SynchronousBundleListener extends
BundleListener

All Superinter-
faces:

BundleListener , java.util.EventListener

DescriptionA synchronous Bundle Event listener.

Synchronous Bundle Listener is a listener interface that may be implemented
by a bundle developer.

A Synchronous Bundle Listener object is registered with the Framework using
the addBundleListener(BundleListener) method. Synchronous Bundle-
L istener objects are called with a Bundle Event object when a bundle has been
installed, started, stopped, updated, or uninstalled.

Unlike normal Bundle Listener objects, Synchronous Bundle Listeners are syn-
chronously called during bundle life cycle processing. The bundle life cycle
processing will not proceed until all Synchronous Bundle Listeners have com-
pleted. Synchronous Bundle Listener objects will be called prior to Bundle-
L istener objects.

Admin Permiss ion is required to add or remove a Synchronous Bundle Listener
object.

Since: 1.1

See Also: BundleEvent

2.22 References
[3] The Standard for the Format of ARPA Internet Text Messages

STD 11, RFC 822, UDEL, August 1982
ftp://ftp.isi.edu/in-notes/rfc822.txt

[4] The Hypertext Transfer Protocol - HTTP/1.1
RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997
ftp://ftp.isi.edu/in-notes/rfc2068.txt

[5] The Java 2 Platform API Specification
Standard Edition, Version 1.3, Sun Microsystems
http://java.sun.com/j2se/1.3

[6] The Java Language Specification
Second Edition, Sun Microsystems, 2000
http://java.sun.com/docs/books/jls/index.html

[7] A String Representation of LDAP Search Filters
RFC 1960, UMich, 1996
ftp://ftp.isi.edu/in-notes/rfc1960.txt

[8] The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-
spec.doc.html
OSGi Service-Platform Release 2 91-282

References Framework Specification Version 1.1
[9] The Java 2 Package Versioning Specification
http://java.sun.com/j2se/1.3/docs/guide/versioning/index.html

[10] Codes for the Representation of Names of Languages
ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

[11] Manifest Format
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#JAR%20Manifest

[12] RFC 822 Standard for the Format of ARPA Internet Text Messages
Crocker, D., STD 11, RFC 822, UDEL, August 1982. http://www.ietf.org/rfc/
rfc0822.txt
92-282 OSGi Service-Platform Release 2

Package Admin Service Specification Version 1.0 Introduction
3 Package Admin Service
Specification
Version 1.0

3.1 Introduction
Bundles can export packages to other bundles. This creates a dependency
between the bundle exporting a package and the bundle using this package.
When the exporting bundle is uninstalled or updated, a decision must be
taken regarding this shared package.

In the first version of the Framework, this decision was left to the implementa-
tion. Some implementations choose to do eager updates; Whenever a bundle
was updated or uninstalled, its exported package were withdrawn and depen-
dent bundles were stopped and resolved again. Other implementations choose
to use a lazy update policy: leave the packages as they were and allow them to
be used by other bundles until the Framework is restarted.

Leaving such an important detail to implementations was deemed unaccept-
able for this release. Therefore the Package Admin service is introduced. This
service allows a management bundle to provide the policies for package shar-
ing.

3.1.1 Essentials
• Information – Provide the status of all packages related to their sharing. This

should include the importing bundles and exporting bundle.
• Policy – Allow a management bundle to provide a policy for package sharing

when bundles are updated and uninstalled.
• Minimal update – Only bundles that depend of the package that needs to be

resolved again will be restarted.

3.1.2 Operation
The Framework’s system bundle can provide a Package Admin service for
management bundles. The service is registered under the org.osgi .
serv ice.packageadmin.PackageAdmin interface by the system bundle. It pro-
vides access to the internal structures of the Framework related to package
sharing. See Sharing Packages on page 17.

The Framework always leaves the package sharing intact for packages
exported by a bundle that is uninstalled or updated. Management bundles can
choose to force the framework to eagerly update these packages using the
Package Admin service. A policy of always using the most current packages
exported by installed bundles can be implemented with a management bundle
by watching Framework events for bundles being uninstalled or updated and
refreshing the packages of those bundles using the Package Admin service.

OSGi Service-Platform Release 2 93-282

Package Admin Package Admin Service Specification Version 1.0
3.1.3 Entities
• PackageAdmin – The interface that provides access to the internal

Framework package sharing mechanism.

• ExportedPackage – Provides package information and its sharing status.
• Management bundle – A bundle that is provided by the operator to

implement an operator specific policy.

Figure 11 Class Diagram org.osgi.service.packageadmin

3.2 Package Admin
The Package Admin service is intended to allow a management bundle to
define the policy for managing package sharing. It therefore provides methods
for examining the status of the shared packages. It also allows the manage-
ment bundle to refresh the packages, stopping and restarting bundles as neces-
sary.

The PackageAdmin class provides the following methods:

• getExportedPackage(Str ing) – Returns an ExportedPackage object that
provides information about the requested package. This information can be
used to make the decision to refresh the package.

• getExportedPackages(Bundle) – Returns a list of ExportedPackage objects
for each package that the given bundle exports.

• refreshPackages(Bundle[]) – The management bundle may call this
method to refresh the exported packages of the specified bundles.

Information about the shared packages is provided by the ExportedPackage
objects. These objects provide detailed information about the bundles that
import and export the package. This information can be used by a manage-
ment bundle to guide its decisions.

3.3 Security
The Package Admin service is a system service that can easily be abused because
it provides access to the internal data structures of the Framework. Only
trusted bundles should have the Serv icePermiss ion [GET] for the PackageAd-
min interface. No bundle must have Serv icePermiss ion [REGISTER] , because
only the Framework itself should register a system service.

<<service>>
PackageAdmin

<<interface>>
Exported
Package

0..n1

<<interface>>
Bundle

0..n

exported by

1

imported by

0..n

0..n

name

provides
94-282 OSGi Service-Platform Release 2

Package Admin Service Specification Version 1.0 org.osgi.service.packageadmin
This service should only be used by management bundles.

Package
3.4 org.osgi.service.packageadmin

DescriptionThe OSGi Package Admin service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.packageadmin; specification-
version=1.0

3.4.1 ExportedPackage
Syntaxpublic interface ExportedPackage DescriptionAn exported package. Instances implementing this interface are created by the
Package Admin service.

The information about an exported package provided by this object is valid
only until the next time Package Admin.refresh Packages() is called. If an
Exported Package object becomes stale (that is, the package it references has
been updated or removed as a result of calling Package Admin.refresh-
Packages()), its get Name() and get Specif icat ion Vers ion() continue to return
their old values, i s Removal Pending() returns true , and get Export ing Bundle()
and get Import ing Bundles() return nul l.

3.4.1.1 MethodsgetExportingBundle()

public Bundle getExportingBundle() Returns the bundle exporting the package associated with this Exported-
Package object.

Returns: The exporting bundle, or nul l if this Exported Package object has become stale.
getImportingBundles()

public Bundle[] getImportingBundles() Returns the resolved bundles that are currently importing the package associ-
ated with this Exported Package object.

The returned array always includes the bundle returned by getExport ingBun-
dle() since an exporter always implicitly imports its exported packages.

Returns: The array of resolved bundles currently importing the package associated with
this Exported Package object, or nul l if this Exported Package object has
become stale.
getName()

public java.lang.String getName() Returns the name of the package associated with this Exported Package object.

Returns: The name of this Exported Package object.

Class Summary

Interfaces

ExportedPackage An exported package.

PackageAdmin Framework service which allows bundle programmers to inspect the packages
exported in the Framework and eagerly update or uninstall bundles.
OSGi Service-Platform Release 2 95-282

org.osgi.service.packageadmin Package Admin Service Specification Version 1.0
getSpecificationVersion()

public java.lang.String
getSpecificationVersion()

Returns the specification version of this Exported Package , as specified in the
exporting bundle’s manifest file.

Returns: The specification version of this Exported Package object, or nul l if no version
information is available.
isRemovalPending()

public boolean isRemovalPending() Returns true if the package associated with this Exported Package object has
been exported by a bundle that has been updated or uninstalled.

Returns: true if the associated package is being exported by a bundle that has been
updated or uninstalled, or if this Exported Package object has become stale;
fa lse otherwise.

3.4.2 PackageAdmin
Syntaxpublic interface PackageAdmin DescriptionFramework service which allows bundle programmers to inspect the packages
exported in the Framework and eagerly update or uninstall bundles. If present,
there will only be a single instance of this service registered with the Frame-
work.

The term exported package (and the corresponding interface ExportedPackage
)refers to a package that has actually been exported (as opposed to one that is
available for export).

The information about exported packages returned by this service is valid only
until the next time refreshPackages(Bundle[]) is called. If an Exported-
Package object becomes stale, (that is, the package it references has been
updated or removed as a result of calling Package Admin.refresh Packages()),
its get Name() and get Speci f icat ion Vers ion() continue to return their old val-
ues, is Removal Pending() returns true , and get Export ing Bundle() and get-
Import ing Bundles() return nul l .

3.4.2.1 MethodsgetExportedPackage(String)

public ExportedPackage
getExportedPackage(java.lang.String
name)

Gets the Exported Package object with the specified package name. All
exported packages will be checked for the specified name. In an environment
where the exhaustive list of packages on the system classpath is not known in
advance, this method attempts to see if the named package is on the system
classpath. This means that this method may discover an Exported Package
object that was not present in the list returned by a prior call to get Exported-
Packages() .

Parameters: name - The name of the exported package to be returned.

Returns: The exported package with the specified name, or null if no expored package
with that name exists.
getExportedPackages(Bundle)

public ExportedPackage[]
getExportedPackages(Bundle bundle)

Gets the packages exported by the specified bundle.

Parameters: bundle - The bundle whose exported packages are to be returned, or nul l if all
the packages currently exported in the Framework are to be returned. If the
specified bundle is the system bundle (that is, the bundle with id 0), this
method returns all the packages on the system classpath whose name does not
96-282 OSGi Service-Platform Release 2

Package Admin Service Specification Version 1.0 org.osgi.service.packageadmin
start with “java.”. In an environment where the exhaustive list of packages on
the system classpath is not known in advance, this method will return all cur-
rently known packages on the system classpath, that is, all packages on the
system classpath that contains one or more classes that have been loaded.

Returns: The array of packages exported by the specified bundle, or null if the specified
bundle has not exported any packages.
refreshPackages(Bundle[])

public void refreshPackages(Bundle[]
bundles)
throws SecurityException

Forces the update (replacement) or removal of packages exported by the speci-
fied bundles.

If no bundles are specified, this method will update or remove any packages
exported by any bundles that were previously updated or uninstalled. The
technique by which this is accomplished may vary among different Frame-
work implementations. One permissible implementation is to stop and restart
the Framework.

This method returns to the caller immediately and then performs the follow-
ing steps in its own thread:

1. Compute a graph of bundles starting with the specified ones. If no bundles
are specified, compute a graph of bundles starting with previously updated
or uninstalled ones. Any bundle that imports a package that is currently
exported by a bundle in the graph is added to the graph. The graph is fully
constructed when there is no bundle outside the graph that imports a pack-
age from a bundle in the graph. The graph may contain UNINSTALLED bun-
dles that are currently still exporting packages.

2. Each bundle in the graph will be stopped as described in the Bundle.stop
method.

3. Each bundle in the graph that is in the RESOLVED state is moved to the
INSTALLED state. The effect of this step is that bundles in the graph are no
longer RESOLVED .

4. Each bundle in the graph that is in the UNINSTALLED state is removed from
the graph and is now completely removed from the Framework.

5. Each bundle in the graph that was in the ACTIVE state prior to Step 2 is
started as described in the Bundle.start method, causing all bundles
required for the restart to be resolved. It is possible that, as a result of the
previous steps, packages that were previously exported no longer are.
Therefore, some bundles may be unresolvable until another bundle offer-
ing a compatible package for export has been installed in the Framework.

For any exceptions that are thrown during any of these steps, a Framework-
Event of type ERROR is broadcast, containing the exception.

Parameters: bundles - the bundles whose exported packages are to be updated or removed,
or null for all previously updated or uninstalled bundles.

Throws: Secur i tyException - if the caller does not have the Admin Permiss ion and the
Java runtime environment supports permissions.
OSGi Service-Platform Release 2 97-282

org.osgi.service.packageadmin Package Admin Service Specification Version 1.0
98-282 OSGi Service-Platform Release 2

Permission Admin Service Specification Version 1.0 Introduction
4 Permission Admin Service
Specification
Version 1.0

4.1 Introduction
In the Framework, a bundle can have a single set of permissions associated
with it. These permissions are used to verify that a bundle is authorized to exe-
cute privileged code. For example, a Fi lePermiss ion defines what files can be
used and in what way.

The policy of providing the permissions to the bundle should be delegated to a
management bundle. The Framework provides the Permission Admin service
so that a management bundle can administrate bundle’s permissions and pro-
vide defaults for all bundles.

The related mechanisms of the Framework are discussed in Security on page
42.

4.1.1 Essentials
• Status information – Provide status information about the permissions of a

bundle.
• Administrate – Allow a management bundle to set the permissions before,

during or after it is installed.
• Defaults – Provide access to the default permissions. These are the permis-

sions when a bundle has no specific permissions set.

4.1.2 Operation
The Framework maintains a repository of permissions. These permissions are
stored under the bundle location string. Using the bundle location allows for
setting the permissions before a bundle is downloaded. The Framework must
consult this repository when it needs the permissions of a bundle. When no
specific permissions are set, the bundle must use the default permissions. If no
default is set, it must use java.security .Al lPermiss ion .

The Permission Admin service is registered by the Framework’s system bundle
under the org.osgi .serv ice.permissionadmin.Permiss ionAdmin interface. This
is an optional singleton service, so at most one Permission Admin service is
registered at any moment in time.

The Permission Admin service provides access to the permission repository. A
management bundle can get, set, update and deleted permissions from this
repository. A management bundle can use the SynchronousBundleL istener to
set the permissions during the installation or updating of a bundle.
OSGi Service-Platform Release 2 99-282

Permission Admin service Permission Admin Service Specification Version 1.0
4.1.3 Entities
• Permiss ionAdmin – The service that provides access to the permission

repository of the Framework.
• Permiss ionInfo – An object that holds the information to construct a Per-

miss ion object.
• Bundle location – The string that specifies the bundle location, this is

described in Bundle Location on page 24.
• Management bundle – A bundle that is provided by the operator to

implement an operator specific policy.

Figure 12 Class Diagram org.osgi.service.permissionadmin.

4.2 Permission Admin service
The Permission Admin service needs to manipulate the default permissions
and the permissions associated with a specific bundle. The default permissions
and the bundle-specific permissions are stored persistently. It is possible to set
a bundle’s permissions before the bundle is installed in the Framework
because the bundle’s location is used to set the bundle’s permissions.

The manipulation of a bundle’s permission, however, may also be done in real
time, when a bundle is downloaded, or set just before the bundle is down-
loaded. To support this flexibility, a SynchronousBundleListener object may
be used to allow a management bundle to detect the installation or update of a
new bundle, and set the required permissions before the installation com-
pletes.

Permissions are activated the first time a permission check for a bundle is per-
formed, meaning that if a bundle has opened a file, this file must remain
usable even if later in time the permission to open that file is removed.

Permission information is not specified using java.secur ity.Permission objects.
The reason for this approach is the relationship between the required persis-
tence of the information across Framework restarts and the concept of class-
loaders in the Framework.

<<service>>
Permission
Admin

Permission
Info[]0..n1

java.security.
Permission

constructs

1

1

bundle location
100-282 OSGi Service-Platform Release 2

Permission Admin Service Specification Version 1.0 Security
Permiss ion objects must be subclasses of Permiss ion and may be exported
from any bundle. The Framework can access these permissions as long as they
are exported, but the management bundle would have to import all possible
packages that contain permissions. This requirement would limit the permis-
sion types. Therefore, the Permission Admin service uses the Permiss ionInfo
class to specify permission information. Objects of this class are used to create
Permiss ion objects.

Permiss ionInfo objects restrict the possible Permiss ion objects that can be
used. A Permiss ion class can only be described by a Permiss ionInfo object
when it fulfills the following characteristics:

• It must be a subclass of java.secur ity .Permiss ion .
• It must use the two-argument public constructor type(c lassname,act ions) .
• The type name of the permission must be a valid, fully qualified class name.
• The class for this type name must be available to the Framework code from

the system classpath or from an exported package, so it can be loaded by the
Framework.

• The class must be public.

The permissions are always set as an array of Permiss ionInfo objects to make
the assignment atomic.

The Permiss ionAdmin interface provides the following methods:

• getLocat ions() – Returns a list of locations that have permissions assigned
to them. This method allows a management bundle to examine the current
permissions.

• getPermissions(Str ing) – Returns a list of Permiss ionInfo objects that are
set for that location or null if no permissions are set.

• setPermiss ions(Str ing, Permiss ionInfo[]) – Associates permissions with a
specific location. or nul l when the permissions should be removed.

• getDefaultPermiss ions() – This method returns the set of default permis-
sions.

• setDefaultPermiss ions(Permiss ionInfo[]) – This method sets the default
permissions.

4.3 Security
The Permission Admin is a system service and is very sensitive to abuse. A bun-
dle that can access and use the Permission Admin service has full control over
the OSGi environment. Only bundles that are fully trusted should have Serv i-
cePermission[GET] for this service.

No bundle must have ServicePermission[REGISTER] for this service because
only the Framework should provide this service.

Package
4.4 org.osgi.service.permissionadmin

DescriptionThe OSGi Permission Admin service Package. Specification Version 1.0.
OSGi Service-Platform Release 2 101-282

org.osgi.service.permissionadmin Permission Admin Service Specification Version 1.0
Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.permissionadmin;
specification-version=1.0

4.4.1 PermissionAdmin
Syntaxpublic interface PermissionAdmin DescriptionThe Permission Admin service allows operators to manage the permissions of
bundles. There is at most one Permission Admin service present in the Frame-
work.

Access to the Permission Admin service is protected by corresponding
Service Permiss ion . In addition the Admin Permission is required to actually
set permissions.

Bundle permissions are managed using a permission table. A bundle’s location
serves as the key into this permission table. The value of a table entry is the set
of permissions (of type Permiss ion Info) granted to the bundle with the given
location. A bundle may have an entry in the permission table prior to being
installed in the Framework.

The permissions specified in set Default Permiss ions are used as the default
permissions which are granted to all bundles that do not have an entry in the
permission table.

Any changes to a bundle’s permissions in the permission table will take effect
no later than when bundle’s java.secur ity.Protect ion Domain is involved in a
permission check, and will be made persistent.

Only permission classes on the system classpath or from an exported package
are considered during a permission check. Additionally, only permission
classes that are subclasses of java.secur ity .Permiss ion and define a 2-argument
constructor that takes a name string and an actions string can be used.

Permissions implicitly granted by the Framework (for example, a bundle’s per-
mission to access its persistent storage area) cannot be changed, and are not
reflected in the permissions returned by get Permiss ions and get Default-
Permiss ions .

4.4.1.1 MethodsgetDefaultPermissions()

public Permiss ionInfo[]
getDefaultPermissions()

Gets the default permissions.

These are the permissions granted to any bundle that does not have permis-
sions assigned to its location.

Class Summary

Interfaces

Permiss ionAdmin The Permission Admin service allows operators to manage the permissions of
bundles.

Classes

Permiss ionInfo Permission representation used by the Permission Admin service.
102-282 OSGi Service-Platform Release 2

Permission Admin Service Specification Version 1.0 org.osgi.service.permissionadmin
Returns: The default permissions, or null if default permissions have not been defined.
getLocations()

public java.lang.String[] getLocations() Returns the bundle locations that have permissions assigned to them, that is,
bundle locations for which an entry exists in the permission table.

Returns: The locations of bundles that have been assigned any permissions, or nul l if
the permission table is empty.
getPermissions(String)

public Permiss ionInfo[] getPermissions(
java.lang.String location)

Gets the permissions assigned to the bundle with the specified location.

Parameters: locat ion - The location of the bundle whose permissions are to be returned.

Returns: The permissions assigned to the bundle with the specified location, or null if
that bundle has not been assigned any permissions.
setDefaultPermissions(PermissionInfo[])

public void setDefaultPermissions(
Permiss ionInfo[] permissions)
throws SecurityException

Sets the default permissions.

These are the permissions granted to any bundle that does not have permis-
sions assigned to its location.

Parameters: permiss ions - The default permissions.

Throws: Secur i tyException - if the caller does not have the Admin Permiss ion .
setPermissions(String, PermissionInfo[])

public void setPermissions(
java.lang.String location,
Permiss ionInfo[] perms)
throws SecurityException

Assigns the specified permissions to the bundle with the specified location.

Parameters: locat ion - The location of the bundle that will be assigned the permissions.

perms - The permissions to be assigned, or nul l if the specified location is to be
removed from the permission table.

Throws: Secur i tyException - if the caller does not have the Admin Permiss ion .

4.4.2 PermissionInfo
Syntaxpublic class PermissionInfo DescriptionPermission representation used by the Permission Admin service.

This class encapsulates three pieces of information: a Permission type (class
name), which must be a subclass of java.secur ity .Permiss ion , and the name
and actions arguments passed to its constructor.

In order for a permission represented by a Permiss ion Info to be instantiated
and considered during a permission check, its Permission class must be avail-
able from the system classpath or an exported package. This means that the
instantiation of a permission represented by a Permission Info may be delayed
until its Permission class has been exported to the Framework.

4.4.2.1 ConstructorsPermissionInfo(String)

public PermissionInfo(java.lang.String
encodedPermission)
throws
java.lang.IllegalArgumentException

Constructs a Permiss ion Info object from the given encoded Permiss ion Info
string.

Parameters: encodedPermiss ion - The encoded Permiss ion Info .
OSGi Service-Platform Release 2 103-282

org.osgi.service.permissionadmin Permission Admin Service Specification Version 1.0
Throws: java. lang. I l legalArgumentExcept ion - if encoded Permission is not properly
formatted.

See Also: getEncoded()
PermissionInfo(String, String, String)

public PermissionInfo(java.lang.String
type, java.lang.String name,
java.lang.String actions)

Constructs a Permiss ion Info from the given type, name, and actions.

Parameters: type - The fully qualified class name of the permission represented by this
Permiss ion Info . The class must be a subclass of java.security .Permiss ion and
must define a 2-argument constructor that takes a name string and an actions
string.

name - The permission name that will be passed as the first argument to the
constructor of the Permiss ion class identified by type .

act ions - The permission actions that will be passed as the second argument to
the constructor of the Permiss ion class identified by type .

4.4.2.2 Methodsequals(Object)

public boolean equals(java.lang.Object
obj)

Determines the equality of two Permiss ion Info objects. This method checks
that specified object has the same type, name and actions as this Permiss ion-
Info object.

Overrides: java.lang.Object.equals(java.lang.Object) in class java.lang.Object

Parameters: obj - The object to test for equality with this Permiss ion Info object.

Returns: true if obj is a Permission Info , and has the same type, name and actions as this
Permiss ion Info object; fa lse otherwise.
getActions()

public final java.lang.String getActions() Returns the actions of the permission represented by this Permiss ion Info .

Returns: The actions of the permission represented by this Permiss ion Info , or null if the
permission does not have any actions associated with it.
getEncoded()

public final java.lang.String getEncoded() Returns the string encoding of this Permiss ion Info in a form suitable for
restoring this Permiss ion Info .

The encoding format is:

(type)

or

(type “name”)

or

(type “name” “actions”)

where name and actions are strings that are encoded for proper parsing. Specifi-
cally, the “ , \ , carriage return, and linefeed characters are escaped using \” , \ \ , \ r ,
and \n , respectively.

Returns: The string encoding of this Permiss ion Info .
104-282 OSGi Service-Platform Release 2

Permission Admin Service Specification Version 1.0 org.osgi.service.permissionadmin
getName()

public final java.lang.String getName() Returns the name of the permission represented by this Permiss ion Info .

Returns: The name of the permission represented by this Permiss ion Info , or null if the
permission does not have a name.
getType()

public final java.lang.String getType() Returns the fully qualified class name of the permission represented by this
Permiss ion Info .

Returns: The fully qualified class name of the permission represented by this
Permiss ion Info .
hashCode()

public int hashCode() Returns the hash code value for this object.

Overrides: java.lang.Object.hashCode() in class java.lang.Object

Returns: A hash code value for this object.
toString()

public java.lang.String toString() Returns the string representation of this Permiss ion Info . The string is created
by calling the get Encoded method on this Permiss ion Info .

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: The string representation of this Permiss ion Info .
OSGi Service-Platform Release 2 105-282

org.osgi.service.permissionadmin Permission Admin Service Specification Version 1.0
106-282 OSGi Service-Platform Release 2

Service Tracker Specification Version 1.1 Introduction
5 Service Tracker
Specification
Version 1.1

5.1 Introduction
The Framework provides a powerful, but very dynamic, programming envi-
ronment. Bundles are installed, started, stopped, updated and uninstalled with-
out shutting down the Framework. Dependencies between bundles are
monitored by the Framework, but bundles must cooperate in handling these
dependencies correctly.

An important aspect of the Framework is the service registry. Bundle develop-
ers must be careful not to use service objects that have been unregistered. The
dynamic nature of the Framework service registry makes it necessary to track
the service objects as they are registered and unregistered. It is easy to overlook
rare race conditions or boundary conditions that will lead to random errors.

An example of a non-trivial problem is to create the initial list of services of a
certain type when a bundle is started. When the ServiceL istener object is reg-
istered before the Framework is asked for the list of services, without special
precautions, duplicates can enter the list. When the Serv iceListener object is
registered after the list is made, it is possible to miss relevant events.

The specification defines a utility class, ServiceTracker , that makes tracking
the registration, modification, and unregistration of services much easier. A
ServiceTracker class can be customized by implementing the ServiceTracker-
Customizer interface or by sub-classing the Serv iceTracker class.

This utility specifies a class that significantly reduces the complexity to track
services in the service registry.

5.1.1 Essentials
• Customizing – Allow a default implementation to be customized so that

bundle developers can easily start simple but extend it to their needs.
• Small – Every Framework implementation should have this utility imple-

mented. It should therefore be very small because some Framework imple-
mentations target minimal OSGi environments.

• Tracked set – Track a single object defined by a ServiceReference object, all
instances of a service or any set specified by a filter expression.

5.1.2 Operation
The fundamental tasks of a ServiceTracker object are:

• To create an initial list of services as specified by its owner.
• To listen to ServiceEvent instances so that services of interest to the owner

are properly tracked.
OSGi Service-Platform Release 2 107-282

ServiceTracker Class Service Tracker Specification Version 1.1
• To allow the owner to customize the tracking process by allowing program-
matic selection of the services to be tracked as well as act when a service is
added or removed.

A ServiceTracker object populates a set of services that match a given search
criteria, and then listens to Serv iceEvent objects which correspond to those
services.

5.1.3 Entities

Figure 13 Class diagram of org.osgi.util.tracker

5.2 ServiceTracker Class
The Serv iceTracker interface defines three constructors to create Service-
Tracker objects, each providing different search criteria:

• ServiceTracker(BundleContext , String, Serv iceTrackerCustomizer) – This
constructor takes a service interface name as the search criterion. The Ser-
viceTracker object must then track all services that are registered under the
specified service interface name.

• ServiceTracker(BundleContext , F i l ter , ServiceTrackerCustomizer) – This
constructor uses a Fi l ter object to specify the services to be tracked. The Ser-
viceTracker must then track all services that match the specified filter.

• ServiceTracker(BundleContext , ServiceReference, ServiceTrackerCus-
tomizer) – This constructor takes a ServiceReference object as the search
criterion. The ServiceTracker must then track only the service that corre-
sponds to the specified ServiceReference . Using this constructor, no more
than one service must ever be tracked, because a Serv iceReference refers to
a specific service.

Each of the ServiceTracker constructors takes a BundleContext object as a
parameter. This BundleContext object must be used by a ServiceTracker
object to track, get, and unget services.

A new ServiceTracker object must not begin tracking services until its open
method is called.

5.3 Using a Service Tracker
Once a ServiceTracker object is opened, it begins tracking services immedi-
ately. A number of methods are available to the bundle developer to monitor
the services that are being tracked. The ServiceTracker class defines these
methods:

• getService() – Returns one of the services being tracked or null if there are
no active services being tracked.

• getServices() – Returns an array of all the tracked services. The number of
tracked services is returned by the s ize method.

Service
Tracker

customized by

Service
Tracker
Customizer1 1
108-282 OSGi Service-Platform Release 2

Service Tracker Specification Version 1.1 Customizing the ServiceTracker class
• getServiceReference() – Returns a Serv iceReference object for one of the
services being tracked. The service object for this service may be returned
by calling the ServiceTracker object’s getServ ice() method.

• getServiceReferences() – Returns a list of the Serv iceReference objects for
services being tracked. The service object for a specific tracked service may
be returned by calling the ServiceTracker object’s getService(ServiceRef-
erence) method.

• waitForServ ice(long) – Allows the caller to wait until at least one instance
of a service is tracked or until the timeout expires. If the timeout is zero, the
caller must wait until at least one instance of a service is tracked. wait-
ForServ ice must not used within the BundleAct ivator methods, as these
methods are expected to complete in a short period of time. A Framework
may wait until the start method returns before it starts the bundle that reg-
isters the service that is waited for, creating a dead-lock situation.

• remove(ServiceReference) – This method may be used to remove a specific
service from being tracked by the ServiceTracker object, causing removed-
Service to be called for that service.

• close() – This method must remove all services being tracked by the Ser-
viceTracker object, causing removedService to be called for all tracked ser-
vices.

5.4 Customizing the ServiceTracker class
The behavior of the ServiceTracker class can be customized by either provid-
ing a Serv iceTrackerCustomizer object implementing the desired behavior
when the ServiceTracker object is constructed, or by subclassing the Serv ice-
Tracker class and overriding the ServiceTrackerCustomizer methods.

The Serv iceTrackerCustomizer interface defines these methods:

• addingServ ice(Serv iceReference) – Called whenever a service is being
added to the ServiceTracker object.

• modif iedServ ice(Serv iceReference, Object) – Called whenever a tracked
service is modified.

• removedService(ServiceReference, Object) – Called whenever a tracked
service is removed from the ServiceTracker object.

When a service is being added to the ServiceTracker object or when a tracked
service is modified or removed from the ServiceTracker object, it must call
addingServ ice , modif iedService , or removedService , respectively, on the Ser-
viceTrackerCustomizer object (if specified when the Serv iceTracker object
was created); otherwise it must call these methods on itself.

A bundle developer may customize the action when a service is tracked.
Another reason for customizing the ServiceTracker class is to programmati-
cally select which services are tracked. A filter may not sufficiently specify the
services that the bundle developer is interested in tracking. By implementing
addingServ ice , the bundle developer can use additional runtime information
to determine if the service should be tracked. If nul l is returned by the adding-
Service method, the service must not be tracked.
OSGi Service-Platform Release 2 109-282

Customizing Example Service Tracker Specification Version 1.1
Finally, the bundle developer can return a specialized object from addingSer-
vice that differs from the service object. This specialized object could contain
the service object and any associated information. This returned object is then
tracked instead of the service object. When the removedService method is
called, the object that is passed along with the ServiceReference object is the
one that was returned from the earlier call to the addingService method.

5.5 Customizing Example
An example of customizing the action taken when a service is tracked might
be registering a Servlet with each Http Service that is tracked. This customiza-
tion could be done by sub-classing the ServiceTracker class and overriding the
addingServ ice and removedService methods as follows:

public Object addingService(ServiceReference reference) {
Object obj = context.getService(reference);
HttpService svc = (HttpService)obj;
// Register the Servlet using svc
...
return svc;

}
public void removedService(ServiceReference reference,

Object obj){
HttpService svc = (HttpService)obj;
// Unregister the Servlet using svc
...
context.ungetService(reference);

}

5.6 Security
A ServiceTracker object contains a BundleContext instance variable that is
accessible to the methods in a subclass. A BundleContext object should never
be given to other bundles because it is used for security aspects of the Frame-
work.

The ServiceTracker implementation does not have a method to get the
BundleContext object but subclasses should be careful not to provide such a
method if the ServiceTracker object is given to other bundles.

The services that are being tracked are available via a ServiceTracker . These
services are dependent on the BundleContext as well. It is therefore necessary
to do a careful security analysis when ServiceTracker objects are given to
other bundles.

Package
5.7 org.osgi.util.tracker

DescriptionThe OSGi Service Tracker Package. Specification Version 1.1.
110-282 OSGi Service-Platform Release 2

Service Tracker Specification Version 1.1 org.osgi.util.tracker
Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.tracker; specification-
version=1.1

5.7.1 ServiceTracker
Syntaxpublic class ServiceTracker implements

ServiceTrackerCustomizer

All Implemented
Interfaces:

ServiceTrackerCustomizer

DescriptionThe Serv ice Tracker class simplifies using services from the Framework’s ser-
vice registry.

A Service Tracker object is constructed with search criteria and a Serv ice-
Tracker Customizer object. A Serv ice Tracker object can use the Service-
Tracker Customizer object to customize the service objects to be tracked. The
Service Tracker object can then be opened to begin tracking all services in the
Framework’s service registry that match the specified search criteria. The
Service Tracker object correctly handles all of the details of listening to
Service Event objects and getting and ungetting services.

The get Service References method can be called to get references to the ser-
vices being tracked. The get Service and get Services methods can be called to
get the service objects for the tracked service.

5.7.1.1 Fieldscontext

protected final BundleContext context Bundle context this Serv ice Tracker object is tracking against.
filter

protected final F i l ter filter Filter specifying search criteria for the services to track.

Since: 1.1

5.7.1.2 ConstructorsServiceTracker(BundleContext, Filter, ServiceTrackerCustomizer)

public ServiceTracker(BundleContext
context, F i l ter filter,
ServiceTrackerCustomizer
customizer)

Create a Serv ice Tracker object on the specified Fi lter object.

Services which match the specified Fi l ter object will be tracked by this
Service Tracker object.

Parameters: context - Bundle Context object against which the tracking is done.

Class Summary

Interfaces

ServiceTrackerCustomizer The Serv ice Tracker Customizer interface allows a Service Tracker object to
customize the service objects that are tracked.

Classes

ServiceTracker The Serv ice Tracker class simplifies using services from the Framework’s ser-
vice registry.
OSGi Service-Platform Release 2 111-282

org.osgi.util.tracker Service Tracker Specification Version 1.1
f i l ter - Fi l ter object to select the services to be tracked.

customizer - The customizer object to call when services are added, modified,
or removed in this Serv ice Tracker object. If customizer is null, then this
Service Tracker object will be used as the Service Tracker Customizer object
and the Serv ice Tracker object will call the Service Tracker Customizer meth-
ods on itself.

Since: 1.1
ServiceTracker(BundleContext, ServiceReference, ServiceTrackerCustomizer)

public ServiceTracker(BundleContext
context, Serv iceReference reference,
ServiceTrackerCustomizer
customizer)

Create a Serv ice Tracker object on the specified Service Reference object.

The service referenced by the specified Service Reference object will be
tracked by this Service Tracker object.

Parameters: context - Bundle Context object against which the tracking is done.

reference - Service Reference object for the service to be tracked.

customizer - The customizer object to call when services are added, modified,
or removed in this Serv ice Tracker object. If customizer is nul l , then this
Service Tracker object will be used as the Service Tracker Customizer object
and the Serv ice Tracker object will call the Service Tracker Customizer meth-
ods on itself.
ServiceTracker(BundleContext, String, ServiceTrackerCustomizer)

public ServiceTracker(BundleContext
context, java.lang.String clazz,
ServiceTrackerCustomizer
customizer)

Create a Serv ice Tracker object on the specified class name.

Services registered under the specified class name will be tracked by this
Service Tracker object.

Parameters: context - Bundle Context object against which the tracking is done.

clazz - Class name of the services to be tracked.

customizer - The customizer object to call when services are added, modified,
or removed in this Serv ice Tracker object. If customizer is nul l , then this
Service Tracker object will be used as the Service Tracker Customizer object
and the Serv ice Tracker object will call the Service Tracker Customizer meth-
ods on itself.

5.7.1.3 MethodsaddingService(ServiceReference)

public java.lang.Object addingService(
ServiceReference reference)

Default implementation of the Serv ice Tracker Customizer .adding Service
method.

This method is only called when this Service Tracker object has been con-
structed with a nul l Service Tracker Customizer argument. The default imple-
mentation returns the result of calling get Serv ice , on the Bundle Context
object with which this Serv ice Tracker object was created, passing the speci-
fied Service Reference object.

This method can be overridden to customize the service object to be tracked
for the service being added.

Specified By: addingServ ice(Serv iceReference) in interface Serv iceTrackerCustomizer

Parameters: reference - Reference to service being added to this Service Tracker object.

Returns: The service object to be tracked for the service added to this Service Tracker
object.
112-282 OSGi Service-Platform Release 2

Service Tracker Specification Version 1.1 org.osgi.util.tracker
close()

public synchronized void close() Close this Service Tracker object.

This method should be called when this Service Tracker object should end the
tracking of services.
finalize()

protected void finalize() Properly close this Service Tracker object when finalized. This method calls
the close method to close this Service Tracker object if it has not already been
closed.

Overrides: java.lang.Object.finalize() in class java.lang.Object

Throws: Throwable
getService()

public java.lang.Object getService() Returns a service object for one of the services being tracked by this Service-
Tracker object.

If any services are being tracked, this method returns the result of calling get-
Serv ice(get Service Reference()).

Returns: Service object or nul l if no service is being tracked.
getService(ServiceReference)

public java.lang.Object getService(
ServiceReference reference)

Returns the service object for the specified Service Reference object if the ref-
erenced service is being tracked by this Serv ice Tracker object.

Parameters: reference - Reference to the desired service.

Returns: Service object or nul l if the service referenced by the specified Serv ice-
Reference object is not being tracked.

getServiceReference()

public Serv iceReference
getServiceReference()

Returns a Service Reference object for one of the services being tracked by this
Service Tracker object.

If multiple services are being tracked, the service with the highest ranking (as
specified in its service.ranking property) is returned.

If there is a tie in ranking, the service with the lowest service ID (as specified in
its serv ice. id property); that is, the service that was registered first is returned.

This is the same algorithm used by Bundle Context .get Service Reference .

Returns: Service Reference object or nul l if no service is being tracked.

Since: 1.1
getServiceReferences()

public Serv iceReference[]
getServiceReferences()

Return an array of Service Reference objects for all services being tracked by
this Service Tracker object.

Returns: Array of Service Reference objects or null if no service are being tracked.
getServices()

public java.lang.Object[] getServices() Return an array of service objects for all services being tracked by this Service-
Tracker object.

Returns: Array of service objects or nul l if no service are being tracked.
modifiedService(ServiceReference, Object)

public void modifiedService(
ServiceReference reference,
java.lang.Object service)

Default implementation of the Serv ice Tracker Customizer .modif ied Service
method.
OSGi Service-Platform Release 2 113-282

org.osgi.util.tracker Service Tracker Specification Version 1.1
This method is only called when this Service Tracker object has been con-
structed with a nul l Service Tracker Customizer argument. The default imple-
mentation does nothing.

Specified By: modif iedServ ice(Serv iceReference, Object) in interface ServiceTrackerCus-
tomizer

Parameters: reference - Reference to modified service.

serv ice - The service object for the modified service.
open()

public synchronized void open()
throws java.lang.IllegalStateException

Open this Service Tracker object and begin tracking services.

Services which match the search criteria specified when this Serv ice Tracker
object was created are now tracked by this Serv ice Tracker object.

Throws: java. lang. I l legalStateException - if the Bundle Context object with which this
Service Tracker object was created is no longer valid.
remove(ServiceReference)

public void remove(ServiceReference
reference)

Remove a service from this Service Tracker object. The specified service will be
removed from this Service Tracker object. If the specified service was being
tracked then the Serv ice Tracker Customizer . removed Service method will be
called for that service.

Parameters: reference - Reference to the service to be removed.
removedService(ServiceReference, Object)

public void removedService(
ServiceReference reference,
java.lang.Object object)

Default implementation of the Serv ice Tracker Customizer . removed Service
method.

This method is only called when this Service Tracker object has been con-
structed with a nul l Service Tracker Customizer argument. The default imple-
mentation calls unget Service , on the Bundle Context object with which this
Service Tracker object was created, passing the specified Service Reference
object.

Specified By: removedService(ServiceReference, Object) in interface ServiceTrackerCus-
tomizer

Parameters: reference - Reference to removed service.

serv ice - The service object for the removed service.
size()

public int size() Return the number of services being tracked by this Serv ice Tracker object.

Returns: Number of services being tracked.
waitForService(long)

public java.lang.Object waitForService(
long timeout)

Wait for at least one service to be tracked by this Service Tracker object.

It is strongly recommended that wait For Service is not used during the calling
of the Bundle Act ivator methods. Bundle Act ivator methods are expected to
complete in a short period of time.

Parameters: t imeout - time interval in milliseconds to wait. If zero, the method will wait
indefinately.

Returns: Returns the result of get Serv ice() .

Throws: InterruptedExcept ion
114-282 OSGi Service-Platform Release 2

Service Tracker Specification Version 1.1 org.osgi.util.tracker
5.7.2 ServiceTrackerCustomizer
Syntaxpublic interface

ServiceTrackerCustomizer

All Known Imple-
menting Classes:

ServiceTracker

DescriptionThe Serv ice Tracker Customizer interface allows a Service Tracker object to
customize the service objects that are tracked. The Serv ice Tracker Customizer
object is called when a service is being added to the Service Tracker object. The
Service Tracker Customizer can then return an object for the tracked service.
The Serv ice Tracker Customizer object is also called when a tracked service is
modified or has been removed from the Serv ice Tracker object.

5.7.2.1 MethodsaddingService(ServiceReference)

public java.lang.Object addingService(
ServiceReference reference)

A service is being added to the Serv ice Tracker object.

This method is called before a service which matched the search parameters of
the Service Tracker object is added to it. This method should return the service
object to be tracked for this Service Reference object. The returned service
object is stored in the Serv ice Tracker object and is available from the get-
Serv ice and get Services methods.

Parameters: reference - Reference to service being added to the Service Tracker object.

Returns: The service object to be tracked for the Service Reference object or nul l if the
Service Reference object should not be tracked.
modifiedService(ServiceReference, Object)

public void modifiedService(
ServiceReference reference,
java.lang.Object service)

A service tracked by the Service Tracker object has been modified.

This method is called when a service being tracked by the Serv ice Tracker
object has had it properties modified.

Parameters: reference - Reference to service that has been modified.

serv ice - The service object for the modified service.
removedService(ServiceReference, Object)

public void removedService(
ServiceReference reference,
java.lang.Object service)

A service tracked by the Service Tracker object has been removed.

This method is called after a service is no longer being tracked by the Serv ice-
Tracker object.

Parameters: reference - Reference to service that has been removed.

serv ice - The service object for the removed service.
OSGi Service-Platform Release 2 115-282

org.osgi.util.tracker Service Tracker Specification Version 1.1
116-282 OSGi Service-Platform Release 2

Log Service Specification Version 1.1 Introduction
6 Log Service Specification
Version 1.1

6.1 Introduction
The Log Service provides a general purpose message logger for the OSGi envi-
ronment. It consists of two services, one for logging information and another
for retrieving log information from the past or as they are recorded.

This specification defines the methods and semantics of interfaces which bun-
dle developers can use to log entries and to get log entries.

Bundles can use the Log Service to log interesting information for the operator.
Other bundles, oriented toward management of the environment, can use the
Log Reader service to retrieve Log Entry objects that happened recently or to
receive Log Entry objects as they are logged by other bundles.

6.1.1 Entities
• LogServ ice – The service interface that allows a bundle to log information.

The information can include a message, a level, an exception, a ServiceRef-
erence object, and a Bundle object.

• LogEntry - An interface that allows access to a log entry in the log. It
includes all the information that can be logged through the Log Service and
an additional time stamp.

• LogReaderService - A service interface that allows access to a list of recent
LogEntry objects, and allows the registration of a LogListener object that
receives LogEntry objects as they are created.

• LogListener - The interface for the listener to LogEntry objects. Must be reg-
istered with the Log Reader Service.
OSGi Service-Platform Release 2 117-282

The Log Service Interface Log Service Specification Version 1.1
Figure 14 Log Service Class Diagram org.osgi.service.log package

6.2 The Log Service Interface
The LogService interface allows bundle developers to log messages that can be
distributed to other bundles, which in turn can forward the logged entries to a
file system, remote systems, or some other destination.

The LogServ ice interface allows the bundle developer to:

• Specify a message and/or exception to be logged.
• Supply a log level representing the severity of the message being logged.
• Specify the Service associated with the log requests.

By obtaining a LogServ ice object from the Framework service registry, a bun-
dle can start logging messages to it by calling one of the LogService methods. A
Log Service object can log any message; it is primarily intended, however, for
reporting events and error conditions.

The LogServ ice interface defines these methods for logging messages:

• log(int , Str ing) – This method logs a simple message at a given log level.
• log(int , Str ing, Throwable) – This method logs a message with an

exception at a given log level.
• log(Serv iceReference, int , String) – This method logs a message associated

with a specific service.
• log(Serv iceReference, int , Str ing, Throwable) – This method logs a

message with an exception associated with a specific service.

While it is possible for a bundle to call one of the log methods without provid-
ing a Serv iceReference object, it is recommended that the caller supply the
ServiceReference argument whenever appropriate, because it provides impor-
tant context information to the operator in case of problems.

<<service>>
LogService

<<service>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

or register
listener

Bundle using
Log Service

Bundle using
Log Reader
Service

Log implementation bundle
118-282 OSGi Service-Platform Release 2

Log Service Specification Version 1.1 Log Level and Error Severity
The following example demonstrates the use of a log method to write a mes-
sage into the log.

logService.log(
myServiceReference,
LogService.LOG_INFO,
"myService is up and running"

);

In the example, the myServiceReference parameter identifies the service asso-
ciated with the log request. The specified level, LogService.LOG_INFO , indi-
cates that this message is informational.

The following example code records error conditions as log messages.

try {
FileInputStream fis = new FileInputStream("myFile");
int b;
while ((b = fis.read()) != -1) {

...
}
fis.close();

}
catch (IOException exception) {

logService.log(
myServiceReference,
LogService.LOG_ERROR,
"Cannot access file",
exception);

}

Notice that in addition to the error message, the exception itself is also logged.
Providing this information can significantly simplify problem determination
by the operator.

6.3 Log Level and Error Severity
The log methods expect a log level indicating error severity, which can be used
to filter log messages when they are retrieved. The severity levels are defined in
the LogService interface.

Callers must supply the log levels that they deem appropriate when making
log requests. The following table lists the log levels.

Level Descriptions

LOG_DEBUG Used for problem determination and may be irrelevant to anyone but the bun-
dle developer.

LOG_ERROR Indicates the bundle or service may not be functional. Action should be taken
to correct this situation.

Table 4 Log Levels
OSGi Service-Platform Release 2 119-282

Log Reader Service Log Service Specification Version 1.1
6.4 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log. It is a
service that bundle developers can use to retrieve information contained in
this log, and receive notifications about LogEntry objects while they are cre-
ated through the Log Service.

The size of the log is implementation-specific, and it determines how far into
the past the log entries go. Additionally, not all log entries may be recorded in
the log in order to save space. In particular, LOG_DEBUG log entries may not
be recorded. Note that this rule is implementation-dependent; some imple-
mentations may allow a configurable policy to ignore certain LogEntry object
types.

The LogReaderService interface defines these methods for retrieving log
entries.

• getLog() – This method retrieves past log entries as an enumeration with
the most recent entry first.

• addLogL istener(LogListener) – This method is used to subscribe to the Log
Reader Service in order to receive log messages as they occur. Unlike the
previously recorded log entries, all log messages must be sent to subscribers
of the Log Reader Service as they are recorded.
A subscriber to the Log Reader Service must implement the LogL istener
interface.
After a subscription to Log Reader Service has been started, the subscriber's
LogListener . logged method must be called with a Log Entry object for the
message, each time a message is logged.

The LogListener interface defines this method.

• logged(LogEntry) – This method is called for each Log Entry object created.
A Log Reader Service implementation must not filter entries, as it is allowed
to do for its log. A LogListener object should see all LogEntry objects that are
created.

6.4.1 Log Entry
The LogEntry interface abstracts a log entry. It is a record of the information
that was passed when an event was logged, and consists of a super set of infor-
mation which can be passed through the LogService methods. The LogEntry
interface defines these methods to retrieve information related to Log Entry
objects:

• getBundle() – This method returns the bundle related to a Log Entry object.

LOG_INFO May be the result of any change in the bundle or service and does not indicate
a problem.

LOG_WARNING A bundle or service is still functioning but may experience problems in the
future because of the warning condition.

Level Descriptions

Table 4 Log Levels
120-282 OSGi Service-Platform Release 2

Log Service Specification Version 1.1 Mapping of Events
• getExcept ion() – This method returns the exception related to a Log Entry
object.

• getLevel() – This method returns the severity level related to a Log Entry
object.

• getMessage() – This method returns the message related to a Log Entry
object.

• getServiceReference() –This method returns the ServiceReference of the
service related to a Log Entry object.

• getT ime() – This method returns the time that the log entry was created
according to the system time.

6.5 Mapping of Events
Implementations of a Log Service must log Framework-generated events and
map the information to a LogEntry object in a consistent way. Framework
events must be treated exactly the same as other logged events and distributed
to all LogListener objects that are associated with the Log Reader Service. The
following sections define the mapping for the three different event types.

6.5.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to Table 5, “Mapping
of Bundle Events to Log Entries,” on page 121.

6.5.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to Table 6, “Mapping
of Service Events to Log Entries,” on page 122..

6.5.3 Framework Events Mapping
The Framework can generate two distinctly different events. The first is the
STARTED event that indicates that the Framework has finished initializing.
This must be done according to Table 7, “Mapping of Framework STARTED
Event to Log Entries,” on page 122.

Log Entry method Information about Bundle Event

getLevel() LOG_INFO

getBundle() Identifies the bundle to which the event happened: in other words,
the bundle that was installed, started, stopped, updated, or unin-
stalled. This identification is obtained by calling getBundle() on the
BundleEvent object.

getExcept ion() nul l

getServiceReference() nul l

getMessage() The message depends on the event type:

• INSTALLED – "BundleEvent INSTALLED"
• STARTED – "BundleEvent STARTED"
• STOPPED – "BundleEvent STOPPED"
• UPDATED – "BundleEvent UPDATED"
• UNINSTALLED – "BundleEvent UNINSTALLED"

Table 5 Mapping of Bundle Events to Log Entries
OSGi Service-Platform Release 2 121-282

Mapping of Events Log Service Specification Version 1.1
The second event is the ERROR event and indicates that some error occurred.
This even is mapped according to Table 8, “Mapping of Framework ERROR
Event to Log Entries,” on page 122.

Log Entry method Information about Service Event

getLevel() LOG_INFO , except for the ServiceEvent.MODIFIED event. This event happens
frequently and contains relatively little information. It is therefore logged
with a level of LOG_DEBUG .

getBundle() Identifies the bundle that registered the service associated with this event. It is
obtained by calling getServiceReference().getBundle() on the Serv iceEvent
object.

getExcept ion() nul l

getServiceReference() Identifies a reference to the service associated with the event. It is obtained by
calling getServiceReference() on the ServiceEvent object.

getMessage() This message depends on the actual event type. The messages are mapped as
follows:

• REGISTERED – "ServiceEvent REGISTERED"
• MODIFIED – "ServiceEvent MODIFIED"
• UNREGISTERING – "ServiceEvent UNREGISTERING"

Table 6 Mapping of Service Events to Log Entries

Log Entry method Information about Framework STARTED event

getLevel() LOG_INFO

getBundle() Identifies the system bundle. It is obtained by calling getBundle() on the
FrameworkEvent object.

getExcept ion() nul l

getServiceReference() nul l

getMessage() "FrameworkEvent STARTED"

Table 7 Mapping of Framework STARTED Event to Log Entries

Log Entry method Information about Framework ERROR event

getLevel() LOG_ERROR

getBundle() Identifies the bundle associated with the error. It is obtained by calling get-
Bundle() on the FrameworkEvent object.

getException() Identifies the exception associated with the error. It is obtained by calling
getThrowable() on the FrameworkEvent object.

getServiceReference() nul l

getMessage() "FrameworkEvent ERROR"

Table 8 Mapping of Framework ERROR Event to Log Entries
122-282 OSGi Service-Platform Release 2

Log Service Specification Version 1.1 Security
6.6 Security
The Log Service should only be implemented by trusted bundles. This bundle
requires ServicePermiss ion[REGISTER] for the LogService and LogReaderSer-
vice interfaces. Virtually all bundles should get ServicePermiss ion[GET] for
these interfaces.

6.7 Changes Since Release 1.0
• The change to the Log Service 1.1 is to log ServiceEvent.MODIFIED at

LogServ ice.LOG_DEBUG level instead of LOG_INFO level.
• The message text of the different Framework events is defined.

Package
6.8 org.osgi.service.log

DescriptionThe OSGi Log Service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.log; specification-
version=1.1

6.8.1 LogEntry
Syntaxpublic interface LogEntry DescriptionProvides methods to access the information contained in an individual Log
Service log entry.

A Log Entry object may be acquired from the Log Reader Service.get Log
method or by registering a Log Listener object.

See Also: getLog() , LogListener

6.8.1.1 MethodsgetBundle()

public Bundle getBundle() Returns the bundle that created this Log Entry object.

Returns: The bundle that created this Log Entry object; null if no bundle is associated
with this Log Entry object.
getException()

public java.lang.Throwable getException() Returns the exception object associated with this Log Entry object.

Class Summary

Interfaces

LogEntry Provides methods to access the information contained in an individual Log
Service log entry.

LogListener Subscribes to Log Entry objects from the Log Reader Service .

LogReaderServ ice Provides methods to retrieve Log Entry objects from the log.

LogServ ice Provides methods for bundles to write messages to the log.
OSGi Service-Platform Release 2 123-282

org.osgi.service.log Log Service Specification Version 1.1
Returns: Throwable object of the exception associated with this Log Entry ; nul l if no
exception is associated with this Log Entry objcet.
getLevel()

public int getLevel() Returns the severity level of this Log Entry object.

This is one of the severity levels defined by the Log Service interface.

Returns: Severity level of this Log Entry object.

See Also: LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
getMessage()

public java.lang.String getMessage() Returns the human readable message associated with this Log Entry object.

Returns: Str ing containing the message associated with this Log Entry object.
getServiceReference()

public Serv iceReference
getServiceReference()

Returns the Service Reference object for the service associated with this Log-
Entry object.

Returns: Service Reference object for the service associated with this Log Entry object;
nul l if no Service Reference object was provided.
getTime()

public long getTime() Returns the value of current Time Mil l is() at the time this Log Entry object was
created.

Returns: The system time in milliseconds when this Log Entry object was created.

See Also: System.currentTimeMillis()

6.8.2 LogListener
Syntaxpublic interface LogListener extends

java.util.EventListener

All Superinter-
faces:

java.util.EventListener

DescriptionSubscribes to Log Entry objects from the Log Reader Service .

A Log L istener object may be registered with the Log Reader Service using the
Log Reader Service.add Log L istener method. After the listener is registered,
the logged method will be called for each Log Entry object created. The Log-
L istener object may be unregistered by calling the Log Reader Service.remove-
Log Listener method.

See Also: LogReaderService , LogEntry , addLogListener(LogListener) , removeLogLis-
tener(LogListener)

6.8.2.1 Methodslogged(LogEntry)

public void logged(LogEntry entry) Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as
possible.

Parameters: entry - A Log Entry object containing log information.

See Also: LogEntry

6.8.3 LogReaderService
Syntaxpublic interface LogReaderService DescriptionProvides methods to retrieve Log Entry objects from the log.

There are two ways to retrieve Log Entry objects:
124-282 OSGi Service-Platform Release 2

Log Service Specification Version 1.1 org.osgi.service.log
• The primary way to retrieve Log Entry objects is to register a Log Listener
object whose Log Listener . logged method will be called for each entry
added to the log.

• To retrieve past Log Entry objects, the get Log method can be called which
will return an Enumerat ion of all Log Entry objects in the log.

See Also: LogEntry , LogListener , logged(LogEntry)

6.8.3.1 MethodsaddLogListener(LogListener)

public void addLogListener(LogL istener
listener)

Subscribes to Log Entry objects.

This method registers a Log Listener object with the Log Reader Service. The
Log L istener. logged(Log Entry) method will be called for each Log Entry object
placed into the log.

When a bundle which registers a Log Listener object is stopped or otherwise
releases the Log Reader Service, the Log Reader Service must remove all of the
bundle’s listeners.

Parameters: l i stener - A Log Listener object to register; the Log Listener object is used to
receive Log Entry objects.

See Also: LogListener , LogEntry , logged(LogEntry)
getLog()

public java.util.Enumeration getLog() Returns an Enumerat ion of all Log Entry objects in the log.

Each element of the enumeration is a Log Entry object, ordered with the most
recent entry first. Whether the enumeration is of all Log Entry objects since the
Log Service was started or some recent past is implementation-specific. Also
implementation-specific is whether informational and debug Log Entry
objects are included in the enumeration.
removeLogListener(LogListener)

public void removeLogListener(
LogListener listener)

Unsubscribes to Log Entry objects.

This method unregisters a Log L istener object from the Log Reader Service.

Parameters: l i stener - A Log Listener object to unregister.

See Also: LogListener

6.8.4 LogService
Syntaxpublic interface LogService DescriptionProvides methods for bundles to write messages to the log.

Log Serv ice methods are provided to log messages; optionally with a Serv ice-
Reference object or an exception.

Bundles must log messages in the OSGi environment with a severity level
according to the following hierarchy:

1. LOG_ERROR

2. LOG_WARNING

3. LOG_INFO

4. LOG_DEBUG

6.8.4.1 FieldsLOG_DEBUG

public static final int LOG_DEBUG A debugging message (Value 4).
OSGi Service-Platform Release 2 125-282

org.osgi.service.log Log Service Specification Version 1.1
This log entry is used for problem determination and may be irrelevant to any-
one but the bundle developer.
LOG_ERROR

public static final int LOG_ERROR An error message (Value 1).

This log entry indicates the bundle or service may not be functional.
LOG_INFO

public static final int LOG_INFO An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and
does not indicate a problem.
LOG_WARNING

public static final int LOG_WARNING A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may experi-
ence problems in the future because of the warning condition.

6.8.4.2 Methodslog(int, String)

public void log(int level, java.lang.String
message)

Logs a message.

The Serv ice Reference field and the Throwable field of the Log Entry object
will be set to nul l.

Parameters: level - The severity of the message; one of the four defined severities.

message - Human readable string describing the condition.

See Also: LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
log(int, String, Throwable)

public void log(int level, java.lang.String
message, java.lang.Throwable
exception)

Logs a message with an exception.

The Serv ice Reference field of the Log Entry object will be set to nul l .

Parameters: level - The severity of the message; one of the four defined severities.

message - The human readable string describing the condition.

exception - The exception that reflects the condition.

See Also: LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
log(ServiceReference, int, String)

public void log(ServiceReference sr, int
level, java.lang.String message)

Logs a message associated with a specific Service Reference object.

The Throwable field of the Log Entry will be set to nul l .

Parameters: sr - The Service Reference object of the service that this message is associated
with.

level - The severity of the message; one of the four defined severities.

message - Human readable string describing the condition.

See Also: LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
log(ServiceReference, int, String, Throwable)

public void log(ServiceReference sr, int
level, java.lang.String message,
java.lang.Throwable exception)

Logs a message with an exception associated and a Service Reference object.

Parameters: sr - The Service Reference object of the service that this message is associated
with.
126-282 OSGi Service-Platform Release 2

Log Service Specification Version 1.1 org.osgi.service.log
level - The severity of the message; one of the four defined severities.

message - Human readable string describing the condition.

exception - The exception that reflects the condition.

See Also: LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
OSGi Service-Platform Release 2 127-282

org.osgi.service.log Log Service Specification Version 1.1
128-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 Introduction
7 Http Service Specification
Version 1.1

7.1 Introduction
An OSGi environment normally provides users with access to services on the
Internet and other networks. This access allows users to remotely retrieve
information from, and send control to, services in an OSGi environment using
a standard web browser.

Bundle developers typically need to develop communication and user-inter-
face solutions for standard technologies such as HTTP, HTML, XML, and serv-
lets.

The Http Service supports two standard techniques for this purpose:

• Servlets – A servlet is a Java object which implements the Java Servlet API.
Registering a servlet in the Framework gives it control over some part of the
Http Service URI namespace.

• Resources – Registering a resource allows HTML files, image files, and other
static resources to be made visible in the Http Service URI namespace by the
requesting bundle.

Implementations of the Http Service can be based on:

• [13] HTTP 1.0 Specification RFC-1945
• [14] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols if
these protocols can conform to the semantics of the javax.serv let API. This
additional support is necessary because the Http Service is closely related to
[15] Java Servlet Technology. Http Service implementations must support at
least version 2.1 of the Java Servlet API.

7.1.1 Entities
This specification defines the following interfaces which a bundle developer
can implement collectively as an Http Service or use individually:

• HttpContext – Allows bundles to provide information for a servlet or
resource registration.

• HttpService – Allows other bundles in the Framework to dynamically reg-
ister and unregister resources and servlets into the Http Service URI
namespace.

• NamespaceException – Is thrown to indicate an error with the caller's
request to register a servlet or resources into the Http Service URI
namespace.
OSGi Service-Platform Release 2 129-282

Registering Servlets Http Service Specification Version 1.1
Figure 15 Http Service Overview Diagram

7.2 Registering Servlets
javax.serv let .Servlet objects can be registered with the Http Service by using
the HttpService interface. For this purpose, the HttpService interface defines
the method registerServ let(Str ing, Servlet , Dict ionary , HttpContext) .

For example, if the Http Service implementation is listening to port 80 on the
machine www.acme.com and the Serv let object is registered with the name "/
serv let" , then the Servlet object’s serv ice method is called when the following
URL is used from a web browser:

http://www.acme.com/servlet?name=bugs

All Servlet objects and resource registrations share the same namespace. If an
attempt is made to register a resource or Serv let object under the same name
as a currently registered resource or Serv let object, a NameSpaceException is
thrown. See Mapping HTTP Requests to Servlet and Resource Registrations on page
134 for more information about the handling of the Http Service namespace.

Each Serv let registration must be accompanied with an HttpContext object.
This object provides the handling of resources, media typing, and a method to
handle authentication of remote requests. See Authentication on page 137.

For convenience, a default HttpContext object is provided by the Http Service
and can be obtained with createDefaultHttpContext() . Passing a nul l parame-
ter to the registration method achieves the same effect.

<<service>>
HttpService

javax.servlet.
Servlet

javax.servlet.http
HttpServlet
Request

javax.servlet.http
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Namespace
alias

Bundle implementing
Http Service

Bundle using
Http Service

NameSpace
Exception
130-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 Registering Servlets
Servlet objects require a Serv letContext object. This object provides a number
of functions to access the Http Service Java Servlet environment. It is created
by the implementation of the Http Service for each unique HttpContext object
with which a Serv let object is registered. Thus, Servlet objects registered with
the same HttpContext object must also share the same ServletContext object.

Servlet objects are initialized by the Http Service when they are registered and
bound to that specific Http Service. The initialization is done by calling the
Servlet object’s Servlet . in it(Serv letConfig) method. The Serv letConf ig
parameter provides access to the initialization parameters specified when the
Servlet object was registered.

Therefore, the same Servlet instance must not be reused for registration with
another Http Service, nor can it be registered under multiple names. Unique
instances are required for each registration.

The following example code demonstrates the use of the registerServ let
method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
String name = "<not set>";

public void init(ServletConfig config) {
this.name = (String)

config.getInitParameter("name");
}

public void doGet(
HttpServletRequest req,
HttpServletResponse rsp

) throws IOException {
rsp.setContentType("text/plain");
req.getPrintWriter().println(this.name);

}
};

HttpService.registerServlet(
"/servletAlias",
myServlet,
initparams,
null // use default context

);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
HttpService.unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called
OSGi Service-Platform Release 2 131-282

Registering Resources Http Service Specification Version 1.1
The example registers the servlet, myServlet , at alias: /serv letAl ias . Future
requests for http://www.acme.com:80/servletAl ias , maps to the servlet,
myServlet , whose service method is called to process the request. (The serv ice
method is called in the HttpServ let base class and dispatched to a doGet ,
doPut , doPost , doOptions , doTrace or doDelete call depending on the HTTP
request method used.)

7.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies,
applets, and the like. Resources do not require any handling from the bundle.
They are transferred directly from their source, usually the JAR file that con-
tains the code for the bundle, to the requestor using HTTP.

Resources could be handled by Servlet objects as explained in Registering Serv-
lets on page 130. Transferring a resource over HTTP, however, would require
very similar Servlet objects for each bundle. To prevent this redundancy,
resources can be registered directly with the Http Service via the HttpServ ice
interface. This HttpService interface defines the registerResources(String,
Str ing, HttpContext)method for registering a resource into the Http Service
URI namespace.

The first parameter is the external alias under which the resource is registered
with the Http Service. The second parameter is an internal prefix to map this
resource to the bundle’s namespace. When a request comes in, the HttpSer-
vice object must remove the external alias from the URI and replace it with the
internal prefix, and then call the getResource(Str ing) method with this new
name on the associated HttpContext object. The HttpContext object is further
used to get the MIME type of the resource and to authenticate the request.

Resources are returned as a java.net .URL object. The Http Service must read
from this URL object and transfer the content to the initiator of the HTTP
request.

This return type was chosen because it matches the return type of the
java. lang.Class .getResource(Str ing resource) method. This method can
retrieve resources directly from the same place as the one from which the class
was loaded – often a package directory in the JAR file of the bundle. This
method makes it very convenient to retrieve resources from the bundle that
are contained in the package.
132-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 Registering Resources
The following example code demonstrates the use of the register
Resources method:

package com.acme;
...
HttpContext context = new HttpContext() {

public boolean handleSecurity(
HttpServletRequest request,

 HttpServletResponse response
) throws IOException {

return true;
}

public URL getResource(String name) {
return getClass().getResource(name);

}

public String getMimeType(String name) {
return null;

}
};

httpService.registerResources (
"/files",
"www",
context

);
...
httpService.unregister("/files");

This example registers the alias, / f i les , on the Http Service. Requests for
resources below this name space are transferred to the HttpContext object
with an internal name of www/<name> . This example uses the Class.get
Resource(String) method. Because the internal name does not start with a
"/", it must map to a resource in the "com/acme/www" directory of the JAR file.
If the internal name did start with a "/", the package name would not have to be
prefixed and the JAR file would be searched from the root. Consult the
java. lang.Class .getResource(Str ing) method for more information.

In the example, a request for http://www.acme.com/f i les/myf i le .html must
thus map to the name "/com/acme/www/myfi le .html" which is in the bun-
dle’s JAR file.

More sophisticated implementations of the getResource(Str ing) method
could filter the input name, restricting the resources that may be returned or
map the input name onto the file system (if the security implications of this
choice would be acceptable).
OSGi Service-Platform Release 2 133-282

Mapping HTTP Requests to Servlet and Resource Registrations Http Service Specification Version 1.1
Alternatively, the resource registration could have used a default HttpContext
object, as demonstrated in the following call to registerResources :

httpService.registerResources(
"/files",
"/com/acme/www",
null

);

In this case, the Http Service implementation would call the
createDefaultHttpContext() method and use its return value as the HttpCon-
text argument for the registerResources method. The default implementation
must map the resource request to the bundle’s resource, using
Bundle.getResource(String) . In the case of the previous example, however,
the internal name must now specify the full path to the directory containing
the resource files in the JAR file; no automatic prefixing of the package name is
done.

The getMime(Str ing) implementation of the default HttpContext object
should return a reasonable mapping. Its handleSecur ity(HttpServ let
Request ,HttpServ letResponse) may implement an authentication mecha-
nism that is implementation-dependent.

7.4 Mapping HTTP Requests to Servlet and
Resource Registrations
When an HTTP request comes in from a client, the Http Service checks to see if
the requested URI matches any registered aliases. A URI matches only if the
path part of the URI is exactly the same string; matching is case sensitive.

If it does match, then there is a matching registration.

• If the registration corresponds to a servlet, the authorization is verified by
calling the handleSecur ity method of the associated HttpContext object (
see Authentication on page 137). If the request is authorized, the servlet must
be called by its serv ice method to complete the HTTP request.

• If the registration corresponds to a resource, the authorization is verified by
calling the handleSecur ity method of the associated HttpContext object (
see Authentication on page 137). If the request is authorized, a target resource
name is constructed by substituting the alias name from the registration
with the internal name from the registration.
The target resource name must be passed to the getResource method of the
associated HttpContext object.
If the returned URL object is not nul l , the Http Service must return the con-
tents of the URL to the client completing the HTTP request. The translated
target name (as opposed to the original requested URI) must also be used as
the argument to HttpContext .getMimeType .
If the returned URL object is nul l , the Http Service continues as if there was
no match.

• If there is no match, the Http Service must attempt to match substrings of
the requested URI to registered aliases. The substrings of the requested URI
are selected by removing the last "/ " and everything to its right.
134-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 The Default Http Context Object
The Http Service must repeat this process until either a match is found or the
substring is an empty string. If the substring is empty and the alias "/ " is regis-
tered, the request is considered to match the alias "/ " . Otherwise the Http Ser-
vice must return HttpServ letResponse.SC_NOT_FOUND(404) to the client.

For example, an HTTP request comes in with a request URI of "/ fudd/bugs/
foo.txt" , and the only registered alias is "/fudd" , a search for "/ fudd/bugs/
foo.txt" , will not match an alias; therefore the Http Service with search for the
alias "/ fudd/bugs" , and the alias "/ fudd" . The latter search will result in a match
and the matched alias registration must be used.

Registrations for identical aliases are not allowed; if a bundle registers the alias
"/ fudd" , and another bundle tries to register the exactly the same alias, the sec-
ond caller must receive a NamespaceException and its resource or servlet
must not be registered. It could, however, register a similar alias – for example,
"/ fudd/bugs" – as long as no other registration for this alias already exists.

The following table shows some examples of the usage of the name space.

7.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple implemen-
tations of the HttpContext interface methods. Alternatively, the example
could have used a default HttpContext object, as demonstrated in the follow-
ing call to registerServ let :

httpService.registerServlet(
"/servletAlias",
myServlet,
initparams,
null

);

In this case, the Http Service implementation must call createDefault
HttpContext and use the return value as the HttpContext argument.

Alias Internal Name URI getResource Parameter

/ (empty str ing) /fudd/bugs fudd/bugs

/ /fudd /bugs /fudd/bugs

/fudd (empty str ing) /fudd/bugs /bugs

/fudd fudd /fudd/bugs fudd/bugs

/fudd /tmp /fudd/bugs /tmp/bugs

/fudd /tmp /fudd/bugs/x.g i f /tmp/bugs/x.g i f

/ fudd/bugs tmp /fudd/bugs/x.g i f tmp/x.g i f

Table 9 Examples of Namespace Mapping
OSGi Service-Platform Release 2 135-282

MIME Types Http Service Specification Version 1.1
If the default HttpContext object, and thus the Serv letContext object, is to be
shared by multiple servlet registrations, the previous servlet registration
example code needs to be changed to use the same default HttpContext object.
This change is demonstrated in the next example:

HttpContext defaultContext =
httpService.createDefaultHttpContext();

httpService.registerServlet(
"/servletAlias",
myServlet,
initparams,
defaultContext

);

// defaultContext can be reused
// for further servlet registrations

7.6 MIME Types
MIME (Multipurpose Internet Mail Extension) defines an extensive set of
headers and procedures to encode binary messages in US-ASCII mails. For an
overview of all the related RFCs, consult [16] MIME Multipurpose Internet Mail
Extension.

An import aspect of this extension is the type (file format) mechanism of the
binary messages. The type is defined by a string containing a general category (
text, application, image, audio and video, multipart, and message) followed by
a "/" and a specific media type: for example, "text/html" for HTML formatted
text files. A MIME type string can be followed by further specifiers by separat-
ing a key=value pair with a ’;’. These specifiers can be used, for example, to
define character sets:

text/plan ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined
MIME media types. This list can be found at [17] Assigned MIME Media Types.
MIME media types are extendable, and when any part of the type starts with
the prefix "x-" , it is assumed to be vendor-specific and can be used for testing.
New types can be registered at [18] Registration Procedures for new MIME media
types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header
should contain a MIME media type so that the browser can recognize the type
and format the content correctly.

The source of the data must define the MIME media type for each transfer.
Most operating systems do not support types for files, but use conventions
based on file names: for example, the last part of the file name after the last ".".
This extension is then mapped to a media type via a table.

Implementations of the Http Service should have a reasonable default of map-
ping common extension to media types based on file extensions.
136-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 Authentication
Only the bundle developer, however, knows exactly which files have what
media type. The HttpContext interface can therefore be used to map this
knowledge to the media type. The HttpContext class has the following
method for this: getMimeType(Str ing) .

The implementation of this method should inspect the file name and use its
internal knowledge to map this name to a MIME media type.

Simple implementation can extract the extension and look up this extension
in a table.

Returning nul l from this method allows the Http Service implementation to
use its default mapping mechanism.

7.7 Authentication
The Http Service has separated the authentication and authorization of a
request from the execution of the request. This separation allows bundles to
use available Servlet sub-classes while still providing bundle specific authenti-
cation and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecur ity(HttpServ letRequest , HttpServ letResponse) method on the
HttpContext object that is associated with the request URI. This method con-
trols whether the request is processed in the normal manner or an authentica-
tion error is returned.

If an implementation wants to authenticate the request, it can use the authen-
tication mechanisms of HTTP. See [19] RFC 2617: HTTP Authentication: Basic
and Digest Access Authentication. These mechanisms normally interpret the
headers and decide if the user identity is available, and if it is, whether that
user has authenticated itself correctly.

There are many different ways of authenticating users, and the handleSecur ity
method on the HttpContext object can use whatever method it requires. If the
method returns true , the request must continue to be processed using the
potentially modified HttpServletRequest and HttpServletResponse objects. If
the method returns fa lse , the request must not be processed.

Extension MIME media type Description

. jpg . jpeg image/jpeg JPEG Files

.gi f image/gi f GIF Files

.css text/css Cascading Style Sheet Files

. txt text/pla in Text Files

.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language

.html .html text/html Hyper Text Markup Language

.wbmp image/vnd.wap.wbmp Bitmaps for WAP

Table 10 Sample Extension to MIME Media Mapping
OSGi Service-Platform Release 2 137-282

Authentication Http Service Specification Version 1.1
A common standard for HTTP is the basic authentication scheme that is not
secure when used with HTTP. Basic authentication passes the password in
base 64 encoded strings that are trivial to decode into clear text. Secure trans-
port protocols like HTTPS use SSL to hide this information. With these proto-
cols basic authentication is secure.

Using basic authentication requires the following steps:

• If no Author izat ion header is set in the request, the method should set the
WWW-Authenticate header in the response. This header indicates the
desired authentication mechanism and the realm. As a simple example:
WWW-Authenticate: Basic realm="ACME"
The header should be set with the response object that is given as a parame-
ter to the handleSecur ity method. The handleSecur ity method should set
the status to HttpServ letResponse.SC_UNAUTHORIZED (401) and return
fa lse .

• Secure connections can be verified with the Serv letRequest .
getScheme() method. This method returns, for example, "https" for an SSL
connection. Then the handleSecur ity method can use this and other infor-
mation to decide if the connection’s security level is acceptable. If not, the
handleSecur ity method should set the status to HttpServletRe-
sponse.SC_FORBIDDEN (403) and return fa lse .

• Next, the request must be authenticated. When basic authentication is
used, the Authorizat ion header is available in the request and should be
parsed to find the user and password. See [19] RFC 2617: HTTP Authenti-
cation: Basic and Digest Access Authentication for more information.
If the user cannot be authenticated, the status of the response object should
be set to HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

• The authentication mechanism that is actually used and the identity of the
authenticated user can be of interest to the Serv let object. Therefore, the
implement of the handleSecur ity method should then set this information
in the request object using the ServletRequest .setAttr ibute method. This
specification has defined a number of OSGi-specific attribute names for this
purpose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentication.

A Servlet may retrieve the value of this attribute by calling the HttpServ-
letRequest .getAuthType method. This attribute name is org.osgi .ser-
vice.http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Servlet
may retrieve the value of this attribute by calling the HttpServ letRe-
quest .getRemoteUser method. This attribute name is org .osgi.ser-
vice.http.authenticat ion.remote.user .

• AUTHORIZATION - If a User Admin service is available in the environ-
ment, then the handleSecur ity method should set this attribute with the
Author izat ion object obtained from the User Admin service. Such an
object encapsulates the authentication of its remote user. A Servlet may
retrieve the value of this attribute by calling ServletRequest .getAt-
tr ibute(HttpContext .AUTHORIZATION) . This header name is
org.osgi.serv ice.useradmin.author izat ion .

• Once the request is authenticated and any attributes are set, the handleSe-
cur i ty method should return true . This return indicates to the Http Service
that the request is authorized and processing may continue. If the request is
138-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 Security
for a Servlet, the Http Service must then call the service method on the
Servlet object.

7.8 Security
This section only applies when executing in an OSGi environment which is
enforcing Java permissions.

7.8.1 Accessing Resources in Bundles
The Http Service must be granted AdminPermission so that bundles may use a
default HttpContext object. This is necessary because the implementation of
the default HttpContext object must call Bundle.getResource to access the
resources of a bundle and this method requires the caller to have AdminPer-
miss ion .

Any bundle may access resources in its own bundle by calling Class.getRe-
source . This is a privileged operation. The resulting URL object may then be
passed to the Http Service as the result of a HttpContext .getResource call. No
further permission checks are performed when accessing bundle resource URL
objects so the Http Service does not need to be granted any additional permis-
sions.

7.8.2 Accessing Other Types of Resources
In order to open resources that were not registered using the default HttpCon-
text object, the Http Service must be granted sufficient privileges to access
these resources. For example, if the getResource method of the registered
HttpContext object returns a file URL, the Http Service requires the corre-
sponding Fi lePermiss ion to read the file. Likewise, if the getResource method
of the registered HttpContext object returns an http URL, the Http Service
requires the corresponding SocketPermiss ion to connect to the resource.

This means that, in most cases, Http Service should be a privileged service,
granted sufficient permission to serve any bundle's resources, no matter where
these resources are located. Therefore, the Http Service must capture the
AccessControlContext object of the bundle registering resources or a servlet
and then use the captured AccessControlContext object when accessing
resources returned by the registered HttpContext object. This prevents a bun-
dle from registering resources that it does not have permission to access.

Therefore, the Http Service should follow a scheme like the next example.
When a resource or servlet is registered, it should capture the context.

AccessControlContext acc =
AccessController.getContext();

When a URL returned by the getResource method of the associated HttpCon-
text object is called, the Http Service must do so in a doPriv i leged construct
using the AccessControlContext object of the registering bundle:

doPrivileged(new PrivilegedExceptionAction() {
public Object run() throws Exception {

...
}

}, acc);
OSGi Service-Platform Release 2 139-282

Configuration Properties Http Service Specification Version 1.1
The Http Service must only use the captured AccessControlContext when
accessing resource URL objects. Servlet and HttpContext objects must use a
doPr ivi leged construct in their implementations when performing privileged
operations.

7.9 Configuration Properties
If the Http Service does not have its port values configured through some
other means, the Http Service implementation should use the following prop-
erties to determine the port values upon which to listen.

The following OSGi environment properties are used to specify default HTTP
ports:

• org.osgi.serv ice.http.port – This property specifies the port used for
servlets and resources accessible via HTTP. The default value for this
property is 80.

• org.osgi.serv ice.http.port .secure – This property specifies the port used
for servlets and resources accessible via HTTPS. The default value for this
property is 443.

Package
7.10 org.osgi.service.http

DescriptionThe OSGi Http Service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.http; specification-
version=1.1

7.10.1 HttpContext
Syntaxpublic interface HttpContext DescriptionThis interface defines methods that the Http Service may call to get informa-
tion about a registration.

Class Summary

Interfaces

HttpContext This interface defines methods that the Http Service may call to get informa-
tion about a registration.

HttpServ ice The Http Service allows other bundles in the OSGi environment to dynami-
cally register resources and servlets into the URI namespace of Http Service.

Exceptions

NamespaceException A NamespaceException is thrown to indicate an error with the caller’s request
to register a servlet or resources into the URI namespace of the Http Service.
140-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 org.osgi.service.http
Servlets and resources may be registered with an Http Context object; if no
Http Context object is specified, a default Http Context object is used. Servlets
that are registered using the same Http Context object will share the same
Servlet Context object.

This interface is implemented by users of the Http Serv ice .

7.10.1.1 FieldsAUTHENTICATION_TYPE

public static final java.lang.String
AUTHENTICATION_TYPE

Http Serv let Request attribute specifying the scheme used in authentication.
The value of the attribute can be retrieved by Http Serv let Request .get Auth-
Type . This attribute name is org.osgi .serv ice.http.authenticat ion.type .

Since: 1.1
AUTHORIZATION

public static final java.lang.String
AUTHORIZATION

Http Serv let Request attribute specifying the Author izat ion object obtained
from the org.osgi .service.useradmin.User Admin service. The value of the
attribute can be retrieved by Http Serv let Request .get Attr ibute(Http-
Context .AUTHORIZATION) . This attribute name is org.osgi.service.userad-
min.author izat ion .

Since: 1.1
REMOTE_USER

public static final java.lang.String
REMOTE_USER

Http Serv let Request attribute specifying the name of the authenticated user.
The value of the attribute can be retrieved by Http Serv let Request .get Remote-
User . This attribute name is org.osgi .serv ice.http.authentica-
t ion.remote.user .

Since: 1.1

7.10.1.2 MethodsgetMimeType(String)

public java.lang.String getMimeType(
java.lang.String name)

Maps a name to a MIME type. Called by the Http Service to determine the
MIME type for the name. For servlet registrations, the Http Service will call
this method to support the Serv let Context method get Mime Type . For
resource registrations, the Http Service will call this method to determine the
MIME type for the Content-Type header in the response.

Parameters: name - determine the MIME type for this name.

Returns: MIME type (e.g. text/html) of the name or null to indicate that the Http Service
should determine the MIME type itself.
getResource(String)

public java.net.URL getResource(
java.lang.String name)

Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet regis-
trations, Http Service will call this method to support the Servlet Context
methods get Resource and get Resource As Stream . For resource registrations,
Http Service will call this method to locate the named resource. The context
can control from where resources come. For example, the resource can be
mapped to a file in the bundle’s persistent storage area via bundle Context .get-
Data Fi le(name).to URL() or to a resource in the context’s bundle via get Class(
) .get Resource(name)

Parameters: name - the name of the requested resource

Returns: URL that Http Service can use to read the resource or null if the resource does
not exist.
OSGi Service-Platform Release 2 141-282

org.osgi.service.http Http Service Specification Version 1.1
handleSecurity(HttpServletRequest, HttpServletResponse)

public boolean handleSecurity(
javax.servlet.http.HttpServletRequest
request,
javax.servlet.http.HttpServletResponse
response)

throws java.io.IOException

Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request. This
method controls whether the request is processed in the normal manner or an
error is returned.

If the request requires authentication and the Authorization header in the
request is missing or not acceptable, then this method should set the WWW-
Authenticate header in the response object, set the status in the response
object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP Authen-
tication: Basic and Digest Access Authentication (available at http://www.ietf.org/
rfc/rfc2617.txt).

If the request requires a secure connection and the get Scheme method in the
request does not return ’https’ or some other acceptable secure protocol, then
this method should set the status in the response object to Forbidden(403) and
return fa lse .

When this method returns fa lse , the Http Service will send the response back
to the client, thereby completing the request. When this method returns true ,
the Http Service will proceed with servicing the request.

If the specified request has been authenticated, this method must set the
AUTHENTICATION_TYPE request attribute to the type of authentication used,
and the REMOTE_USER request attribute to the remote user (request attributes
are set using the set Attribute method on the request). If this method does not
perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this
method must set the AUTHORIZATION request attribute to the Author izat ion
object obtained from the org.osgi .serv ice.useradmin.User Admin service.

The servlet responsible for servicing the specified request determines the
authentication type and remote user by calling the get Auth Type and get-
Remote User methods, respectively, on the request.

Parameters: request - the HTTP request

response - the HTTP response

Returns: true if the request should be serviced, fa lse if the request should not be ser-
viced and Http Service will send the response back to the client.

Throws: java. io . IOException - may be thrown by this method. If this occurs, the Http
Service will terminate the request and close the socket.

7.10.2 HttpService
Syntaxpublic interface HttpService DescriptionThe Http Service allows other bundles in the OSGi environment to dynami-
cally register resources and servlets into the URI namespace of Http Service. A
bundle may later unregister its resources or servlets.

See Also: HttpContext

7.10.2.1 MethodscreateDefaultHttpContext()

public HttpContext
createDefaultHttpContext()

Creates a default Http Context for registering servlets or resources with the
HttpService, a new Http Context object is created each time this method is
called.
142-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 org.osgi.service.http
The behavior of the methods on the default Http Context is defined as follows:

get Mime Type

Does not define any customized MIME types for the Content-Type header
in the response, and always returns nul l .

handle Securi ty

Performs implementation-defined authentication on the request.

get Resource

Assumes the named resource is in the context bundle; this method calls the
context bundle’s Bundle.get Resource method, and returns the appropriate
URL to access the resource. On a Java runtime environment that supports
permissions, the Http Service needs to be granted the
org.osgi. f ramework.Admin Permission .

Returns: a default Http Context object.

Since: 1.1
registerResources(String, String, HttpContext)

public void registerResources(
java.lang.String alias, java.lang.String
name, HttpContext context)
throws NamespaceException,
java.lang.IllegalArgumentException

Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the
registration will be mapped. An alias must begin with slash (’/’) and must not
end with slash (’/’), with the exception that an alias of the form “/” is used to
denote the root alias. The name parameter must also not end with slash (’/’).
See the specification text for details on how HTTP requests are mapped to serv-
let and resource registrations.

For example, suppose the resource name /tmp is registered to the alias /files. A
request for /files/foo.txt will map to the resource name /tmp/foo.txt.

httpservice.registerResources(“/files”,
“/tmp”,
context);

The Http Service will call the Http Context argument to map resource names
to URLs and MIME types and to handle security for requests. If the Http-
Context argument is nul l , a default Http Context is used (see createDefaultHt-
tpContext()).

Parameters: alias - name in the URI namespace at which the resources are registered

name - the base name of the resources that will be registered

context - the Http Context object for the registered resources, or nul l if a
default Http Context is to be created and used.

Throws: NamespaceException - if the registration fails because the alias is already in
use.

java. lang. I l legalArgumentExcept ion - if any of the parameters are invalid
OSGi Service-Platform Release 2 143-282

org.osgi.service.http Http Service Specification Version 1.1
registerServlet(String, Servlet, Dictionary, HttpContext)

public void registerServlet(
java.lang.String alias,
javax.servlet.Servlet servlet,
java.util.Dictionary initparams,
HttpContext context)
throws NamespaceException,
javax.servlet.ServletException,
java.lang.IllegalArgumentException

Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the
registration will be mapped.

An alias must begin with slash (’/’) and must not end with slash (’/’), with the
exception that an alias of the form “/” is used to denote the root alias. See the
specification text for details on how HTTP requests are mapped to servlet and
resource registrations.

The Http Service will call the servlet’s ini t method before returning.

httpService.registerServlet(“/myservlet”,
servlet,
initparams,
context);

Servlets registered with the same Http Context object will share the same
Servlet Context . The Http Service will call the context argument to support
the Servlet Context methods get Resource , get Resource As Stream and get-
Mime Type , and to handle security for requests. If the context argument is nul l ,
a default Http Context object is used (see createDefaultHttpContext()).

Parameters: alias - name in the URI namespace at which the servlet is registered

serv let - the servlet object to register

in i tparams - initialization arguments for the servlet or nul l if there are none.
This argument is used by the servlet’s Servlet Config object.

context - the Http Context object for the registered servlet, or nul l if a default
Http Context is to be created and used.

Throws: NamespaceException - if the registration fails because the alias is already in
use.

javax.serv let .ServletException - if the servlet’s in it method throws an excep-
tion, or the given servlet object has already been registered at a different alias.

java. lang. I l legalArgumentExcept ion - if any of the arguments are invalid
unregister(String)

public void unregister(java.lang.String
alias)
throws
java.lang.IllegalArgumentException

Unregisters a previous registration done by registerServlet or register-
Resources.

After this call, the registered alias in the URI namespace will no longer be
available. If the registration was for a servlet, HttpService will call the destroy
method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise
“unget”s the Http Service without calling unregister(String) then HttpService
must automatically unregister the registration. However, if the registration
was for a servlet, the destroy method of the servlet will not be called in this
case since the bundle may be stopped. unregister(Str ing) must be explicitly
called to cause the destroy method of the servlet to be called. This can be done
in the BundleActivator.stop(BundleContext) method of the bundle register-
ing the servlet.

Parameters: alias - name in the URI namespace of the registration to unregister
144-282 OSGi Service-Platform Release 2

Http Service Specification Version 1.1 References
Throws: java. lang. I l legalArgumentExcept ion - if there is no registration for the alias or
the calling bundle was not the bundle which registered the alias.

7.10.3 NamespaceException
Syntaxpublic class NamespaceException extends

java.lang.Exception

All Implemented
Interfaces:

java.io.Serializable

DescriptionA NamespaceException is thrown to indicate an error with the caller’s request
to register a servlet or resources into the URI namespace of the Http Service.
This exception indicates that the requested alias already is in use.

7.10.3.1 ConstructorsNamespaceException(String)

public NamespaceException(
java.lang.String message)

Construct a Namespace Exception object with a detail message.

Parameters: message - the detail message
NamespaceException(String, Throwable)

public NamespaceException(
java.lang.String message,
java.lang.Throwable exception)

Construct a Namespace Exception object with a detail message and a nested
exception.

Parameters: message - the detail message

exception - the nested exception

7.10.3.2 MethodsgetException()

public java.lang.Throwable getException() Returns the nested exception.

Returns: the nested exception or null if there is no nested exception.

7.11 References
[13] HTTP 1.0 Specification RFC-1945

Available at htpp://www.ietf.org/rfc/rfc1945.txt, May 1996

[14] HTTP 1.1 Specification RFC-2616
Available at http://www.ietf.org/rfc/rfc2616.txt, June 1999

[15] Java Servlet Technology
Available at http://java.sun.com/products/servlet/index.html

[16] MIME Multipurpose Internet Mail Extension
Available at http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html

[17] Assigned MIME Media Types
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

[18] Registration Procedures for new MIME media types
Available at http://www.nacs.uci.edu/indiv/ehood/MIME/2048/rfc2048.html

[19] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
Available at http://www.ietf.org/rfc/rfc2617.txt
OSGi Service-Platform Release 2 145-282

References Http Service Specification Version 1.1
146-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Introduction
8 Device Access Specification
Version 1.1

8.1 Introduction
A service platform is a meeting point for services and devices from many dif-
ferent vendors: a meeting point where users add and cancel service subscrip-
tions, newly installed services find their corresponding input and output
devices, and device drivers connect to their hardware.

In an OSGi environment, these activities will dynamically take place while the
Framework is running. Technologies such as USB and IEEE 1394 explicitly
support plugging and unplugging devices at any time, and wireless technolo-
gies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi environment,
particularly those relating to devices. When all of the possible services and
device requirements are factored in, each OSGi environment will be unique.
Therefore, automated mechanisms are needed that can be extended and cus-
tomized, in order to minimize the configuration needs of the OSGi environ-
ment.

The Device Access specification supports the coordination of automatic detec-
tion and attachment of existing devices on an OSGi environment, facilitates
hot-plugging and -unplugging of new devices, and downloads and installs
device drivers on demand.

This specification, however, deliberately does not prescribe any particular
device or network technology, and mentioned technologies are used as exam-
ples only. Nor does it specify a particular device discovery method. Rather, this
specification focuses on the attachment of devices supplied by different ven-
dors. It emphasizes the development of standardized device interfaces to be
defined in device categories, although no such device categories are defined in
this specification.

8.1.1 Essentials
• Embedded Devices – OSGi bundles will likely run in embedded devices. This

environment implies limited possibility for user interaction, and low-end
devices will probably have resource limitations.

• Remote Administration – OSGi environments s must support administration
by a remote service provider.

• Vendor Neutrality – OSGi-compliant driver bundles will be supplied by dif-
ferent vendors; each driver bundle must be well-defined, documented, and
replaceable.

• Continuous Operation – OSGi environments will be running for extended
periods without being restarted, possibly continuously, requiring stable
operation and stable resource consumption.

• Dynamic Updates – As much as possible, driver bundles must be individually
replaceable without affecting unrelated bundles. In particular, the process
OSGi Service-Platform Release 2 147-282

Introduction Device Access Specification Version 1.1
of updating a bundle should not require a restart of the whole OSGi envi-
ronment or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementa-
tions in order for it to be OSGi-compliant. Implementations must support the
following capabilities:

• Hot-Plugging – Plugging and unplugging of devices at any time if the under-
lying hardware and drivers allow it.

• Legacy Systems – Device technologies which do not implement the auto-
matic detection of plugged and unplugged devices.

• Dynamic Device Driver Loading – Loading new driver bundles on demand
with no prior device-specific knowledge of the Device service.

• Multiple Device Representations – Devices to be accessed from multiple levels
of abstraction.

• Deep Trees – Connections of devices in a tree of mixed network technologies
of arbitrary depth.

• Topology Independence – Separation of the interfaces of a device from where
and how it is attached.

• Complex Devices – Multifunction devices and devices that have multiple
configurations.

8.1.2 Operation
This specification defines the behavior of a device manager (which is not a ser-
vice as might be expected). This device manager detects registration of Device
services and is responsible for associating these devices with an appropriate
Driver service. This done with the help of Driver Locator services and the
Driver Selector service that allow a device manager to find a Driver bundle and
installe it.

8.1.3 Entities
The main entities of the Device Access specification are:

• Device Manager – The bundle that controls the initiation of the attachment
process behind the scenes.

• Device Category – Defines how a Driver service and a Device service can
cooperate.

• Driver – Competes for attaching Device services of its recognized device cat-
egory. See Driver Services on page 154.

• Device – A representation of a physical device or other entity that can be
attached by a Driver service. See Device Services on page 149.

• DriverLocator – Assistant in locating bundles that provide a Driver service.
See Driver Locator Service on page 160.

• DriverSelector – Assistant in selecting which Driver service is best suited to a
Device service. See The Driver Selector Service on page 163.

Figure 16 show the classes and their relationships.
148-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Device Services
Figure 16 Device Access Class Overview

8.2 Device Services
A Device service represents some form of a device. It can represent a hardware
device, but that is not a requirement. Device services differ widely: some repre-
sent individual physical devices and others represent complete networks. Sev-
eral Device services can even simultaneously represent the same physical
device at different levels of abstraction. For example:

• A USB network.
• A device attached on the USB network.
• The same device recognized as a USB to Ethernet bridge.
• A device discovered on the Ethernet using Salutation.
• The same device recognized as a simple printer.
• The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB mouse
can be considered as:

• A USB device which delivers information over the USB bus.

Device Manager
impl

Device
or Device_
Category set

<<service>>
Driver
Locator

<<service>>
Driver
Selector

a Driver impl

<<service>>
Driver

a Driver
Locator impl

<<interface>>
Match

a Driver
Selector impl

a Device impl
0..n1

1

1

1

0..n

listens to all
device registrations

collects all drivers
and matches them
to devices

0..n

1

attaches device and
possible refines 0..n

0,1

0..n

1 1

0,1

 driver located by

associates
driver with

match value
for device

refines or uses external

best driver

device driver
bundle

Driver Selector
bundle

Driver Locator
bundle

device manager

downloads
a bundle1

1

(provided by application or
vendor specific)

(provided by framework vendor)

(provided by operator)

selected by
OSGi Service-Platform Release 2 149-282

Device Services Device Access Specification Version 1.1
• A mouse device which delivers x and y coordinates and information about
the state of its buttons.

Each representation has specific implications:

• That a particular device is a mouse is irrelevant to an application which
provides management of USB devices.

• That a mouse is attached to a USB bus or a serial port would be inconse-
quential to applications that respond to mouse-like input.

Device services must belong to a defined device category, or else they can
implement a generic service which models a particular device, independent of
its underlying technology. Examples of this type of implementation could be a
Sensor or Actuator service.

A device category specifies the methods to communicate with a Device service
and enables interoperability between bundles that are based on the same
underlying technology. Generic Device services will allow interoperability
between bundles that are not coupled to specific device technologies.

For example, a device category is required for the USB, so that Driver bundles
can be written that communicate to the devices that are attached to the USB. If
a printer is attached, it should also be available as a generic Printer service
defined in a Printer service specification, indistinguishable from such a Printer
service that is attached to a parallel port. Generic categories, such as a Printer
service, should also be described in a Device Category.

It is expected that most Device service objects will actually represent a physi-
cal device in some form, but that is not a requirement of this specification. A
Device service is represented as a normal service in the OSGi Framework and
all coordination and activities are performed upon Framework services. This
specification does not limit a bundle developer from using Framework mecha-
nisms for services that are not related to physical devices.

8.2.1 Device Service Registration
A Device service is defined as a normal service registered with the Framework
that either:

• Registers a service object under the interface org.osgi .serv ice.Device with
the Framework, or

• Sets the DEVICE_CATEGORY property in the registration. The value of
DEVICE_CATEGORY is an array of String objects of all the device categories
that the device belongs to. These strings are defined in the associated device
category.

If this document mentions a Device service, it is meant to refer to services reg-
istered with the name org.osgi.serv ice.device.Device or services registered
with the DEVICE_CATEGORY property set.

When a Device service is registered, additional properties may be set that
describe the device to the device manager and potentially to the end users. The
following properties have their semantics defined in this specification:

• DEVICE_CATEGORY – A marker property indicating that this service must
be regarded as a Device service by the device manager. Its value is of type
String[], and its meaning is defined in the associated device category specifi-
cation.
150-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Device Services
• DEVICE_DESCRIPTION – Describes the device to an end user. Its value is of
type String.

• DEVICE_SERIAL – A unique serial number for this device. If the device
hardware contains a serial number, the driver bundle is encouraged to
specify it as this property. Different Device services representing the same
physical hardware at different abstraction levels should set the same
DEVICE_SERIAL thus simplifying identification. Its value is of type String.

• serv ice.pid – Service Persistent ID (PID), defined in
org.osgi. f ramework.Constants . Device services should set this property. It
must be unique among all registered services. Even different abstraction
levels of the same device must use different PIDs. The service PIDs must be
reproducible, so that every time the same hardware is plugged in, the same
PIDs are used.

8.2.2 Device Service Attachment
When a Device service is registered with the Framework, the device manager
is responsible for finding a suitable Driver service and instructing it to attach
to the newly registered Device service. The Device service itself is passive: it
only registers a Device service with the Framework and then waits until it gets
called.

The actual communication with the underlying physical device is not defined
in the Device interface because it differs significantly between different types
of devices. The Driver service is responsible for attaching the device in a device
type-specific manner. The rules and interfaces for this process must be defined
in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device ser-
vice remains unattached. In that case, if the service object implements the
Device interface, it must receive a call to the noDriverFound() method. The
Device service can wait until a new driver is installed, or it can unregister and
attempt to register again with different properties that describe a more generic
device or try a different configuration.

A Device service is not used by any other bundle according to the Framework;
it is called an idle Device service.

8.2.2.1 Device Service Unregistration
When a Device service is unregistered, no immediate action is required by the
device manager. The normal service unregistering events, provided by the
Framework, take care of propagating the unregistration information to
affected drivers. Drivers must take the appropriate action to release this Device
service and perform any necessary cleanup as described in their device cate-
gory specification.

The device manager may, however, take a device unregistration as an indica-
tion that driver bundles may have become idle and are thus eligible for
removal. It is therefore important for Device services to unregister their ser-
vice object when the underlying entity becomes unavailable.
OSGi Service-Platform Release 2 151-282

Device Category Specifications Device Access Specification Version 1.1
8.3 Device Category Specifications
A device category specifies the rules and interfaces needed for the communica-
tion between a Device service and a Driver service. Only Device services and
Driver services of the same device category can communicate and cooperate.

The Device Access service specification is limited to the attachment of Device
services by Driver services, and does not enumerate different device categories.

Other specifications must specify a number of device categories before this
specification can be made operational. Without a set of defined device catego-
ries, no interoperability can be achieved.

Device categories are related to a specific device technology, such as USB, IEEE
1394, JINI, UPnP, Salutation, CEBus, Lonworks, and others. The purpose of a
device category specification is to make all Device services of that category
conform to an agreed interface, so that, for example, a USB Driver service of
vendor A can control Device services from vendor B attached to a USB bus.

This specification is limited to defining the guidelines for device category defi-
nitions only. Device categories may be defined by the OSGi or by external spec-
ification bodies – for example, when these bodies are associated with a specific
device technology.

8.3.1 Device Category Guidelines
A device category definition comprises the following elements:

• An interface that all devices belonging to this category must implement.
This interface should lay out the rules of how to communicate with the
underlying device. The specification body may define its own device inter-
faces (or classes) or leverage existing ones. For example, a serial port device
category could use the javax.comm.Ser ia lPort interface which is defined in
[20] Java Communications API.
When registering a device belonging to this category with the Framework,
the interface or class name for this category must be included in the regis-
tration.

• A set of service registration properties, their data types, and semantics, each
of which must be declared as either MANDATORY or OPTIONAL for this
device category.

• A range of match values specific to this device category. Matching is
explained later in The Device Attachment Algorithm on page 165.

8.3.2 Sample Device Category Specification
The following is a partial example of a fictitious device category:

public interface com.acme.widget.WidgetDevice {
int MATCH_SERIAL = 10;
int MATCH_VERSION = 8;
int MATCH_MODEL = 6;
int MATCH_MAKE = 4;
int MATCH_CLASS = 2;
void sendPacket(byte [] data);
byte [] receivePacket(long timeout);

}

152-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Device Category Specifications
Devices in this category must implement the interface com.acme.wid-
get .WidgetDevice to receive attachments from Driver services in this cate-
gory.

Device properties for this fictitious category are defined in table Table 11.

8.3.3 Match Example
Driver services and Device services are connected via a matching process that
is explained in The Device Attachment Algorithm on page 165. The Driver service
plays a pivotal role in this matching process. It must inspect the Device service
(from its ServiceReference object) that has just been registered and decide if it
potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The scale
of this match value must be defined in the device category so as to allow Driver
services to match on a fair basis. The scale must start at least at 1 and go
upwards.

Driver services for this sample device category must return one of the match
codes defined in the com.acme.widget.WidgetDevice interface or
Device.MATCH_NONE if the Device service is not recognized. The device cate-
gory must define the exact rules for the match codes in the device category
specification. In this example, a small range from 2 to 10 (MATCH_NONE is 0)
is defined for WidgetDevice devices. They are named in the WidgetDevice
interface for convenience and have the following semantics.

Property name M/O Type Value

DEVICE_CATEGORY M Str ing[] {"Widget"}

com.acme.class M Str ing A class description of this device. For example
"audio", "video", "ser ia l", etc. An actual device cate-
gory specification should contain an exhaustive list
and define a process to add new classes.

com.acme.model M Str ing A definition of the model. This is usually vendor
specific. For example "Mouse".

com.acme.manufacturer M Str ing Manufacturer of this device, for example "ACME
Widget Division".

com.acme.rev is ion O Str ing Revision number. For example, "42".

com.acme.ser ia l O Str ing A serial number. For example "SN6751293-12-
2112/A".

Table 11 Example Device Category Properties, M=Mandatory, O=Optional

Match name Value Description

MATCH_SERIAL 10 An exact match, including the serial number.

MATCH_VERSION 8 Matches the right class, make model, and version.

MATCH_MODEL 6 Matches the right class and make model.

Table 12 Sample Device Category Match Scale
OSGi Service-Platform Release 2 153-282

Driver Services Device Access Specification Version 1.1
A Driver service should use the constants to return when it decides how close
the Device service matches its suitability. For example, if it matches the exact
serial number, it should return MATCH_SERIAL .

8.4 Driver Services
A Driver service is responsible for attaching to suitable Device services under
control of the device manager. Before it can attach a Device service, however, it
must compete with other Driver services for control.

If a Driver service wins the competition, it must attach the device in a device
category-specific way. After that, it can perform its intended functionality.
This functionality is not defined here nor in the device category; this specifica-
tion only describes the behavior of the Device service, not how the Driver ser-
vice uses this to implement its intended functionality. A Driver service may
register one or more new Device services of another device category or a
generic service which models a more refined form of the device.

Both refined Device services as well as generic services should be defined in a
Device Category. See Device Category Specifications on page 152.

8.4.1 Driver Bundles
A Driver service is, like all services, implemented in a bundle and is recognized
by the device manager by registering one or more Driver service objects with
the Framework.

Such bundles containing one or more Driver services are called driver bundles.
The device manager must be aware of the fact that the cardinality of the rela-
tionship between bundles and Driver services is 1:1...n.

A driver bundle must register at least 1 Driver service in its BundleActiva-
tor .start implementation.

8.4.2 Driver Taxonomy
Device Drivers may belong to one of the following categories:

• Base Drivers (Discovery, Pure Discovery and Normal)
• Refining Drivers
• Network Drivers
• Composite Drivers
• Referring Drivers
• Bridging Drivers
• Multiplexing Drivers
• Pure Consuming Drivers

MATCH_MAKE 4 Matches the make.

MATCH_CLASS 2 Only matches the class.

Match name Value Description

Table 12 Sample Device Category Match Scale
154-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Driver Services
This list is not definitive, and a Driver service is not required to fit into one of
these categories. The purpose of this taxonomy is to show the different topolo-
gies that have been considered for the Device Access service specification.

Figure 17 Legend for Device Driver Services Taxonomy

8.4.2.1 Base Drivers
The first category of device drivers are called base drivers because they provide
the lowest-level representation of a physical device. The distinguishing factor
is that they are not registered as a Driver service because they do not have to
compete for access to their underlying technology.

Figure 18 Base Driver Types

Base drivers discover physical devices using code not specified here (for exam-
ple, through notifications from a device driver in native code) and then regis-
ter corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical
device, a Device service is then registered. Drivers supporting a discovery
mechanism are called discovery base drivers.

An example of a discovery base driver would be a USB driver. Discovered USB
devices are registered with the Framework as a generic USB Device service. The
USB specification, see [21] USB Specification, defines a tightly integrated discov-
ery method. Further, devices are individually addressed and there is no provi-
sion for broadcasting a message to all devices attached to the USB bus.
Therefore, there is no reason to expose the USB network itself; instead, a dis-
covery base driver can register the individual devices as they are discovered.

Not all technologies support a discovery mechanism. For example, most serial
devices do not support detection, and it is often not even possible to detect
whether a device is attached to a serial port. Although a [22] Plug and Play Exter-
nal COM Device Specification v. 1.0 exists, very few devices support it.

Although each driver bundle should perform discovery on its own, a driver for
a non-discoverable serial port requires external help – either through a user
interface or by allowing the Configuration Manager to configure it.

bold

plain

Device service

Hardware

Driver

Association

Key part

Illustrative

Network

Parallel port service

Physical

Base driver

Printer service

JINI, Salutation,

Pure Discovery

hardware SLP, UPnP

Printer service

Hardware with

 Discovery
 Base driver

discovery: USB,
IEEE 1394,

Base driver
OSGi Service-Platform Release 2 155-282

Driver Services Device Access Specification Version 1.1
It is possible for the driver bundle to combine automatic discovery of Plug and
Play-compliant devices with manual configuration when non-compliant
devices are plugged in.

8.4.2.2 Refining Drivers
The second category of device drivers are called refining drivers. Refining driv-
ers provide a refined view of a physical device that is already represented by
another Device service registered with the Framework. Refining drivers regis-
ter a Driver service with the Framework. This Driver service is used by the
device manager to attach the refining driver to a less refined Device service
that is registered as a result of events within the Framework itself.

Figure 19 Refining Driver Diagram

An example of a refining driver would be a mouse driver which is attached to
the generic USB Device service representing a physical mouse. It then registers
a new Device service which represents it as a Mouse service, defined else-
where.

The majority of drivers fall into the refining driver type.

8.4.2.3 Network Drivers
An Internet Protocol (IP) capable network such as Ethernet supports individu-
ally addressable devices and allows broadcasts, but does not define an intrinsic
discovery protocol. In this case, the entire network should be exposed as a sin-
gle Device service.

Figure 20 Network Driver diagram

8.4.2.4 Composite Drivers
Complex devices can often be decomposed into several parts. Drivers that
attach to a single service and then register multiple Device services are called
composite drivers. For example, a USB speaker containing software accessible
buttons can be registered by its driver as two separate Device services: an
Audio Device service and a Button Device service.

Mouse service

USB Device

Base driver

Refining driver

IP Network driver

drivers and other services
that use the network service

network

Associated with

to discover devices

(also for other
devices)
156-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Driver Services
Figure 21 Composite Driver structure

This approach can greatly reduce the number of interfaces needed, as well as
enhance reusability.

8.4.2.5 Referring Drivers
A referring driver is actually not a driver in the sense that it controls Device
services. Instead, it acts as an intermediary to help locate the correct driver
bundle. This process is explained in detail in The Device Attachment Algorithm
on page 165.

A referring driver implements the call to the attach method to inspect the
Device service, and decides which Driver bundle would be able to attach to the
device. This process can actually involve connecting to the physical device and
communicating with it. The attach method then returns a Str ing object that
indicates the DRIVER_ID of another driver bundle. This process is called a refer-
ral.

For example, a vendor ACME can implement one driver bundle that special-
izes in recognizing all of the devices the vendor produces. The referring driver
bundle does not contain code to control the device – it contains only sufficient
logic to recognize the assortment of devices. This referring driver can be small,
yet can still identify a large product line. This approach can drastically reduce
the amount of downloading and matching needed to find the correct driver
bundle.

8.4.2.6 Bridging Drivers
A bridging driver registers a Device service from one device category but
attaches it to a Device service from another device category.

Figure 22 Bridging Driver Structure

For example, USB to Ethernet bridges exist that allow connection to an Ether-
net network through a USB device. In this case, the top level of the USB part of
the Device service stack would be an Ethernet Device service. But the same
Ethernet Device service can also be the bottom layer of an Ethernet layer of the
Device service stack. A few layers up, a bridge could connect into yet another
network.

Audio Device

USB Device

Physical USB bus

Base driver

Composite driver

Button Device

Ethernet Device

USB device

Bridging driver

Ethernet device drivers
OSGi Service-Platform Release 2 157-282

Driver Services Device Access Specification Version 1.1
The stacking depth of Device services has no limit, and the same drivers could
in fact appear at different levels in the same Device service stack. The graph of
drivers-to-Device services roughly mirrors the hardware connections.

8.4.2.7 Multiplexing Drivers
A multiplexing driver attaches a number of Device services and aggregates them
in a new Device service.

Figure 23 Multiplexing Driver Structure

For example, a system has a mouse on USB, a graphic tablet on a serial port,
and a remote control facility. Each of these would be registered as a service
with the Framework. A multiplexing driver can attach all three, and can merge
the different positions in a central Cursor Position service.

8.4.2.8 Pure Consuming Drivers
A pure consuming driver bundle will attach to devices without registering a
refined version.

Figure 24 Pure Consuming Driver Structure

For example, one driver bundle could decide to handle all serial ports through
javax.comm instead of registering them as services. When a USB serial port is
plugged in, one or more Driver services are attached, resulting in a Device ser-
vice stack with a Serial Port Device service. A pure consuming driver may then
attach to the Serial Port Device service and register a new serial port with the
javax.comm.* registry instead of the Framework service registry. This registra-
tion effectively transfers the device from the OSGi environment into another
environment.

8.4.2.9 Other Driver Types
It should be noted that any bundle installed in the OSGi environment may get
and use a Device service without having to register a Driver service.

The following functionality is offered to those bundles that do register a Driver
service and conform to the this specification:

• The bundles can be installed and uninstalled on demand.

 USB Mouse

Multiplexing Driver

Cursor Position

 Remote
Control

Graphic Tablet

USB Network Serial Port

Pure Consuming Driver

USB Serial Port

USB Base Driver

USB Network
158-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Driver Services
• Attachment to the Device service is only initiated after the winning the
competition with other drivers.

8.4.3 Driver Service Registration
Drivers are recognized by registering a Driver service with the Framework.
This event makes the device manager aware of the existence of the Driver ser-
vice. A Driver service registration must have a DRIVER_ID property whose
value is a Str ing object, uniquely identifying the driver to the device manager.
The device manager must use the DRIVER_ID to prevent the installation of
duplicate copies of the same driver bundle.

Therefore, this DRIVER_ID must:

• Depend only on the specific behavior of the driver, and thus be independent
of unrelated aspects like its location or mechanism of downloading.

• Start with the reversed form of the domain name of the company that
implements it: for example, com.acme.widget.1 .1 .

• Differ from the DRIVER_ID of drivers with different behavior. Thus, it must
also be different for each revision of the same driver bundle so they may be
distinguished.

When a new Driver service is registered, the Device Attachment Algorithm
must be applied to each idle Device service. This requirement gives the new
Driver service a chance to compete with other Driver services for attaching to
idle devices. The techniques outlined in Optimizations on page 168 can provide
significant shortcuts for this situation.

As a result, the Driver service object can receive match and attach requests
before the method which registered the service has returned.

This specification does not define any method for new Driver services to steal
already attached devices. Once a Device service is attached by a Driver service,
it can only be released by the Driver service itself.

8.4.4 Driver Service Unregistration
When a Driver service is unregistered, it must release all Device services to
which it is attached. Thus all its attached Device services become idle. The
device manager must gather all of these idle Device services and try to re-
attach them. This condition gives other Driver services a chance to take over
the refinement of devices after the unregistering driver. The techniques out-
lined in Optimizations on page 168 can provide significant shortcuts for this sit-
uation.

A Driver service that is installed by the device manager must remain registered
as long as the driver bundle is active. Therefore, a Driver service should only be
unregistered if the driver bundle is stopping, an occurrence which may pre-
cede being uninstalled or updated. Driver services should thus not unregister
in an attempt to minimize resource consumption. Such optimizations can eas-
ily introduce race conditions with the device manager.

8.4.5 Driver Service Methods
The Driver interface consists of the following methods:

• match(ServiceReference) – This method is called by the device manager to
find out how well this Driver service matches the Device service as indi-
cated by the ServiceReference argument. The value returned here is spe-
OSGi Service-Platform Release 2 159-282

Driver Locator Service Device Access Specification Version 1.1
cific for a device category. If this Device service is of another device
category, the value Device.MATCH_NONE must be returned. Higher values
indicate a better match. For the exact matching algorithm, see The Device
Attachment Algorithm on page 165.
Driver match values and referrals must be deterministic in that repeated
calls for the same Device service must return the same results so that results
can be cached by the device manager.

• attach(Serv iceReference) – If the device manager decides that a Driver
service should be attached to a Device service, it must call this method on
the Driver service object. Once this method is called, the Device service is
regarded to be attached to that Driver service, and no other Driver service
must be called to attach to the Device service. The Device service must
remain owned by the Driver service until the Driver bundle is stopped. No
unattach method exists.
The attach method should return null when the Device service is correctly
attached. A referring driver (see Referring Drivers on page 157) can return a
Str ing object that specifies the DRIVER_ID of a driver that can handle this
Device service. In this case, the Device service is not attached and the device
manager must attempt to install a Driver service with the same DRIVER_ID
via a Driver Locator service.
The attach method must be deterministic as described in the previous
method.

8.4.6 Idle Driver Bundles
An idle Driver bundle is a bundle with a registered Driver service and is not
attached to any Device service. Idle Driver bundles are consuming resources in
the OSGi environment. The device manager should uninstall bundles that it
has installed which are idle.

8.5 Driver Locator Service
The device manager must automatically install Driver bundles, which are
obtained from Driver Locator services, when new Device services are regis-
tered.

A Driver Locator service encapsulates the knowledge of how to fetch the
Driver bundles needed for a specific Device service. This selection is made on
the properties that are registered with a device: for example,
DEVICE_CATEGORY and any other properties registered with the Device ser-
vice registration.

The purpose of the Driver Locator service is to separate the mechanism from
the policy. The decision to install a new bundle is made by the device manager
(the mechanism), but a Driver Locator service decides which bundle to install
and from where the bundle is downloaded the policy).

Installing bundles has many consequences for the security of the system, and
this process is also sensitive to network setup and other configuration details.
Using Driver Locator services allows the service gateway operator to choose a
strategy that best fits its needs.
160-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Driver Locator Service
Driver services are identified by the DRIVER_ID property. Driver Locator ser-
vices use this particular ID to identify the bundles that can be installed. Driver
ID properties have uniqueness requirements as specified in Device Service Reg-
istration on page 150. This uniqueness allows the device manager to maintain a
list of Driver services and prevent unnecessary installs.

An OSGi environment can have several different Driver Locator services
installed. The device manager must consult all of them and use the combined
result set, after pruning duplicates based on the DRIVER_ID values.

8.5.1 The DriverLocator Interface
The DriverLocator interface allows suitable driver bundles to be located,
downloaded, and installed on demand, even when completely unknown
devices are detected.

It has the following methods:

• f indDrivers(Dict ionary) – This method returns an array of driver IDs that
potentially match a service that is described by the properties in the Dic-
t ionary object. A driver ID is the Str ing object that is registered by a Driver
service under the DRIVER_ID property.

• loadDriver(Str ing) – This method returns an InputStream object that can
be used to download the bundle containing the Driver service as specified
by the driver ID argument. If the Driver Locator service cannot download
such a bundle, it should return null . Once this bundle is downloaded and
installed in the Framework, it must register a Driver service with the
DRIVER_ID property set to the value of the Str ing argument.

8.5.2 A Driver Example
The following example shows a very minimal Driver service implementation.
It consists of two classes. The first class is Seria lWidget . This class tracks a sin-
gle WidgetDevice from Sample Device Category Specification on page 152. It reg-
isters a javax.comm.Ser ia lPort service which is a general serial port
specification that could also be implemented from other device categories like
USB, a COM port, etc.. It is created when the Seria lWidgetDriver object is
requested to attach a WidgetDevice by the device manager. It registers a new
javax.comm.Seria lPort service in its constructor. The
OSGi Service-Platform Release 2 161-282

Driver Locator Service Device Access Specification Version 1.1
org.osgi.ut i l . t racker .ServiceTracker is extended to handle the Framework
events that are needed to simplify tracking this service. The removedService
method of this class is overridden to unregister the Ser ia lPort when the under-
lying WidgetDevice is unregistered.

package com.acme.widget;
import org.osgi.service.device.*;
import org.osgi.framework.*;
import org.osgi.util.tracker.*;

class SerialWidget extends ServiceTracker
implements javax.comm.SerialPort,

org.osgi.service.device.Constants {
ServiceRegistration registration;

SerialWidget(BundleContext c, ServiceReference r) {
super(c, r, null);
open();

}

public Object addingService(ServiceReference ref) {
WidgetDevice dev = (WidgetDevice)

context.getService(ref);
registration = context.registerService(

javax.comm.SerialPort.class.getName(),
this,
null

);
return(dev);

}

public void removedService(ServiceReference ref,
Object service

) {
registration.unregister();
context.ungetService(ref);

}
... methods for javax.comm.SerialPort that are
... converted to underlying WidgetDevice

}

162-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 The Driver Selector Service
A Seria lWidgetDriverobject is registered with the Framework in the Bundle
Activator start method under the Driver interface. The device manager must
call the match method for each idle Device service that is registered. If it is cho-
sen by the device manager to control this Device service, a new Seria lWidget is
created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implements Driver {
BundleContext context;

String spec =
 "(&"

+" (objectclass=com.acme.widget.WidgetDevice)"
+" (DEVICE_CATEGORY=WidgetDevice)"
+" (com.acme.class=Serial)"
+ ")";

Filter filter;

SerialWidgetDriver(BundleContext context)
throws Exception {
this.context = context;
filter = context.createFilter(spec);

}

public int match(ServiceReference d) {
if (filter.match(d))

return WidgetDevice.MATCH_CLASS
else

return Device.MATCH_NONE;
}

public synchronized String attach(ServiceReference r) {
new SerialWidget(context, r);

}
}

8.6 The Driver Selector Service
The purpose of the Driver Selector service is to customize the selection of the
best Driver service from a set of suitable Driver bundles. The device manager
has a default algorithm as described in The Device Attachment Algorithm on
page 165. When this algorithm is not sufficient and requires customizing by
the operator, a bundle providing a Driver Selector service can be installed in
the Framework. This service must be used by the device manager as the final
arbiter when select the best match for a Device service.

The Driver Selector service is a singleton; only one such service is recognized
by the device manager. The Framework method BundleContext .getService-
Reference must be used to obtain a Driver Selector service. In the erroneous
case that multiple Driver Selector services are registered, the serv ice.ranking
property will thus define which actual service is used.

The Driver Selector service implements the DriverSelector interface.
OSGi Service-Platform Release 2 163-282

Device Manager Device Access Specification Version 1.1
A device manager implementation must invoke the method select(Service-
Reference, Match[]) . This method receives a Service Reference to the Device
service and an array of Match objects. Each Match object contains a link to the
ServiceReference object of a Driver service and the result of the match value
returned from a previous call to Driver .match . The Driver Selector service
should inspect the array of Match objects and use some means to decide which
Driver service is best suited. The index of the best match should be returned. If
none of the Match objects describe a possible Driver service, the implementa-
tion must return DriverSelector .SELECT_NONE (-1) .

8.7 Device Manager
Device Access is controlled by the device manager in the background. The
device manager is responsible for initiating all actions in response to the regis-
tration, modification, and unregistration of Device services and Driver ser-
vices, using Driver Locator services and a Driver Selector service as helpers.

The device manager detects the registration of Device services and coordinates
their attachment with a suitable Driver service. Potential Driver services do
not have to be active in the Framework to be eligible. The device manager
must use Driver Locator services to find bundles that might be suitable for the
detected Device service and that are not currently installed. This selection is
done via a DRIVER_ID property that is unique for each Driver service.

The device manager must install and start these bundles with the help of a
Driver Locator service. This activity must result in the registration of one or
more Driver services. All available Driver services, installed by the device man-
ager and also others, then participate in a bidding process. The Driver service
can inspect the Device service through its ServiceReference object to find out
how well this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it is
used to decide which of the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with tie
breaks defined on the service.ranking and serv ice. id properties. The selected
Driver service is then asked to attach the Device service.

If no Driver service is suitable, the Device service remains idle. When new
Driver bundles are installed, these idle Device services must be reattached.

The device manager must reattach a Device service if at a later time a Driver
service is unregistered due to an uninstallation or update. At the same time,
however, it should prevent superfluous and non optimal reattachments. The
device manager should also garbage collect driver bundles it installed which
are no longer used.

The device manager is a singleton. There must only be one device manager reg-
istered with a Framework, and it has no public interface.
164-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Device Manager
8.7.1 Device Manager Startup
To prevent race conditions during Framework startup, the device manager
must monitor the state of Device services and Driver services immediately
when it is started. The device manager must not, however, begin attaching
Device services until the Framework has been fully started, to prevent super-
fluous or non-optimal attachments.

The Framework has completed starting when the FrameworkEvent.STARTED
event has been published. Publication of that event indicates that Framework
has finished all its initialization and all bundles are started. If the device man-
ager is started after the Framework has been initialized, it should detect the
state of the Framework by examining the state of the system bundle.

8.7.2 The Device Attachment Algorithm
A key responsibility of the device manager is to attach refining drivers to idle
devices. The following diagram illustrates the device attachment algorithm.
OSGi Service-Platform Release 2 165-282

Device Manager Device Access Specification Version 1.1
Figure 25 Device Attachment Algorithm

Idle Device

For each DriverLocator

findDriversA

For each DRIVER ID

Try to loadBFor each Driver not excluded

C match

Nothing?

Selector?

Try selector
D

Attach completed Nothing attached

Default selection

Attach

Cleanup

Try to load

Add the driver to the
exclusion list

Device?

noDriverFound

Cleanup

E

F

K

I

K

G

H

166-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Device Manager
8.7.3 Legend

Step Description

A DriverLocator . f indDrivers is called for each registered Driver Locator service,
passing the properties of the newly detected Device service. Each method call
returns zero or more DRIVER_ID values (identifiers of particular driver bun-
dles).

If the f indDrivers method throws an exception, it is ignored, and processing
continues with the next Driver Locator service. See Optimizations on page 168
for further guidance on handling exceptions.

B For each found DRIVER_ID that does not correspond to an already registered
Driver service, the device manager calls DriverLocator . loadDriver to return an
InputStream containing the driver bundle. Each call to loadDriver is directed
to one of the Driver Locator services that mentioned the DRIVER_ID in Step A.
If the loadDriver method fails, the other Driver Locator objects are tried. If they
all fail, the driver bundle is ignored.

If this method succeeds, the device manager installs and starts the driver bun-
dle. Driver bundles must register their Driver services synchronously during
bundle activation.

C For each Driver service, except those on the exclusion list, call its Driver .match
method passing the ServiceReference object to the Device service.

Collect all successful matches – that is, those whose return values are greater
than Device.MATCH_NONE – in a list of active matches. A match call that
throws an exception is considered unsuccessful and is not added to the list.

D If there is a Driver Selector service, the device manager calls the DriverSelec-
tor .select method, passing the array of active Match objects.

If the Driver Selector service returns the index of one of the Match objects from
the array, its associated Driver service is selected for attaching the Device ser-
vice. If the Driver Selector service returns DriverSelector .SELECT_NONE , no
Driver service must be considered for attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid result,
the default selection algorithm is used.

Only one Driver Selector service is used even if there is more than one regis-
tered in the Framework. See The Driver Selector Service on page 163.

E The winner is the one with the highest match value. Tie breakers are respec-
tively:

• Highest service.ranking property.
• Lowest service.id property.

Table 13 Driver attachment algorithm
OSGi Service-Platform Release 2 167-282

Device Manager Device Access Specification Version 1.1
8.7.4 Optimizations
The following list of optimizations are explicitly allowed and even recom-
mended for an implementation of a device manager:

• Driver match values and referrals must be deterministic in that repeated
calls for the same Device service must return the same results.

• The device manager may cache match values and referrals. Therefore, opti-
mizations in the device attachment algorithm based on this assumption are
allowed.

• The device manager may delay loading a driver bundle until it is needed.
For example, a delay could occur when that DRIVER_ID ’s match values are
cached.

• The results of calls to DriverLocator and DriverSelector methods are not
required to be deterministic, and must not be cached by the device manager.

• Thrown exceptions must not be cached. Exceptions are considered tran-
sient failures, and the device manager must always retry a method call even

F The selected Driver service’s attach method is called. If the attach method
returns nul l, the Device service has been successfully attached. If the attach
method returns a Str ing object, it is interpreted as a referral to another Driver
service and processing continues at G. See Referring Drivers on page 157.

If an exception is thrown, the Driver service has failed and the algorithm pro-
ceeds to try another Driver service after excluding this one from further con-
sideration at Step H.

G The device manager attempts to load the referred driver bundle in a manner
similar to Step B, except that it is unknown which Driver Locator service to
use. Therefore, the loadDriver method must be called on each Driver Locator
service until one succeeds (or they all fail). If one succeeds, the device manager
installs and starts the driver bundle. The driver bundle must register a Driver
service during its activation which must be added to the list of Driver services
in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new
referral adds an entry to the exclusion list, which in turn disqualifies another
driver from further matching, the algorithm cannot loop indefinitely. This list
is maintained for the duration of this algorithm. The next time a new Device
service is processed, the exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is checked
to see whether it implements the Device interface. If so, the noDriverFound
method is called. Note that this may cause the Device service to unregister and
possibly a new Device service (or services) to be registered in its place. Each
new Device service registration must restart the algorithm from the begin-
ning.

K Whether an attachment was successful or not, the algorithm may have
installed a number of driver bundles. The device manager should remove any
idle driver bundles that it installed.

Step Description

Table 13 Driver attachment algorithm
168-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 Device Manager
if it has thrown an exception on a previous invocation with the same argu-
ments.

8.7.5 Driver Bundle Reclamation
The device manager may remove driver bundles it has installed at any time,
provided that all the Driver services in that bundle are idle. This recommended
practice prevents unused driver bundles from accumulating over time.
Removing driver bundles too soon, however, may cause unnecessary installs
and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified
matching algorithm is not guaranteed to terminate unless the device manager
takes reclamation into account.

For example, a new Device service triggers the attachment algorithm. A driver
bundle recommended by a Driver Locator service is loaded. It does not match,
so the Device service remains idle. The device manager is eager to reclaim
space, and unloads the driver bundle. The disappearance of the Driver service
causes the device manager to reattach idle devices. Not keeping record of its
previous activities, it tries to reattach the same device, which closes the loop.

On systems where the device manager implements driver bundle reclamation,
all refining drivers should be loaded through Driver Locator services. This rec-
ommendation is to prevent the device manager from erroneously uninstalling
pre-installed driver bundles that cannot later be reinstalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on
previously stored information to determine which driver bundles were pre-
installed and which were dynamically installed and thus are eligible for
removal. The device manager may persistently store cachable information for
optimization, but must be able to cold start without any persistent informa-
tion and still be able to manage an existing connection state, satisfying all of
the requirements in this specification.

8.7.6 Handling Driver Bundle Updates
It is not straightforward to determine whether a driver bundle is being
updated when the UNREGISTER event for a Driver service is received. In order
to facilitate this distinction, the device manager should wait a period of time
after the unregistration for one of the following events:

• A BundleEvent.UNINSTALLED event for the driver bundle.
• A ServiceEvent.REGISTERED event for another Driver service registered by

the driver bundle.

If the driver bundle is uninstalled, or if neither of the above events are received
within the allotted time period, the driver is assumed to be inactive. The
appropriate waiting period is implementation-dependent and will vary for dif-
ferent installations. As a general rule, it should be long enough to allow a
driver to be stopped, updated, and restarted under normal conditions, and
short enough not to cause unnecessary delays in reattaching devices. The
actual time should be configurable.
OSGi Service-Platform Release 2 169-282

Security Device Access Specification Version 1.1
8.7.7 Simultaneous Device Service and Driver Service Registration
The device attachment algorithm may cause driver bundles to be installed,
which requires executing the device attachment algorithm recursively. In this
case, the appearance of the new driver bundles should be queued until comple-
tion of the device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment in
time.

The following example sequence illustrates this process when a Driver service
is registered:

• Collect the set of all idle devices.
• Apply the device attachment algorithm to each device in the set.
• If no Driver services were registered during the execution of the device

attachment algorithm, processing terminates.
• Otherwise, restart this process.

8.8 Security
The device manager is the only privileged bundle in the Device Access specifi-
cation and requires the org.osgi .AdminPermiss ion to install and uninstall
driver bundles.

The device manager itself should be free from any knowledge of policies and
should not actively set bundle permissions. Rather, if permissions must be set,
it is up to the management bundle to listen to synchronous bundle events and
set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because they
deliver the content of a bundle to the privileged device manager and could
potentially insert a Trojan horse into the environment. Therefore, Driver Loca-
tor bundles need the ServicePermiss ion[REGISTER] to register Driver Locator
services, and the operator should exercise prudence in assigning this Serv ice-
Permiss ion .

Bundles with Driver Selector services only require ServicePermiss ion[REGIS-
TER] to register the DriverSelector service. The Driver Selector service can
play a crucial role in the selection of a suitable Driver service but it has no
means to define a specific bundle itself.

8.9 Changes Since 1.0
• Match Disambiguation – In the Device Access 1.0 specification, if the

matching process results in a tie, the device manager is free to choose any
one of the highest bidders. The choice need not be consistent if the device
manager is faced with the same situation again. This kind of randomness
may surprise a user and also makes automated testing difficult. To avoid
this situation, the selection now also involves the serv ice.ranking and
serv ice. id properties. See The Device Attachment Algorithm on page 165 for
more information.

• Constants interface – The Constants interface has been added. It contains
constants for standard service property keys.
170-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 org.osgi.service.device
• Driver Selector service – A DriverSelector interface has been added. It allows
complete customizing of the selection process. See The Driver Selector Service
on page 163.
The device manager by default eagerly attaches all the drivers it can with-
out regard to whether the resulting refined devices are wanted or not. This
eagerness could lead to installing and starting many unnecessary drivers.
The Driver Selector service also provides a way to limit this eagerness.

• Match Interface – The Match interface has been added. It is used in the
second argument to DriverSelector .select .

• Tracking Driver Services – The Device Access 1.0 specification prescribed
that device managers should track the appearance of Device services. This
requirement causes a problem if resident drivers are started in the wrong
order. If a low-level Driver service is registered before a higher level driver
bundle is started, the device manager could conclude that no refining driver
is available, and leave the device unattached.
This situation has been improved in two ways. First, the device manager
must not start until the Framework has completed starting. Second, the
device manager now must listen to Driver service registrations and unregis-
trations.

• Free Format Devices – The Device Access 1.0 specification defines Device ser-
vices as services that implement the Device interface. This definition rules
out existing interfaces that were not designed with the Device interface in
mind: for example, javax.comm port interfaces. In this release, any service
registered with the DEVICE_CATEGORY property is defined to be a Device
service. See Device Services on page 149 for more information.

Package
8.10 org.osgi.service.device

DescriptionThe OSGi Device Access Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.device; specification-
version=1.1

Class Summary

Interfaces

Constants This interface defines standard names for property keys associated with
Device and Driver services.

Device Interface for identifying device services.

Driver A Driver service object must be registered by each Driver bundle wishing to
attach to Device services provided by other drivers.

DriverLocator A Driver Locator service can find and load device driver bundles given a prop-
erty set.
OSGi Service-Platform Release 2 171-282

org.osgi.service.device Device Access Specification Version 1.1
8.10.1 Constants
Syntaxpublic interface Constants DescriptionThis interface defines standard names for property keys associated with
Device and Driver services.

The values associated with these keys are of type java. lang.Str ing , unless oth-
erwise stated.

Since: 1.1

See Also: Device , Driver

8.10.1.1 FieldsDEVICE_CATEGORY

public static final java.lang.String
DEVICE_CATEGORY

Property (named “DEVICE_CATEGORY”) containing a human readable
description of the device categories implemented by a device. This property is
of type Str ing[]

Services registered with this property will be treated as devices and discovered
by the device manager
DEVICE_DESCRIPTION

public static final java.lang.String
DEVICE_DESCRIPTION

Property (named “DEVICE_DESCRIPTION”) containing a human readable
string describing the actual hardware device.
DEVICE_SERIAL

public static final java.lang.String
DEVICE_SERIAL

Property (named “DEVICE_SERIAL”) specifying a device’s serial number.
DRIVER_ID

public static final java.lang.String
DRIVER_ID

Property (named “DRIVER_ID”) identifying a driver.

A DRIVER_ID should start with the reversed domain name of the company that
implemented the driver (e.g., com.acme), and must meet the following
requirements:

• It must be independent of the location from where it is obtained.
• It must be independent of the DriverLocator service that downloaded it.
• It must be unique.
• It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered with it.

8.10.2 Device
Syntaxpublic interface Device DescriptionInterface for identifying device services.

A service must implement this interface or use the
Constants.DEVICE_CATEGORY registration property to indicate that it is a
device. Any services implementing this interface or registered with the
DEVICE_CATEGORY property will be discovered by the device manager.

DriverSelector When the device manager detects a new Device service, it calls all registered
Driver services to determine if anyone matches the Device service.

Match Instances of Match are used in the select(Serv iceReference, Match[]) method
to identify Driver services matching a Device service.

Class Summary
172-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 org.osgi.service.device
Device services implementing this interface give the device manager the
opportunity to indicate to the device that no drivers were found that could (
further) refine it. In this case, the device manager calls the noDriverFound()
method on the Device object.

Specialized device implementations will extend this interface by adding meth-
ods appropriate to their device category to it.

See Also: Driver

8.10.2.1 FieldsMATCH_NONE

public static final int MATCH_NONE Return value from Driver .match(Serv iceReference) indicating that the driver
cannot refine the device presented to it by the device manager. The value is 0.

8.10.2.2 MethodsnoDriverFound()

public void noDriverFound() Indicates to this Device object that the device manager has failed to attach any
drivers to it.

If this Device object can be configured differently, the driver that registered
this Device object may unregister it and register a different Device service
instead.

8.10.3 Driver
Syntaxpublic interface Driver DescriptionA Driver service object must be registered by each Driver bundle wishing to
attach to Device services provided by other drivers. For each newly discovered
Device object, the device manager enters a bidding phase. The Driver object
whose match(Serv iceReference) method bids the highest for a particular
Device object will be instructed by the device manager to attach to the Device
object.

See Also: Device , DriverLocator

8.10.3.1 Methodsattach(ServiceReference)

public java.lang.String attach(
ServiceReference reference)
throws java.lang.Exception

Attaches this Driver service to the Device service represented by the given
Service Reference object.

A return value of nul l indicates that this Driver service has successfully
attached to the given Device service. If this Driver service is unable to attach to
the given Device service, but knows of a more suitable Driver service, it must
return the DRIVER_ID of that Driver service. This allows for the implementa-
tion of referring drivers whose only purpose is to refer to other drivers capable
of handling a given Device service.

After having attached to the Device service, this driver may register the under-
lying device as a new service exposing driver-specific functionality.

This method is called by the device manager.

Parameters: reference - the Service Reference object of the device to attach to

Returns: nul l if this Driver service has successfully attached to the given Device service,
or the DRIVER_ID of a more suitable driver

Throws: java. lang.Exception - if the driver cannot attach to the given device and does
not know of a more suitable driver
OSGi Service-Platform Release 2 173-282

org.osgi.service.device Device Access Specification Version 1.1
match(ServiceReference)

public int match(Serv iceReference
reference)
throws java.lang.Exception

Checks whether this Driver service can be attached to the Device service repre-
sented by the given ServiceReference and returns a value indicating how well
this driver can support the given Device service, or Device.MATCH_NONE if it
cannot support the given Device service at all.

The return value must be one of the possible match values defined in the
device category definition for the given Device service, or
Device.MATCH_NONE if the category of the Device service is not recognized.

In order to make its decision, this Driver service may examine the properties
associated with the given Device service, or may get the referenced service
object (representing the actual physical device) to talk to it, as long as it ungets
the service and returns the physical device to a normal state before this
method returns.

A Driver service must always return the same match code whenever it is pre-
sented with the same Device service.

The match function is called by the device manager during the matching pro-
cess.

Parameters: reference - the Service Reference object of the device to match

Returns: value indicating how well this driver can support the given Device service, or
Device.MATCH_NONE if it cannot support the Device service at all

Throws: java. lang.Exception - if this Driver service cannot examine the Device service

8.10.4 DriverLocator
Syntax

public interface DriverLocator DescriptionA Driver Locator service can find and load device driver bundles given a prop-
erty set. Each driver is represented by a unique DRIVER_ID .

Driver Locator services provide the mechanism for dynamically downloading
new device driver bundles into an OSGi environment. They are supplied by
providers and encapsulate all provider-specific details related to the location
and acquisition of driver bundles.

See Also: Driver

8.10.4.1 MethodsfindDrivers(Dictionary)

public java.lang.String[] findDrivers(
java.util.Dictionary props)

Returns an array of DRIVER_ID strings of drivers capable of attaching to a
device with the given properties.

The property keys in the specified Dict ionary objects are case-insensitive.

Parameters: props - the properties of the device for which a driver is sought

Returns: array of driver DRIVER_ID strings of drivers capable of attaching to a Device
service with the given properties, or nul l if this Driver Locator service does not
know of any such drivers
loadDriver(String)

public java.io.InputStream loadDriver(
java.lang.String id)
throws java.io.IOException

Get an Input Stream from which the driver bundle providing a driver with the
giving DRIVER_ID can be installed.

Parameters: id - the DRIVER_ID of the driver that needs to be installed.

Returns: a Input Stream object from which the driver bundle can be installed
174-282 OSGi Service-Platform Release 2

Device Access Specification Version 1.1 References
Throws: java. io . IOException - the input stream for the bundle cannot be created

8.10.5 DriverSelector
Syntaxpublic interface DriverSelector DescriptionWhen the device manager detects a new Device service, it calls all registered
Driver services to determine if anyone matches the Device service. If at least
one Driver service matches, the device manager must choose one. If there is a
Driver Selector service registered with the Framework, the device manager
will ask it to make the selection. If there is no Driver Selector service, or if it
returns an invalid result, or throws an Exception , the device manager uses the
default selection strategy.

Since: 1.1

8.10.5.1 FieldsSELECT_NONE

public static final int SELECT_NONE Return value from Driver Selector .select , if no Driver service should be
attached to the Device service. The value is -1.

8.10.5.2 Methodsselect(ServiceReference, Match[])

public int select(Serv iceReference
reference, Match[] matches)

Select one of the matching Driver services. The device manager calls this
method if there is at least one driver bidding for a device. Only Driver services
that have responded with nonzero (not MATCH_NONE)match values will be
included in the list.

Parameters: reference - the Service Reference object of the Device service.

matches - the array of all non-zero matches.

Returns: index into the array of Match objects, or SELECT_NONE if no Driver service
should be attached

8.10.6 Match
Syntax

public interface Match DescriptionInstances of Match are used in the select(Serv iceReference, Match[]) method
to identify Driver services matching a Device service.

Since: 1.1

See Also: DriverSelector

8.10.6.1 MethodsgetDriver()

public Serv iceReference getDriver() Return the reference to a Driver service.

Returns: Service Reference object to a Driver service.
getMatchValue()

public int getMatchValue() Return the match value of this object.

Returns: the match value returned by this Driver service.

8.11 References
[20] Java Communications API

http://java.sun.com/products/javacomm

[21] USB Specification
http://www.usb.org/developers/data/usbspec.zip

[22] Plug and Play External COM Device Specification v. 1.0
http://www.microsoft.com/hwdev/download/respec/pnpcom.rtf
OSGi Service-Platform Release 2 175-282

References Device Access Specification Version 1.1
[23] Universal Plug and Play
http://www.upnp.org/resources.htm

[24] Jini, Service Discovery and Usage
http://www.jini.org/resources/

[25] Salutation, Service Discovery Protocol
http://www.salutation.org
176-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Introduction
9 Configuration Admin
Service Specification
Version 1.0

9.1 Introduction
The Configuration Admin service is an important aspect of the deployment of
an OSGi environment. It allows an operator to set the configuration informa-
tion of deployed bundles.

Configuration is the process of defining the configuration data of bundles and
assuring that those bundles receive that data when they are active in the OSGi
environment.

Figure 26 Configuration Admin Service Overview

9.1.1 Essentials
The following requirements and patterns are related to the Configuration
Admin service specification:

• Local Configuration – Must support bundles that have their own user
interface to change their configurations.

• Reflection – Must be able to deduce the names and types of the needed con-
figuration data.

• Legacy – Must support configuration data of existing entities (such as
devices).

• Object Oriented – Must support the creation and deletion of instances of con-
figuration information, so that a bundle can create the appropriate number
of services under control of the Configuration Admin service.

• Embedded Devices – Must be deployable on a wide range of platforms. This
requirement means that the interface should not assume file storage on the

port=?
secure=?

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration

Configuration
Admin

data
OSGi Service-Platform Release 2 177-282

Introduction Configuration Admin Service Specification Version 1.0
platform. The choice to use file storage should be left to the implemen-
tation of the Configuration Admin service.

• Remote versus Local Management – Must allow for remotely managed OSGi
environments, and must not assume that configuration is stored locally,
nor should it assume that the Configuration Admin service is always done
remotely; both implementation approaches should be viable.

• Availability – The OSGi environment is a dynamic environment that must
run continuously (24/7/365). Configuration updates must happen dynami-
cally and should not require restarting of the system or bundles.

• Immediate Response – Changes in the configuration should be reflected
immediately.

• Execution Environment – Will not require more than the minimal execution
environment.

• Communications – The Configuration Admin service should not assume
“always-on” connectivity, so that the API is also applicable for mobile appli-
cations in cars, phones, or boats.

• Extendability – Expose the process of configuration to other bundles. This
exposure should at least encompass initiating an update, removing certain
configuration properties, adding properties, and modifying the value of
properties potentially based on existing property or service values.

• Complexity Trade-offs – Bundles in need of configuration data should have a
simple way of obtaining this data. Most bundles will have this need and the
code to accept this data. Additionally, updates should be simple from the
perspective of the receiver.
Trade-offs in simplicity should be made at the expense of the bundle imple-
menting the Configuration Admin service and in favor of bundles that need
configuration information. The reason for this choice is that there will be
many normal bundles and few Configuration Admin bundles.

9.1.2 Operation
This specification is based on the concept of a Configuration Admin service
which manages the configuration of an OSGi environment. It maintains a
database of Configurat ion objects, locally or remote. This service monitors the
service registry and provides configuration information to services that are
registered with a serv ice.pid property, the Persistent IDentity (PID), and imple-
ment one of the following interfaces:

• Managed Service – A service registered with this interface receives its configu-
ration dictionary from the database or null.

• Managed Service Factory – Services registered with this interface receive
several configuration dictionaries when registered. The database contains
zero or more configuration dictionaries for this service. Each configuration
dictionary is given sequentially to this service.

The database can be manipulated by management bundles or bundles that
configure themselves.

Third parties can provide a Configuration Plugin services. Such services partic-
ipate in the configuration process. They can inspect the configuration dictio-
nary and modify it before it reaches the target service.

9.1.3 Entities
• Configuration information – The information needed by a bundle before it can

provide its intended functionality.
178-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Introduction
• Configuration dictionary – The configuration information when it is passed
to the target service. It consists of a Dict ionary object with a number of
properties and identifiers.

• Configuring Bundle – The bundle that modifies the configuration infor-
mation through the Configuration Admin service. This bundle is either a
management bundle or the bundle for which the configuration infor-
mation is intended.

• Configuration Target – The target (bundle or service) that will receive the
configuration information. For services, there are two types of targets: Man-
agedServiceFactory or ManagedServ ice objects.

• Configuration Admin Service – This service is responsible for supplying con-
figuration target bundles with their configuration information. It main-
tains a database with configuration information, keyed on the service.pid
of configuration target services. These objects receive their configuration
dictionary or dictionaries when they are registered with the Framework.
Configurations can be modified or extended using Configuration Plugin
services before they reach the target bundle.

• Managed Service – A Managed Service represents a client of Configuration
Admin service, and is thus a configuration target. Bundles should register a
Managed Service to receive the configuration data from the Configuration
Admin service. A Managed Service adds a unique serv ice.pid service regis-
tration property as a primary key for the configuration information.

• Managed Service Factory – A Managed Service Factory can receive a number
of configuration dictionaries from the Configuration Admin service, and is
thus also a configuration target service. It should register with a serv ice.pid
and receives zero or more configuration dictionaries; each dictionary has its
own PID.

• Configuration Object – Implements the Conf igurat ion interface and contains
the configuration dictionary for a Managed Service or a single instance for a
Managed Service Factory. These objects are manipulated by configuring
bundles.

• Configuration Plugin – Configuration Plugin services are called before the
configuration dictionary is given to the configuration targets. The plugin
can modify the configuration dictionary.
OSGi Service-Platform Release 2 179-282

Configuration Targets Configuration Admin Service Specification Version 1.0
Figure 27 Configuration Admin Class Diagram org.osgi.service.cm

9.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinc-
tion between the ManagedService and ManagedServiceFactory classes.

Both receive configuration information from the Configuration Admin service
and are treated similarly in most respects. Therefore, this specification refers to
configuration targets when the distinction is irrelevant.

<<service>>
Configuration
Admin

<<interface>>
Configuration

<<service>>
Managed
Service

<<service>>
Managed
Service

<<service>>
Configuration
Plugin

Configuration Adm.
Impl.

configuration
objects

a Managed Service
Factory Impl

a Managed
Service Impl

a configured
instance of some
type

Plugin Impl

Factory
configuration impl

Managed Service
configuration impl

a cnfg application (
e.g. remote
management)

config information

send

set configuration
properties via

1

0..n

Modify

1

configuration

1

0..n

1

0..n

0..n

1

10..n

0..n

1

send
configuration

for some object

config
information

information

bundle using
ManagedService

bundle
configuring

bundle using
ManagedService
Factory

Configuration Admin implementation
bundle

plugin bundle

Configuration
Exception

properties
180-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 The Persistent Identity
The difference between these types is related to the cardinality of the configu-
ration dictionary. A Managed Service is used when an existing entity needs a
configuration dictionary. Thus, a one-to-one relationship always exists
between the configuration dictionary and the entity.

A Managed Service Factory is used when part of the configuration is to define
how many instances are required. A management bundle can create, modify, and
delete any number of instances for a Managed Service Factory through the
Configuration Admin service. Each instance is configured by a single Configu-
rat ion object. Therefore, a Managed Service Factory can have multiple associ-
ated Configurat ion objects.

Figure 28 Differentiation of ManagedService and ManagedServiceFactory Classes

To summarize:

• A Managed Service must receive a single configuration dictionary when it is
registered or its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictio-
naries when it registers, depending on the current configuration. The
Managed Service Factory is informed of configuration dictionary changes:
modifications, creations, and deletions.

9.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Per-
sistent IDentity (PID). Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is
defined in the Framework in org.osgi . framework.Constants .SERVICE_PID .

A PID is a unique identifier for a service that persists over multiple invocations
of the Framework.

When a bundle registers a service with a PID, it should set property serv ice.pid
to a unique value. For that service, the same PID should always be used. If the
bundle is stopped and later started, the same PID should be used.

PIDs can be useful for all services, but the Configuration Admin service
requires their use with Managed Service and Managed Service Factory registra-
tions, because it associates its configuration data with PIDs.

PIDs must be unique for each service. A bundle must not register multiple con-
figuration target services with the same PID. If that should occur, the Configu-
ration Admin service must:

• Send the appropriate configuration data to all services registered under that
PID from that bundle only.

• Report an error in the log.

Framework Service
ManagedService ManagedServiceFactory

Management layer

Service layer

Registry
OSGi Service-Platform Release 2 181-282

The Persistent Identity Configuration Admin Service Specification Version 1.0
• Ignore duplicate PIDs from other bundles, and report them to the log as
well.

9.3.1 PID Readability
PIDs are intended for use by other bundles, not by people, but sometimes the
user is confronted with a PID. For example, when installing an alarm system,
the user needs to identify the different components to a wiring application.
This type of application exposes the PID to end users.

To improve this process, the schemes for PIDs that are defined in this specifica-
tion should be followed.

Any globally unique string can be used as a PID. The following sections, how-
ever, define schemes for common cases. These schemes are not required, but
bundle developers are urged to use them to achieve consistency.

9.3.1.1 Local Bundle PIDs
As a convention, descriptions starting with the bundle identity and a dot (.)
are reserved for a bundle. As an example, a PID of "65.536" would belong to the
bundle with a bundle identity of 65.

9.3.1.2 Software PIDs
Configuration target services that are singletons can use a Java package name
they own as the PID (the reverse domain name scheme). As an example, the
PID com.acme.watchdog would represent a Watchdog service from the
ACME company.

9.3.1.3 Devices
Devices are usually organized on busses or networks. The identity of a device,
such as a unique serial number or an address, is a good component of a PID.
The format of the serial number should be the same as that printed on the
housing or box, to aid in recognition.

Bus Example Format Description

USB USB-0123-0002-
9909873

idVendor (hex 4)
idProduct (hex 4)
iSer ia lNumber (decimal)

Universal Ser ial Bus. Use the standard
device descr iptor .

IP IP-172.16.28.21 IP nr (dotted decimal) Internet Protocol

802 802-
00:60:97:00:9A:56

MAC address with : separators IEEE 802 MAC address (Token Ring,
Ethernet, . . .)

ONE ONE-06-
00000021E461

Family (hex 2) and ser ia l nr
inc luding CRC (hex 6)

1-wire bus of Dal las Semiconductor

COM COM-krups-brewer-
12323

seria l nr or type name of
device

Ser ia l ports

Table 14 Schemes for Device-Oriented PID Names
182-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 The Configuration Object
9.4 The Configuration Object
A Configurat ion object contains the configuration dictionary: a set of proper-
ties to configure an aspect of a bundle. A bundle can receive Configurat ion
objects by registering a configuration target service with a PID service prop-
erty. See The Persistent Identity on page 181 for more information about PIDs.

During registration, the Configuration Admin service must detect these tar-
gets and hand over their configuration dictionary via a callback. If this config-
uration dictionary is subsequently modified, the modified dictionary is
handed over to the configuration target again with the same callback.

The Conf igurat ion object is primarily a set of properties that can be updated by
a management system, user interfaces on the OSGi environment, or other
applications. Configuration changes are first made persistent, and then passed
to the target service via a call to the updated method in ManagedServiceFac-
tory or ManagedService class.

9.4.1 Location Binding
When a Conf igurat ion object is created by either getConfigurat ion or create-
FactoryConfigurat ion , it becomes bound to the location of the calling bundle.
This location is obtained with the associated bundle’s getLocat ion method.

Location binding is a security feature that assures that only management bun-
dles can modify configuration data, and other bundles can only modify their
own configuration data. A Secur ityExcept ion is thrown if a non management
bundle attempts to modify the configuration information of another bundle.

If a Managed Service is registered with a PID that is already bound to another
location, the normal callback to ManagedService.updated must not take
place.

Two argument versions of getConfigurat ion and createFactoryConf igurat ion
take a location String as their second argument. These methods require
AdminPermiss ion , and they create Configurat ion objects bound to the speci-
fied location, instead of the location of the calling bundle. These methods are
intended for management bundles.

A null location parameter may be used to create Configurat ion objects that are
not bound. In this case, the objects become bound to a specific location the
first time that they are used by a bundle.

A management bundle may create a Configurat ion object before the associated
Managed Service is registered. It may use a null location to avoid any depen-
dency on the actual location of the bundle which registers this service. When
the Managed Service is registered later, the Configurat ion object must be
bound to the location of the registering bundle, and its configuration dictio-
nary must then be passed to ManagedService.updated .
OSGi Service-Platform Release 2 183-282

The Configuration Object Configuration Admin Service Specification Version 1.0
9.4.2 Configuration Properties
A configuration dictionary contains a set of properties in a Dict ionary object.
The value types that must be used are the same types as the types supported in
the Framework service registry, which are defined as:

type =
 String | Integer | Long | Float
| Double | Byte | Short | BigInteger
| BigDecimal | Character | Boolean
| vector
| arrays

primitive =
 long | int | short | char
| byte | boolean | double | float

arrays =
primitive ‘[]’ | type ‘[]’

vector = Vector of type

The name or key of a property must always be a String object, and is not case
sensitive during look up, but must preserve the original case. Bundles should
not use nested vectors or arrays.

9.4.3 Property Propagation
An implementation of a Managed Service should copy all the properties of the
Dict ionary object argument in updated(Dict ionary) , known or unknown, into
its service registration properties using Serv iceRegistrat ion.setPropert ies .

This propagation allows the development of applications that leverage the
Framework service registry more extensively, so compliance with this mecha-
nism is advised.

A configuration target service may ignore any configuration properties it does
not recognize, or it may change the values of the configuration properties
before these properties are registered. Configuration properties in the Frame-
work service registry are not strictly related to the configuration information.

Bundles that cooperate with the propagation of configuration properties can
participate in horizontal applications. For example, an application that main-
tains physical location information in the Framework service registry. It could
offer support by finding out where a particular device is located in the house
or car. This service could use a property dedicated to the physical location and
provide functions that leverage this property: for example, a graphic user
interface that displays these locations.

9.4.4 Automatic Properties
The Configuration Admin service must automatically add a number of proper-
ties to the configuration dictionary. If these properties are set by a configuring
bundle, they must always be overridden. Therefore, the receiving bundle can
assume that the following properties are defined by the Configuration Admin
service and not by the configuring bundle:

• serv ice.pid – Set to be the PID of the associated Conf igurat ion object.
184-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Managed Service
• serv ice. factoryPid – Only set for a Managed Service Factory. It is then set to
the PID of the associated Managed Service Factory.

• serv ice.bundleLocat ion – Set to the location to which this configuration is
bound. If the location is nul l, this property is not set. This property should
not be set in the service registry because the bundle’s location might be
secure information.

Constants for some of these properties can be found in org.osgi . f rame-
work.Constants . These system properties are all of type Str ing .

9.5 Managed Service
A Managed Service is used by a bundle that needs one configuration dictio-
nary. Each Managed Service is associated with zero or more Configurat ion
objects in the Configuration Admin service.

A bundle can register any number of ManagedServ ice objects, but each must
be identified with its own PID.

A bundle should use a Managed Service when it needs configuration informa-
tion for:

• A Singleton – A single entity in the bundle needs to be configured.
• Externally Detected Devices – Each device that is detected causes a registration

of an associated ManagedServ ice object. The PID of this object is related to
the identity of the device: for example, the address or serial number.

9.5.1 Networks
When a device in the external world needs to be represented in the OSGi Envi-
ronment, it must be detected in some manner. The control is from the external
world, and the Configuration Admin service cannot know the identity and the
number of instances without assistance. When a device is detected, it still
needs configuration information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are
attached and removed. For example, when it detects a temperature sensor, it
could register a Sensor service with the Framework service registry. This Sen-
sor service needs configuration information specifically for that sensor: which
lamps should be turned on, at what temperature it triggers, what timer should
be started, in what zone it resides, and so on. One bundle could potentially
have hundreds of these sensors and actuators, and each needs its own configu-
ration information.

Each of these Sensor services should be registered as a Managed Service with a
PID related to the physical sensor (such as the address) to receive configuration
information.

Another examples are services discovered on networks with protocols like Jini,
UPnP, and Salutation. They can usually be represented in the Framework ser-
vice registry. A network printer, for example, could be detected via UPnP. Once
in the service registry, these services usually require local configuration infor-
mation. A Printer service needs to be configured for its local role: location,
access list, and so on.
OSGi Service-Platform Release 2 185-282

Managed Service Configuration Admin Service Specification Version 1.0
This information needs to be available in the Framework service registry
whenever that particular Printer service is registered. Therefore, the Configu-
ration Admin service must remember the configuration information for this
Printer service.

This type of service should register with the Framework as a Managed Service
in order to receive appropriate configuration information.

9.5.2 Singletons
When an object must be instantiated only once, it is called a singleton. A sin-
gleton requires a single configuration dictionary. Bundles may implement sev-
eral different types of singletons if necessary.

A Watchdog service could watch the registry for the status and presence of ser-
vices in the Framework service registry. Only one instance of a Watchdog ser-
vice is needed, so only a single configuration dictionary is required, which
contains the polling time and the list of services to watch.

9.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more
ManagedServ ice objects with a PID service property. If it has a default set of
properties for its configuration, it may include them as service properties of
the Managed Service. These properties may be used as a configuration tem-
plate when a Configurat ion object is created for the first time. A Managed Ser-
vice optionally implements the org.osgi.serv ice.metatype.MetaTypeProvider
interface to provide information about the property types. See Meta Typing on
page 199.

When this registration is detected by the Configuration Admin service, the fol-
lowing steps must occur.

• The configuration stored for the registered PID must be retrieved. If there is
a Conf igurat ion object for this PID, it is sent to the Managed Service with
updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is
available, the Configuration Admin service must call updated(Dict ionary)
with a null parameter.

• If the Configuration Admin service starts up after a Managed Service is reg-
istered, it must call updated(Dict ionary) on this service as soon as possible.
For this reason, a Managed Service must always get a callback when it reg-
isters and the Configuration Admin service is started.

The updated(Dict ionary) callback from the Configuration Admin service to
the Managed Service must take place on a thread that is different from the one
that executed the registration. This requirement allows the Managed Service
to finish its initialization in a synchronized method without interference from
the Configuration Admin service callback.

Care should be taken not to cause deadlocks by calling the Framework within
a synchronized method.
186-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Managed Service
Figure 29 Managed Service Configuration Action Diagram

The updated method may throw a Configurat ionException . This object must
describe the problem as well as what property caused the exception.

9.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in
the service registry for a short period before they are replaced by the properties
of the actual configuration dictionary. Care should be taken that this visibility
does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be
split into two pieces: an object performing the actual service and a Managed
Service. First, the Managed Service is registered, and then, after the configura-
tion is received, the actual service object is registered. In such cases, the use of a
Managed Service Factory that performs this function more naturally should be
considered.

9.5.5 Examples of Managed Service
Figure 30 shows a Managed Service configuration example. Two services are
registered under the ManagedService interface, each with a different PID.

Figure 30 PIDs and External Associations

Client Bundle Framework Admin

new

registerService()

send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props
Must be on another thread

Configuration
Admin Impl

16.1

com.

name=Erica

name=Elmer

database com.acme.fudd

4.102 name=Christer
size=2

Managed Service

size=8

acme.fudd size=42

PID configuration

= service

pid=4.102

OSGi
Service
Registry

no associated PID registered

events
OSGi Service-Platform Release 2 187-282

Managed Service Configuration Admin Service Specification Version 1.0
The Configuration Admin service has a database containing a configuration
record for each PID. When the Managed Service with service.pid =
com.acme.fudd is registered, the Configuration Admin service will retrieve
the properties name=Elmer and s ize=42 from its database. The properties are
stored in a Dict ionary object and then given to the Managed Service with the
updated(Dict ionary) method.

9.5.5.1 Configuring A Console Bundle
In this example, a bundle can run a single debugging console over a Telnet
connection. It is a singleton, so it uses a ManagedService object to get its con-
figuration information: the port and the network name on which it should reg-
ister.

class SampleManagedService implements ManagedService {
Dictionary properties;
ServiceRegistration registration;
Console console;

public synchronized void start(
BundleContext context) throws Exception {
properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

"com.acme.console");
properties.put("port", new Integer(2011));

registration = context.registerService(
ManagedService.class.getName(),
this,
properties

);
}

public synchronized void updated(Dictionary np) {
if (np != null) {

properties = np;
properties.put(

Constants.SERVICE_PID, "com.acme.console");
}

if (console == null)
console = new Console();

int port = ((Integer)properties.get("port")).intValue();

String network = (String) properties.get("network");
console.setPort(port, network);
registration.setProperties(properties);

}
... further methods

}

188-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Managed Service Factory
9.5.6 Deletion
When a Conf igurat ion object for a Managed Service is deleted, the Configura-
tion Admin service must call updated(Dict ionary) with a nul l argument on a
thread that is different from that on which the Conf igurat ion.delete was exe-
cuted.

9.6 Managed Service Factory
A Managed Service Factory is used when configuration is needed for a service
that can be instantiated multiple times. When a Managed Service Factory is
registered with the Framework, the Configuration Admin service consults its
database and call updated(String, Dict ionary) for each associated Configura-
t ion object. It passes the identifier of the instance, which can be used as a PID,
as well as a Dict ionary object with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functional-
ity a number of times, each time with different configuration dictionaries. In
this situation, the Managed Service Factory acts like a class and the Configura-
tion Admin service can use this Managed Service Factory to instantiate instances
for that class.

In the next section, the word factory refers to this concept of creating instances
of a function defined by a bundle that registers a Managed Service Factory.

9.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when the bundle does not have an
internal or external entity associated with the configuration information, but
can potentially be instantiated multiple times.

9.6.1.1 Example Email Fetcher
An email fetcher program shows the number of emails that a user has on a dis-
play – a function likely to be required for different users. This function could
be viewed as a class that needs to be instantiated for each user. Each instance
requires different parameters: password, host, protocol, user id, and so on.

An implementation of the Email Fetcher service should register a Managed-
ServiceFactory object. In this way, the Configuration Admin service can
define the configuration information for each user separately. The Email
Fetcher service will only receive a configuration dictionary for each required
instance (user).

9.6.1.2 Example Temperature Conversion Service
A bundle has the code to implement a conversion service that receives a tem-
perature, and, depending on settings, can turn an actuator on and off. This ser-
vice would need to be instantiated many times depending on where it is
needed. Each instance would require its own configuration information for:

• Upper value
• Lower value
• Switch Identification
• ...
OSGi Service-Platform Release 2 189-282

Managed Service Factory Configuration Admin Service Specification Version 1.0
Such a conversion service should register a service object under a Managed-
ServiceFactory interface. A configuration program can then use this Managed
Service Factory to create instances as needed. For example, this program could
use a Graphic User Interface (GUI) to create such a component and configure
it.

9.6.1.3 Serial Ports
Serial ports cannot always be used by the OSGi Device Access specification
implementations. First, some environments have no means to identify avail-
able serial ports. Second, a device on a serial port cannot always provide infor-
mation about its type.

Therefore, each serial port requires a description of the device that is con-
nected. The bundle managing the serial ports would need to instantiate a num-
ber of serial ports under control of the Configuration Admin service, with the
appropriate DEVICE_CATEGORY property to allow it to participate in the
Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should
register a Managed Service Factory. The Configuration Admin service can
then, with the help of a configuration program, define configuration informa-
tion for each available serial port.

9.6.2 Registration
The configuration dictionary for a Managed Service Factory is identified by a
PID, similar to the Managed Service configuration dictionary. The Managed
Service Factory, however, also has a factory PID: the PID of the associated Man-
aged Service Factory. It is used to group all Managed Service Factory configura-
tion dictionaries together.

When a Conf igurat ion object for a factory is created (Conf igurat ionAd-
min.createFactoryConfigurat ion), a new unique PID is created for this object
by the Configuration Admin service. The scheme used for this PID is defined
by the Configuration Admin service, and is unrelated to the factory PID.

When the Configuration Admin service detects the registration of a Managed
Service Factory, it must find all configuration dictionaries for this factory and
must then sequentially call ManagedServiceFactory. updated(Str ing, Dict io-
nary) for each configuration dictionary. The first argument is the PID of the
Conf igurat ion object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

The receiver should then create instances of the associated factory class. The
bundle may register new services with the Framework, using the PID given in
the Conf igurat ion object, but it is not required. The configuration dictionary
may be used internally only.

The Configuration Admin service must guarantee that the Configurat ion
objects are not deleted before their properties are given to the Managed Service
Factory, and must assure that no race conditions exist between initialization
and updates.
190-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Managed Service Factory
Figure 31 Managed Service Factory Action Diagram

A Managed Service Factory has only one update method: updated(Str ing,Dic-
t ionary) . This method can be called any number of times as Configuration
objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the
first time, in which case it should create a new instance, or a subsequent time,
in which case it should update an existing instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a
thread that is different from the one that executed the registration. This
requirement allows an implementation of a Managed Service Factory to use a
synchronized method to assure that the callbacks do not interfere with the
Managed Service Factory registration.

The updated(Str ing,Dict ionary) method may throw a Configurat ionExcep-
t ion object. This object describes what property caused the problem and what
the problem was. These exceptions should be logged by a Configuration
Admin service.

9.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the
deleted(Str ing) method is called. The argument is the PID for this instance.
The implementation of the Managed Service Factory must remove all informa-
tion, and stop any behavior, associated with that PID. If a service was registered
for this PID, it should be unregistered.

9.6.4 Example of Managed Service Factory
Figure 32 highlights the differences between a Managed Service and a Man-
aged Service Factory. It shows how a Managed Service Factory implementa-
tion receives the configuration information that was created before it was
registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedSer-
viceFactory object with PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its
database. It finds three Conf igurat ion objects for which the factory PID is
equal to com.acme.email . It must call updated(Str ing,Dict ionary) for each
of these Conf igurat ion objects, on the newly registered ManagedServ ice-
Factory object.

Client bundle Framework Admin

new

registerService()

send registered event

updated()

Configuration

get all for factory

implementor of
ManagedServiceFactory

set the
configuration

get pid

for each found pidfor a new
instance

MUST be on another thread
OSGi Service-Platform Release 2 191-282

Managed Service Factory Configuration Admin Service Specification Version 1.0
• For each configuration dictionary received, the factory should create a new
instance of a EMai lFetcher object, one for er ica (PID=16.1), one for anna (
PID=16.3) and one for elmer (PID=16.2).

• The EMai lFetcher objects are registered under the Topic interface so their
results can be viewed by an online display.
If the MailFetcher object is registered, it may safely use the PID of the Con-
figurat ion object because the Configuration Admin service must guarantee
its suitability for this purpose.

Figure 32 Managed Service Factory Example

9.6.5 Multiple Consoles Example
This example allows multiple consoles, each of which has its own port and
interface, to run simultaneously. This approach is very similar to the example
for the Managed Service, but highlights the difference by allowing multiple
consoles to be created.

class ExampleFactory implements ManagedServiceFactory {
Hashtable consoles = new Hashtable();

public void start(BundleContext context)
throws Exception {
Hashtable local = new Hashtable();
local.put(Constants.SERVICE_PID, "com.acme.console");
context.registerService(

ManagedServiceFactory.class.getName(),
this,
local

);
}

public void updated(String pid, Dictionary config){
Console console = (Console) consoles.get(pid);

Configuration
Admin

MailFetchFactory
pid=
com.acme.email

pid=16.1
name=erica

OSGi Service
registration
events

pid=16.1

pid=16.2
name=erica

name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service

factory pid
= com.acme

Registry

Factory

factory pid
= eric.mf

.email
192-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Configuration Admin Service
if (console == null) {
console = new Console(context);
consoles.put(pid, console);

}

int port = getInt(config, "port", 2011);
String network = getString(

config,
"network",
null /*all*/

);
console.setPort(port, network);

}

public void deleted(String pid) {
console = (Console) consoles.get(pid);
if (console != null) {

consoles.remove(pid);
console.close();

}
}

}

9.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain the configu-
ration data in an OSGi environment. This configuration information is defined
by a number of Conf igurat ion objects associated with specific configuration
targets. Conf igurat ion objects can be created, listed, modified, and deleted
through this interface. Either a remote management system or the bundles
configuring their own configuration information may perform these opera-
tions.

The Conf igurat ionAdmin interface has methods for creating and accessing the
Conf igurat ion objects for a Managed Service service, as well as methods for
managing new Conf igurat ion objects for a Managed Service Factory.

9.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Conf igurat ion object with Conf ig-
urat ionAdmin.getConfigurat ion . No create method is offered because doing so
could introduce race conditions between different bundles creating the same
Conf igurat ion object. The getConfigurat ion method must atomically create
and persistently store an object if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) – This method is used by a bundle with a given
location to configure its own ManagedServ ice objects. The argument spec-
ifies the PID of the targeted service.

• getConfigurat ion(Str ing, Str ing) – This method is used by a management
bundle to configure another bundle. Therefore, this management bundle
needs AdminPermiss ion . The first argument is the location identifier and
the second is the PID of the targeted ManagedService object.
OSGi Service-Platform Release 2 193-282

Configuration Admin Service Configuration Admin Service Specification Version 1.0
All Conf igurat ion objects have a method, getFactoryP id() , which in this case
must return nul l because the Conf igurat ion object is associated with a Man-
aged Service.

9.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two methods to create a new instance
of a Managed Service Factory:

• createFactoryConfigurat ion(Str ing) – This method is used by a bundle
with a given location to configure its own ManagedServiceFactory objects.
The argument specifies the PID of the targeted ManagedServ iceFactory
object. This factory PID can be obtained from the returned Configurat ion
object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing, Str ing)– This method is used by a
management bundle to configure another bundle’s ManagedServ ice-
Factory object. This management bundle needs AdminPermission . The first
argument is the location identifier and the second is the PID of the targeted
ManagedServ iceFactory object. This factory PID can be obtained from the
returned Configurat ion object with getFactoryP id method.

9.7.3 Accessing Existing Configurations
The existing set of Conf iguration objects can be listed with the l i stConfigura-
t ions(String) . The argument is a Str ing object with a filter expression. This fil-
ter expression has the same syntax as the Framework Fi lter . For example:

(&(size=42)(service.bundleLocation=*osgi*))

The filter function must use the properties of the Conf igurat ion objects and
only return the ones that matches the filter expression.

A single Configurat ion object is identified with a PID and can be obtained with
getConfigurat ion(Str ing) .

If the caller has AdminPermission , then all Configurat ion objects are eligible
for search. In other cases, only Configurat ion objects bound to the calling bun-
dle’s location must be returned.

nul l is returned in both cases when an appropriate Configurat ion object can-
not be found.

9.7.3.1 Updating a Configuration
The process of updating a Configurat ion object is the same for Managed Ser-
vices and Managed Service Factory. First, l istConf igurat ions(String) or get-
Conf igurat ion(Str ing) should be used to get a Configurat ion object. The
properties can be obtained with Configurat ion.getPropert ies . When no
update has occured since this object was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration
Admin service first stores the configuration information and then calls the
configuration target updated method: either the ManagedService.updated or
ManagedServiceFactory.updated method. If this target service is not regis-
tered, the fresh configuration information must be set when the configuration
target service registers.
194-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Configuration Plugin
The update method calls in Conf igurat ion objects are not executed synchro-
nously with the related target service updated method. This method is called
on a different thread, some period of time after the configuration information
has been updated in the Configurat ion object. The Configuration Admin ser-
vice, however, must have updated the persistent storage before the update
method returns.

9.7.4 Deletion
A Configurat ion object that is no longer needed can be deleted with Conf igu-
rat ion.delete , which removes the Configurat ion object from the database. The
database must be updated before the target service updated method is called.

If the target service is a Managed Service Factory, the factory is informed of the
deleted Conf igurat ion object by a call to ManagedServiceFactory.deleted . It
should then remove the associated instance. The ManagedServiceFac-
tory.deleted call is done on a separate thread some period of time after the
Conf igurat ion object has been deleted, and hence is asynchronous with
respect to Configurat ion.delete .

When a Conf igurat ion object of a Managed Service is deleted, ManagedSer-
vice.updated is called with nul l for the propert ies argument. This method
may be used for cleanup, to revert to default values, or to stop servicing.

9.7.5 Updating a Bundle’s Own Configuration
The Configuration Admin service specification does not distinguish between
updates via a management bundle and a bundle updating its own configura-
tion information (as defined by its location). Even if a bundle updates its own
configuration information, the Configuration Admin service must callback
the associated target service updated method.

As a rule, to update its own configuration, a bundle’s user interface should only
update the configuration information and never its internal structures
directly. This rule has the advantage that the events, from the bundle imple-
mentation’s perspective, appear similar for internal updates, remote manage-
ment updates, and initialization.

9.8 Configuration Plugin
The Configuration Admin service allows third-party applications to partici-
pate in the configuration process; bundles that register a service object under a
Conf igurat ionPlugin interface can process the configuration dictionary before
it reaches the configuration target service.

Plugins allow sufficiently privileged bundles to intercept configuration dictio-
naries before they are passed to the intended Managed Service or Managed Ser-
vice Factory. The Configurat ionPlugin interface has only one method:
modifyConfigurat ion(ServiceReference, Dict ionary) – This method inspects
or modifies the configuration data.

All plugins in the service registry are traversed and called before the properties
are passed to the configuration target service. Each Configuration Plugin
object gets a chance to inspect the existing data, look at the target object which
can be a ManagedServ ice object or a ManagedServ iceFactory object, and mod-
ify the properties of the configuration dictionary.
OSGi Service-Platform Release 2 195-282

Configuration Plugin Configuration Admin Service Specification Version 1.0
Obviously, Conf igurat ionPlugin objects should not modify properties that
belong to the configuration properties of the target service unless the implica-
tions are understood.This functionality is mainly intended to provide func-
tions that leverage the Framework service registry.

For example, a Configuration Plugin service may add a physical location prop-
erty to a service. This property can be leveraged by applications that want to
know where a service is physically located. This scenario could be carried out
without any further support of the service itself, except for the general require-
ment that the service should propagate the properties it receives from the Con-
figuration Admin service to the service registry.

Figure 33 Order of Configuration Plugin Services

9.8.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration
property. The value is the PID of the configuration target whose configuration
updates the Configurat ionPlugin objects wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the
configuration target service with the specified PID. Omitting the cm.target
registration property means that it is called for all configuration updates.

9.8.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with
the value (objectc lass=com.acme.Alarm). When the Configuration Admin
service sets this property on the target service, a Configurat ionPlugin object
may replace the (objectclass=com.acme.Alarm) filter with an array of existing
alarm systems' PIDs:

ID "service.to=[32434,232,12421,1212]"

Now a new Alarm Service with service.pid=343 is registered, requiring that
the to list of the target service be updated. The bundle which registered the
Configuration Plugin service, therefore, wants to set the to registration prop-
erty on the target service. It does not do this by calling ManagedSer-
vice.updated directly for several reasons:

• In a securely configured system it should not have the permission to make
this call or even obtain the target service.

• It could get into race conditions with the Configuration Admin service if it
did. Both services would compete for access simultaneously.

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

update() modifyConfiguration()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object
196-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Remote Management
Instead, it must get the Conf igurat ion object from the Configuration Admin
service and call the update method on it.

The Configuration Admin service must schedule a new update cycle on
another thread, and sometime in the future must call Configurat ionPlu-
gin.modifyPropert ies . The Configurat ionPlugin object could then set the ser-
vice.to property to [32434,232,12421,1212, 343] . After that, the
Configuration Admin service must call updated on the target service with the
new service.to list.

9.8.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under control of the
Configuration Admin service, which must determine whether to accept these
changes, hide critical variables, or deny changes for other reasons.

The Conf igurat ionPlugin interface must also allow plugins to detect configura-
tion updates to the service via the callback. This ability allows them to syn-
chronize the configuration updates with transient information.

9.8.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it
must fetch the appropriate Configurat ion object from the Configuration
Admin service and call the update() method (the no parameter version) on
this object. This call forces an update with the current configuration dictio-
nary, so that all applicable plugins get called again.

9.8.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on
the service.cmRanking configuration property of the Configurat ionPlugin
object. Table 15 shows the usage of the serv ice.cmRanking property for order
of calling the Configuration Plugin services.

9.9 Remote Management
This specification does not attempt to define a remote management interface
for the Framework. The purpose of this specification is to define a minimal
interface for bundles which is complete enough to test.

service.cmRanking value Description

< 0 The Configuration Plugin service should not modify properties and must be
called before any modifications are made.

> 0 && <= 1000 Modifies the configuration dictions. The calling order should be based on the
value of the serv ice.cmRanking property.

> 1000 Should not modify data and shall be called after all modifications are made.

Table 15 serv ice.cmRanking Usage For Ordering
OSGi Service-Platform Release 2 197-282

Remote Management Configuration Admin Service Specification Version 1.0
The Configuration Admin service is a primary aspect of remote management,
however, and this specification must be compatible with common remote
management standards. This section discusses some of the issues of using this
specification with [26] DTMF Common Information Model (CIM) and [27] Simple
Network Management Protocol (SNMP), the most likely candidates for remote
management today.

These discussions are not complete, comprehensive, or normative. They are
intended to point the bundle developer in relevant directions. Further specifi-
cations are needed to make a more concrete mapping.

9.9.1 Common Information Model
Common Information Model (CIM) defines the managed objects in [29] Inter-
face Definition Language (IDL) language which was developed for the Common
Object Request Broker Architecture (CORBA).

The data types have a syntax, and the data values have a syntax. Additionally
these syntaxes can be mapped to XML. Unfortunately, this XML mapping is
very different from the very applicable [28] XSchema XML data type definition
language. The Framework service registry property types are a proper subset of
the CIM data types.

In this specification, a Managed Service Factory would map to a CIM class defi-
nition. The primitives create , delete , and set are supported in this Specifica-
tion via the ManagedServiceFactory interface. The possible data types in CIM
are richer than the Framework supports, and should thus be limited to cases
when CIM classes for bundles are defined.

An important conceptual difference between this specification and CIM is the
naming of properties. CIM properties are scoped inside a class. In this Specifi-
cation, properties are primarily scoped inside the Managed Service Factory,
but are then placed in the registry, where they have global scope. This mecha-
nism is like [30] Lightweight Directory Access Protocol, in which the semantics of
the properties are defined globally and a class is a collection of globally defined
properties.

The specification does not address the non-Configuration Admin service prim-
itives, such as notifications and method calls.

9.9.2 Simple Network Management Protocol
The Simple Network Management Protocol (SNMP) defines the data model in
ASN.1. SNMP is a rich data typing language that supports many types that are
difficult to map to the data types supported in this specification. A large over-
lap exists, however, and it should be possible to design a data type that is appli-
cable in this context.

In this case, the PID of a Managed Service should map to the SNMP Object
IDentifier (OID). Managed Service Factories are mapped to tables in SNMP,
although this mapping creates an obvious restriction in data types because
tables can only contain scalar values. Therefore, the property values of the
Conf igurat ion object would have to be limited to scalar values.

Similar scoping issues as seen in CIM arise for SNMP because properties have a
global scope in the service registry.
198-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Meta Typing
SNMP does not support the concept of method calls or function calls. All infor-
mation is conveyed as the setting of values. The SNMP paradigm maps closely
to this specification.

This specification does not address the non-Configuration Admin primitives,
such as traps.

9.10 Meta Typing
This section discusses how the Metatype specification is used in the context of
a Configuration Admin service.

When a Managed Service or Managed Service Factory is registered, the service
object may also implement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory service object implements
the MetaTypeProvider interface, a management bundle may assume that the
associated ObjectClassDefin it ion object can be used to configure the service.

The ObjectClassDef in it ion and AttributeDef in it ion objects contain sufficient
information to automatically build simple user interfaces. They can also be
used to augment dedicated interfaces with accurate validations.

This specification does not address how the metatype is made available to a
management system, due to the many open issues regarding remote manage-
ment.

9.11 Security

9.11.1 Permissions
Configuration Admin service security is implemented using ServicePermis-
s ion and AdminPermission . The following table summarizes the permissions
needed by the Configuration Admin bundle itself, as well as those needed by
the bundles with which it interacts.

Bundle Registering ServicePermisson Action Required AdminPermission

Configurat ionAdmin REGISTER Conf igurat ionAdmin Yes

GET ManagedServ ice

GET ManagedServiceFactory

GET Configurat ionPlugin

ManagedService REGISTER ManagedService No

GET Configurat ionAdmin

ManagedServiceFactory REGISTER ManagedServiceFactory No

GET Configurat ionAdmin

Configurat ionPlugin REGISTER Conf igurat ionPlugin No

GET Configurat ionAdmin

Table 16 Permission Overview Configuration Admin
OSGi Service-Platform Release 2 199-282

Security Configuration Admin Service Specification Version 1.0
The Configuration Admin service must have ServicePermiss ion[REGISTER] ,
for the Conf igurat ionAdmin interface. It will also be the only bundle that
needs the ServicePermiss ion [GET] , for ManagedService , ManagedServ iceFac-
tory and Configurat ionPlugin interfaces. No other bundle should be allowed to
have GET permission for these interfaces. The Configuration Admin bundle
must also hold AdminPermiss ion.

Bundles that can be configured must have the ServicePermiss ion[REGISTER] ,
for ManagedService or ManagedServiceFactory interfaces.

Bundles registering Conf igurat ionPlugin objects must have the ServicePer-
miss ion with action REGISTER for Configurat ionPlugin interfaces. The Config-
uration Admin service must trust all services registered with the
Conf igurat ionPlugin interface. Only the Configuration Admin service should
have Serv icePermiss ion[GET] on a Configurat ionPlugin interface.

If a Managed Service or Managed Service Factory is implemented in an object
that is also registered under another interface, it is possible, although inappro-
priate, for a bundle other than the Conf igurat ion Admin service implementa-
tion to call updated . Security-aware bundles can avoid this problem by having
their updated methods check that the caller holds the AdminPermission .

Bundles that want to change their own configuration need ServicePermis-
s ion[GET] for Conf igurat ionAdmin interface. A bundle with AdminPermiss ion
is allowed to access and modify any Conf igurat ion object.

Pre-configuration of bundles requires AdminPermission because the methods
that specify a location require this permission.

9.11.2 Forging PIDs
A risk exists of an unauthorized bundle forging a PID in order to obtain and
possibly modify the configuration information of another bundle. To mitigate
this risk, Configurat ion objects are generally bound to a specific bundle loca-
tion, and are not passed to any Managed Service or Managed Service Factory
registered by a different bundle.

Bundles with the required AdminPermiss ion can create Configurat ion objects
that are not bound: that is, they have their location set to null . This ability can
be useful for pre-configuring bundles before they are installed, without having
to know their actual locations.

In this scenario, the Conf igurat ion object must become bound to the first bun-
dle which registers a Managed Service (or Managed Service Factory) with the
right PID.

A bundle could still possibly obtain another bundle’s configuration, by regis-
tering a Managed Service with the right PID before the victim bundle does so.
This situation can be regarded as a denial-of-service attack, because the victim
bundle would never receive its configuration information. Such an attack can
be avoided by always binding Conf igurat ion objects to the right locations. It
can also be detected by the Configuration Admin service, because later, when
the victim bundle registers the correct PID, two equal PIDs are registered, and
this violation should be logged.
200-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 Configurable Service
9.11.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed
by a bundle. For example, when the Configuration Admin Bundle orders a
bundle to use port 2011 for a console, that bundle also needs permission for lis-
tening to incoming connections on that port.

Both a simple and a complex solution are available for this situation.

The simple solution is when the bundle has a set of permissions that do not
define specific values but allow a range of values. For example, a bundle could
listen to ports above 1024 freely. All these ports could then be used for configu-
ration.

The other solution is more complicated. In an environment where there is
very strong security, the bundle would only be allowed a specific port. This sit-
uation requires an atomic update of both the configuration data and the per-
missions. If this update was not atomic, a potential security hole would exist
during the period of time that the set of permissions did not match the config-
uration.

The following scenario can be used to update a configuration and the security
permissions.

• Stop the bundle.
• Update the appropriate Configurat ion object via the Configuration Admin

service.
• Update the permissions in the Framework.
• Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

9.12 Configurable Service
Both the Configuration Admin service and the org.osgi . f ramework.Conf ig-
urable interface address configuration management issues. It is the intention
of this specification to replace this Framework interface for configuration
management.

The Framework Configurable mechanism works as follows. A registered ser-
vice object implements the Configurable interface to allow a management
bundle to configure that service. The Configurable interface has only one
method: getConf igurat ionObject() . This method returns a Java Bean. Beans
can be examined and modified with the java. ref lect or java.bean packages.

This scheme has the following disadvantages:

• No factory – Only registered services can be modified, unlike the Managed
Service Factory that creates any number of services.

• Atomicity – The beans or reflection API can only modify one property at a
time, and there is no way to tell the bean that no more modifications to the
properties will follow. This limitation complicates updates of configura-
tions that have dependencies between properties.
This specification passes a Dict ionary object that contains all the configura-
tion properties at once.
OSGi Service-Platform Release 2 201-282

org.osgi.service.cm Configuration Admin Service Specification Version 1.0
• Profile – The Java beans API is linked to many packages that are not likely to
be present in OSGi environments. The reflection API may be present, but is
not simple to use.
This specification has no required libraries.

• User Interface support – UI support in beans is very rudimentary when no
AWT is present.
The associated Metatyping specification does not require any external
libraries, and has extensive support for UIs including localization.

Package
9.13 org.osgi.service.cm

DescriptionThe OSGi Configuration Admin service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.cm; specification-
version=1.0

9.13.1 Configuration
Syntaxpublic interface Configuration DescriptionThe configuration information for a Managed Service or Managed Serv ice-
Factory object. The Configuration Admin service uses this interface to repre-
sent the configuration information for a Managed Serv ice or for a service
instance of a Managed Service Factory .

A Configurat ion object contains a set of configuration dictionary and allows
the properties to be updated via this object. Bundles wishing to receive config-
uration dictionaries do not need to use this class - they register a Managed-
Serv ice or Managed Service Factory . Only administrative bundles, and
bundles wishing to update their own configurations need to use this class.

Class Summary

Interfaces

Configurat ion The configuration information for a Managed Service or Managed Serv ice-
Factory object.

Configurat ionAdmin Service for administering configuration data.

Configurat ionPlugin A service interface for processing configuration dictionary before the update.

ManagedServ ice A service that can receive configuration data from a Configuration Admin ser-
vice.

ManagedServiceFactory Manage multiple service instances.

Exceptions

Configurat ionExcept ion An Exception class to inform the Configuration Admin service of problems
with configuration data.
202-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 org.osgi.service.cm
The properties handled in this configuration have case insensitive Str ing
objects as keys. However, case is preserved from the last set key/value. The
value of the property may be of the following types:

type = String | Integer | Long
| Float | Double | Byte
| Short | BigInteger
| BigDecimal | Character
| Boolean | vector | arrays
primitive = long | int | short
| char | byte | double | float
arrays = primitive '[]' | type '[]'
vector = Vector of type

A configuration can be bound to a bundle location (Bundle.get Locat ion()). The
purpose of binding a Conf igurat ion object to a location is to make it impossi-
ble for another bundle to forge a PID that would match this configuration.
When a configuration is bound to a specific location, and a bundle with a dif-
ferent location registers a corresponding Managed Serv ice object or Managed-
Service Factory object, then the configuration is not passed to the updated
method of that object.

If a configuration’s location is null , it is not yet bound to a location. It will
become bound to the location of the first bundle that registers a Managed-
Serv ice or Managed Service Factory object with the corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service
Factory and a Managed Service. When it is important to differentiate between
these two the term “factory configuration” is used.

9.13.1.1 Methodsdelete()

public void delete()
throws IOException,
IllegalStateException

Delete this Configurat ion object. Removes this configuration object from the
persistent store. Notify on a different thread the corresponding Managed Ser-
vice or Managed Service Factory. A Managed Service object is notified by a call
to its updated method with a nul l properties argument. A Managed Service-
Factory object is notified by a call to its deleted method.

Throws: IOException - If delete fails

I l legalStateExcept ion - if this configuration has been deleted
getBundleLocation()

public java.lang.String getBundleLocation(
)
throws SecurityException,
IllegalStateException

Get the bundle location. Returns the bundle location to which this configura-
tion is bound, or null if it is not yet bound to a bundle location.

This call requires Admin Permiss ion .

Returns: location to which this configuration is bound, or nul l .

Throws: Secur i tyException - if the caller does not have Admin Permiss ion .

I l legalStateExcept ion - if this Configurat ion object has been deleted.
getFactoryPid()

public java.lang.String getFactoryPid()
throws IllegalStateException

For a factory configuration return the PID of the corresponding Managed Ser-
vice Factory, else return nul l .

Returns: factory PID or null
OSGi Service-Platform Release 2 203-282

org.osgi.service.cm Configuration Admin Service Specification Version 1.0
Throws: I l legalStateExcept ion - if this configuration has been deleted
getPid()

public java.lang.String getPid()
throws IllegalStateException

Get the PID for this Configurat ion object.

Returns: the PID for this Configurat ion object.

Throws: I l legalStateExcept ion - if this configuration has been deleted
getProperties()

public java.util.Dictionary getProperties()
throws IllegalStateException

Return the properties of this Conf iguration object. The Dict ionary object
returned is a private copy for the caller and may be changed without influenc-
ing the stored configuration. The keys in the returned dictionary are case
insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been
called, this method returns nul l .

Returns: A private copy of the properties for the caller or null .

Throws: I l legalStateExcept ion - if this configuration has been deleted
setBundleLocation(String)

public void setBundleLocation(
java.lang.String bundleLocation)
throws SecurityException,
IllegalStateException

Bind this Conf igurat ion object to the specified bundle location. If the bundle-
Location parameter is nul l then the Conf igurat ion object will not be bound to a
location. It will be set to the bundle’s location before the first time a Managed
Service/Managed Service Factory receives this Configurat ion object via the
updated method and before any plugins are called.

This method requires Admin Permiss ion .

Parameters: bundleLocat ion - a bundle location or nul l

Throws: Secur i tyException - if the caller does not have Admin Permiss ion

I l legalStateExcept ion - if this configuration has been deleted
update()

public void update()
throws IOException,
IllegalStateException

Update the Configurat ion object with the current properties. Initate the
updated callback to the Managed Service or Managed Service Factory with the
current properties on a different thread.

This is the only way for a bundle that uses a Configuration Plugin service to
initate a callback. For example, when that bundle detects a change that
requires an update of the Managed Service or Managed Service Factory via its
Conf igurat ion Plugin object.

Throws: IOException - if update cannot access the properties in persistent storage

I l legalStateExcept ion - if this configuration has been deleted

See Also: Conf igurat ionPlugin
update(Dictionary)

public void update(java.util.Dictionary
properties)
throws IOException,
IllegalArgumentException,
IllegalStateException

Update the properties of this Conf igurat ion object. Stores the properties in per-
sistent storage after adding or overwriting the following properties:

• “service.pid” : is set to be the PID of this configuration.
• “service.factoryPid” : if this is a factory configuration it is set to the factory

PID else it is not set.
• “service.bundleLocation” is set to the location to which this Conf igurat ion

object is bound. If the location is nul l , this property is not set.
204-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 org.osgi.service.cm
These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered,
its updated method will be called on another thread. Else, this callback is
delayed until aforementioned registration occurs.

Parameters: propert ies - the new set of properties for this configuration

Throws: IOException - if update cannot be made persistent

I l legalArgumentExcept ion - if the Dict ionary object contains invalid configu-
ration types

I l legalStateExcept ion - if this configuration has been deleted

9.13.2 ConfigurationAdmin
Syntaxpublic interface ConfigurationAdmin DescriptionService for administering configuration data.

The main purpose of this interface is to store bundle configuration data persis-
tently. This information is represented in Configurat ion objects. The actual
configuration data is a Dict ionary of properties inside a Configuration object.

There are two principally different ways to manage configurations. First there
is the concept of a Managed Service, where configuration data is uniquely asso-
ciated with an object registered with the service registry.

Next, there is the concept of a factory where the Configuration Admin service
will maintain 0 or more Conf igurat ion objects for a Managed Service Factory
that is registered with the Framework.

The first concept is intended for configuration data about “things/services”
whose existence is defined externally, e.g. a specific printer. Factories are
intended for “things/services” that can be created any number of times, e.g. a
configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a
Managed Service Factory in the service registry. A registration property named
serv ice.pid (persistent identifier or PID) must be used to identify this Managed
Service or Managed Service Factory to the Configuration Admin service.

When the ConfigurationAdmin detects the registration of a Managed Service,
it checks its persistent storage for a configuration object whose PID matches
the PID registration property (serv ice.pid) of the Managed Service. If found, it
calls updated(Dict ionary) method with the new properties. The implementa-
tion of a Configuration Admin service must run these call-backs one a thread
that differs from the initiating thread to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory
registration, it checks its storage for configuration objects whose factory Pid
matches the PID of the Managed Service Factory. For each such Conf igurat ion
objects, it calls the Managed Service Factory.updated method on a different
thread with the new properties. The calls to the updated method of a
Managed Service Factory must be executed sequential and not overlap in time.

In general, bundles having permission to use the Configuration Admin service
can only access and modify their own configuration information. Accessing or
modifying the configuration of another bundle requires Admin Permiss ion .
OSGi Service-Platform Release 2 205-282

org.osgi.service.cm Configuration Admin Service Specification Version 1.0
Conf igurat ion objects can be bound to a specified bundle location. In this case,
if a matching Managed Service or Managed Service Factory is registered by a
bundle with a different location, then the Configuration Admin service must
not do the normal callback, and it should log an error. In the case where a
Conf igurat ion object is not bound, its location field is nul l , the Configuration
Admin service will bind it to the location of the bundle that registers the first
Managed Service or Managed Service Factory that has a corresponding PID
property.

The method descriptions of this class refer to a concept of “the calling bundle”.
This is a loose way of referring to the bundle which obtained the Configura-
tion Admin service from the service registry. Implementations of
Conf igurat ion Admin must use a ServiceFactory to support this concept.

9.13.2.1 MethodscreateFactoryConfiguration(String)

public Conf igurat ion
createFactoryConfiguration(
java.lang.String factoryPid)
throws IOException, SecurityException

Create a new factory Configurat ion object with a new PID. The properties of
the new Conf igurat ion object are nul l until the first time that its update(
Dict ionary) method is called.

It is not required that the factory Pid maps to a registered Managed Service Fac-
tory.

The Configurat ion object is bound to the location of the calling bundle.

Parameters: factoryP id - PID of factory (not nul l).

Returns: a new Conf igurat ion object.

Throws: IOException - if access to persistent storage fails.

Secur i tyException - if caller does not have Admin Permiss ion and factory P id is
bound to another bundle.
createFactoryConfiguration(String, String)

public Conf igurat ion
createFactoryConfiguration(
java.lang.String factoryPid,
java.lang.String location)
throws IOException, SecurityException

Create a new factory Configurat ion object with a new PID. The properties of
the new Conf igurat ion object are nul l until the first time that its update(
Dict ionary) method is called.

It is not required that the factory Pid maps to a registered Managed Service Fac-
tory.

The Configurat ion is bound to the location specified. If this location is null it
will be bound to the location of the first bundle that registers a Managed Ser-
vice Factory with a corresponding PID.

This method requires Admin Permiss ion .

Parameters: factoryP id - PID of factory (not nul l).

locat ion - a bundle location string, or null .

Returns: a new Conf igurat ion object.

Throws: IOException - if access to persistent storage fails.

Secur i tyException - if caller does not have Admin Permission .
getConfiguration(String)

public Conf igurat ion getConfiguration(
java.lang.String pid)
throws IOException, SecurityException

Get an existing or new Conf igurat ion object from the persistent store. If the
Conf igurat ion object for this PID does not exist, create a new Configurat ion
object for that PID, where properties are null . Bind its location to the calling
bundle’s location.
206-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 org.osgi.service.cm
Else, if the location of the existing Configurat ion object is nul l, set it to the call-
ing bundle’s location.

If the location of the Conf igurat ion object does not match the calling bundle,
throw a Securi ty Except ion .

Parameters: pid - persistent identifier.

Returns: an existing or new Conf iguration matching the PID.

Throws: IOException - if access to persistent storage fails.

Secur i tyException - if the Configurat ion object is bound to a location different
from that of the calling bundle and it has no Admin Permiss ion .
getConfiguration(String, String)

public Conf igurat ion getConfiguration(
java.lang.String pid, java.lang.String
location)
throws IOException, SecurityException

Get an existing Configurat ion object from the persistent store, or create a new
Conf igurat ion object.

If a Configurat ion with this PID already exists in Configuration Admin service
return it. The location parameter is ignored in this case.

Else, return a new Configurat ion object. This new object is bound to the loca-
tion and the properties are set to nul l . If the location parameter is nul l, it will be
set when a Managed Service with the corresponding PID is registered for the
first time.

This method requires Admin Permiss ion .

Parameters: pid - persistent identifier.

locat ion - the bundle location string, or null .

Returns: an existing or new Conf iguration object.

Throws: IOException - if access to persistent storage fails.

Secur i tyException - if the caller does not have Admin Permiss ion .
listConfigurations(String)

public Conf igurat ion[]
listConfigurations(java.lang.String
filter)
throws IOException,
InvalidSyntaxException

List the current Conf igurat ion objects which match the filter.

Only Conf igurat ion objects with non-null properties are considered current.
That is, Conf igurat ion.get Propert ies() is guaranteed not to return nul l for
each of the returned Configurat ion objects.

Normally only Configurat ion objects that are bound to the location of the call-
ing bundle are returned. If the caller has Admin Permiss ion , then all matching
Conf igurat ion objects are returned.

The syntax of the filter string is as defined in the Fi lter class. The filter can test
any configuration parameters including the following system properties:

1. serv ice.pid - Str ing - the PID under which this is registered

2. serv ice. factory P id - Str ing - the factory if applicable

3. serv ice.bundle Locat ion - Str ing - the bundle location

The filter can also be null , meaning that all Conf iguration objects should be
returned.

Parameters: f i l ter - a Fi l ter object, or nul l to retrieve all Conf igurat ion objects.

Returns: all matching Configurat ion objects, or nul l if there aren’t any
OSGi Service-Platform Release 2 207-282

org.osgi.service.cm Configuration Admin Service Specification Version 1.0
Throws: IOException - if access to persistent storage fails

Inval idSyntaxException - if the filter string is invalid

9.13.3 ConfigurationException
Syntaxpublic class ConfigurationException

extends java.lang.Exception

All Implemented
Interfaces:

java.io.Serializable

DescriptionAn Exception class to inform the Configuration Admin service of problems
with configuration data.

9.13.3.1 ConstructorsConfigurationException(String, String)

public ConfigurationException(
java.lang.String property,
java.lang.String reason)

Create a Configurat ion Except ion object.

Parameters: property - name of the property that caused the problem, nul l if no specific
property was the cause

reason - reason for failure

9.13.3.2 MethodsgetProperty()

public java.lang.String getProperty() Return the property name that caused the failure or null.
getReason()

public java.lang.String getReason() Return the reason for this exception.

Returns: reason of the failure

9.13.4 ConfigurationPlugin
Syntaxpublic interface ConfigurationPlugin DescriptionA service interface for processing configuration dictionary before the update.

A bundle registers a Conf igurat ion Plugin object in order to process configura-
tion updates before they reach the Managed Service or Managed Service Fac-
tory. The Configuration Admin service will detect registrations of
Configuration Plugin services and must call these services every time before it
calls the Managed Service or Managed Service Factory updated method. The
Configuration Plugin service thus has the opportunity to view and modify the
properties before they are passed to the ManagedS ervice or Managed Service
Factory.

Configuration Plugin (plugin) services have full read/write access to all config-
uration information. Therefore, bundles using this facility should be trusted.
Access to this facility should be limited with Serv ice Permiss ion[REGISTER]
for the Configuration Plugin service. Implementations of a Configuration Plu-
gin service should assure that they only act on appropriate configurations.

The Integer service.cm Ranking registration property may be specified. Not
specifying this registration property, or setting it to something other than an
Integer , is the same as setting it to the Integer zero. The service.cm Ranking
property determines the order in which plugins are invoked. Lower ranked
plugins are called before higher ranked ones. In the event of more than one
plugin having the same value of serv ice.cm Ranking , then the Configuration
Admin service arbitrarily chooses the order in which they are called.

By convention, plugins with serv ice.cm Ranking< 0 or serv ice.cm Ranking >
1000 should not make modifications to the properties.
208-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 org.osgi.service.cm
The Configuration Admin service has the right to hide properties from plu-
gins, or to ignore some or all the changes that they make. This might be done
for security reasons. Any such behavior is entirely implementation defined.

A plugin may optionally specify a cm.target registration property whose value
is the PID of the Managed Service or Managed Service Factory whose configu-
ration updates the plugin is intended to intercept. The plugin will then only be
called with configuration updates that are targetted at the Managed Service or
Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

9.13.4.1 FieldsCM_TARGET

public static final java.lang.String
CM_TARGET

A service property to limit the Managed Service or Managed Service Factory
configuration dictionaries a Configuration Plugin service receives. This prop-
erty contains a Str ing[] of PIDs. A Configuration Admin service must call a
Configuration Plugin service only when this property is not set, or the target
service’s PID is listed in this property.

9.13.4.2 MethodsmodifyConfiguration(ServiceReference, Dictionary)

public void modifyConfiguration(
ServiceReference reference,
java.util.Dictionary properties)

View and possibly modify the a set of configuration properties before they are
sent to the Managed Service or the Managed Service Factory. The Configura-
tion Plugin services are called in increasing order of their serv ice.cm Ranking
property. If this property is undefined or is a non-Integer type, 0 is used.

This method should not modify the properties unless the serv ice.cm Ranking
of this plugin is in the range 0 <= serv ice.cm Ranking <= 1000 .

If this method throws any Exception , the Configuration Admin service must
catch it and should log it.

Parameters: reference - reference to the Managed Service or Managed Service Factory

conf igurat ion - the configuration properties

9.13.5 ManagedService
Syntaxpublic interface ManagedService DescriptionA service that can receive configuration data from a Configuration Admin ser-
vice.

A Managed Service is a service that needs configuration data. Such an object
should be registered with the Framework registry with the service.pid prop-
erty set to some unique identitifier called a PID.

If the Configuration Admin service has a Conf igurat ion object corresponding
to this PID, it will callback the updated() method of the Managed Serv ice
object, passing the properties of that Conf igurat ion object.

If it has no such Configurat ion object, then it calls back with a nul l properties
argument. Registering a Managed Service will always result in a callback to the
updated() method provided the Configuration Admin service is, or becomes
active. This callback is always done on a different thread than the thread that
performs the registration.

Else, every time that either of the updated() methods is called on that Conf ig-
urat ion object, the Managed Service.updated() method with the new proper-
ties is called. If the delete() method is called on that Configurat ion object,
Managed Service.updated() is called with a nul l for the properties parameter.
All these callbacks are done on a different thread.
OSGi Service-Platform Release 2 209-282

org.osgi.service.cm Configuration Admin Service Specification Version 1.0
The following example shows the code of a serial port that will create a port
depending on configuration information.

class SerialPort implements ManagedService {
ServiceRegistration registration;
Hashtable configuration;
CommPortIdentifier id;
synchronized void open(CommPortIdentifier id,
BundleContext context) {
this.id = id;
registration = context.registerService(
ManagedService.class.getName(),
this,
getDefaults()

);
}
Hashtable getDefaults() {
Hashtable defaults = new Hashtable();
defaults.put(“port”, id.getName());
defaults.put(“product”, “unknown”);
defaults.put(“baud”, “9600”);
defaults.put(Constants.SERVICE_PID,
“com.acme.serialport.” + id.getName());

return defaults;
}
public synchronized void updated(
Dictionary configuration) {
if (configuration == null)
registration.setProperties(getDefaults());

else {
setSpeed(configuration.get(“baud”));
registration.setProperties(configuration);

}
}
...

}

As a convention, it is recommended that when a Managed Service is updated,
it should copy all the properties it does not recognize into the service registra-
tion properties. This will allow the Configuration Admin service to set proper-
ties on services which can then be used by other applications.

9.13.5.1 Methodsupdated(Dictionary)

public void updated(java.util.Dictionary
properties)
throws ConfigurationException

Update the configuration for a Managed Service.

When the implementation of updated(Dict ionary) detects any kind of error in
the configuration properties, it should create a new Conf igurat ion Except ion
which describes the problem. This can allow a management system to provide
useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service
must catch it and should log it.
210-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 org.osgi.service.cm
The Configuration Admin service must call this method on a thread other
than the thread which initiated the callback. This implies that implementors
of Managed Service can be assured that the callback will not take place during
registration when they execute the registration in a synchronized method.

Parameters: propert ies - configuration properties, or null

Throws: Configurat ionExcept ion - when the update fails

9.13.6 ManagedServiceFactory
Syntaxpublic interface ManagedServiceFactory DescriptionManage multiple service instances. Bundles registering this interface are giv-
ing the Configuration Admin service the ability to create and configure a num-
ber of instances of a service that the implementing bundle can provide. For
example, a bundle implementing a DHCP server could be instantiated multi-
ple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the
Configuration Admin service, by a factory Configurat ion object that has a PID.
When such a Conf igurat ion is updated, the Configuration Admin service calls
the Managed Service Factory updated method with the new properties. When
updated is called with a new PID, the Managed Service Factory should create a
new factory instance based on these configuration properties. When called
with a PID that it has seen before, it should update that existing service
instance with the new configuration information.

In general it is expected that the implementation of this interface will main-
tain a data structure that maps PIDs to the factory instances that it has created.
The semantics of a a factory instance are defined by the Managed Service Fac-
tory. However, if the factory instance is registered as a service object with the
service registry, its PID should match the PID of the corresponding Configura-
t ion object.
OSGi Service-Platform Release 2 211-282

org.osgi.service.cm Configuration Admin Service Specification Version 1.0
An example that demonstrates the use of a factory. It will create serial ports
under command of the Configuration Admin service.

class SerialPortFactory
implements ManagedServiceFactory {
ServiceRegistration registration;
Hashtable ports;
void start(BundleContext context) {
Hashtable properties = new Hashtable();
properties.put(Constants.SERVICE_PID,
“com.acme.serialportfactory”);

registration = context.registerService(
ManagedService.class.getName(),
this,
properties

);
}
public void updated(String pid,
Dictionary properties) {
String portName = (String) properties.get(“port”);
SerialPortService port =
(SerialPort) ports.get(pid);

if (port == null) {
port = new SerialPortService();
ports.put(pid, port);
port.open();

}
if (port.getPortName().equals(portName))
return;

port.setPortName(portName);
}
public void deleted(String pid) {
SerialPortService port =
(SerialPort) ports.get(pid);

port.close();
ports.remove(pid);

}
...

}

9.13.6.1 Methodsdeleted(String)

public void deleted(java.lang.String pid) Remove a factory instance. Remove the factory instance associated with the
PID. If the instance was registered with the service registry, it should be unreg-
istered.

If this method throws any Exception , the Configuration Admin service must
catch it and should log it.

The Configuration Admin service must call this method on a thread other
than the thread which called delete() on the corresponding Configurat ion
object.

Parameters: pid - the PID of the service to be removed
212-282 OSGi Service-Platform Release 2

Configuration Admin Service Specification Version 1.0 References
getName()

public java.lang.String getName() Return a descriptive name of this factory.

Returns: the name for the factory, which might be localized
updated(String, Dictionary)

public void updated(java.lang.String pid,
java.util.Dictionary properties)
throws ConfigurationException

Create a new instance, or update the configuration of an existing instance. If
the PID of the Configurat ion object is new for the Managed Service Factory,
then create a new factory instance, using the configuration propert ies pro-
vided. Else, update the service instance with the provided propert ies .

If the factory instance is registered with the Framework, then the configura-
tion propert ies should be copied to its registry properties. This is not manda-
tory and security sensitive properties should obviously not be copied.

If this method throws any Exception , the Configuration Admin service must
catch it and should log it.

When the implementation of updated detects any kind of error in the configu-
ration properties, it should create a new Configurat ionExcept ion which
describes the problem.

The Configuration Admin service must call this method on a thread other
than the thread which necessitated the callback. This implies that implemen-
tors of the Managed Service Factory class can be assured that the callback will
not take place during registration when they execute the registration in a syn-
chronized method.

Parameters: pid - the PID for this configuration

propert ies - the configuration properties

Throws: Configurat ionExcept ion - when the configuration properties are invalid

9.14 References
[26] DTMF Common Information Model

http://www.dmtf.org

[27] Simple Network Management Protocol
RFCs http://directory.google.com/Top/Computers/Internet/Protocols/SNMP/
RFCs

[28] XSchema
http://www.w3.org/TR/xmlschema-0/

[29] Interface Definition Language
http://www.omg.org

[30] Lightweight Directory Access Protocol
http://directory.google.com/Top/Computers/Software/Internet/Servers/Direc-
tory/LDAP

[31] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical publishing.
OSGi Service-Platform Release 2 213-282

References Configuration Admin Service Specification Version 1.0
214-282 OSGi Service-Platform Release 2

Metatype Specification Version 1.0 Introduction
10 Metatype Specification
Version 1.0

10.1 Introduction
The Metatype specification defines interfaces that allow bundle developers to
describe attribute types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type infor-
mation of data that they can use as arguments. The data is based on attributes,
which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice
of using the language constructs to exchange data or using a technique based
on attributes/properties that are based on key/value pairs. Attributes provide
an escape from the rigid type-safety requirements of modern programming
languages.

Type-safety works very well for software development environments in which
multiple programmers work together on large applications or systems, but
often lacks the flexibility needed to receive structured data from the outside
world.

The attribute paradigm has several characteristics that make this approach
suitable when data needs to be communicated between different entities
which “speak” different languages. Attributes are uncomplicated, resilient to
change, and allow the receiver to dynamically adapt to different types of data.

As an example, the OSGi Service Gateway Specification 1.0 defines several
attribute types which are used in a Framework implementation, but which are
also used and referenced by other OSGi specifications such as the Configuration
Admin Service Specification on page 177. A Configuration Admin service imple-
mentation deploys attributes (key/value pairs) as configuration properties.

During the development of the Configuration Admin service, it became clear
that the Framework attribute types needed to be described in a computer read-
able form. This information (the metadata) could then be used to automati-
cally create user interfaces for management systems or could be translated into
management information specifications such as CIM, SNMP and the like.

10.1.1 Essentials
• Conceptual model – The specification must have a conceptual model for how

classes and attributes are organized.
• Standards – The specification should be aligned with appropriate standards,

and explained in situations where the specification is not aligned with, or
cannot be mapped to, standards.

• Remote Management – Remote management should be taken into account.
• Size – Minimal overhead in size for a bundle using this specification.
• Localization – It must be possible to use this specification with different lan-

guages at the same time. This ability allows servlets to serve information in
the language selected in the browser.
OSGi Service-Platform Release 2 215-282

Introduction Metatype Specification Version 1.0
• Type information – The definition of an attribution should contain the name
(if it is required), the cardinality, a label, a description, labels for enu-
merated values, and the Java class that should be used for the values.

• Validation – It should be possible to validate the values of the attributes.

10.1.2 Operation
This specification starts with an object that implements the MetaTypePro-
vider interface. It is not specified how this object is obtained, and there are sev-
eral possibilities. Often, however, this object is a service registered with the
Framework.

A MetaTypeProvider object provides access to ObjectClassDef in it ion objects.
These objects define all the information for a specific object class. An object
class is a some descriptive information and a set of named attributes (which
are key/value pairs).

Access to object classes is qualified by a locale and a Persistent IDentity (PID).
The locale is a Str ing object that defines for which language the ObjectClass-
Definit ion is intended, allowing for localized user interfaces. The PID is used
when a single MetaTypeProvider object can provide ObjectClassDefin it ion
objects for multiple purposes. The context in which the MetaTypeProvider
object is used should make this clear.

Attributes have global scope. Two object classes can consist of the same
attributes, and attributes with the same name should have the same definition.
This global scope is unlike many languages like Java that scope instance vari-
ables within a class, but it is similar to the Lightweight Directory Access Proto-
col (LDAP) and SNMP that also use a global attribute name space.

Attribute Definition objects provide sufficient localized information to gener-
ate user interfaces.

10.1.3 Entities
• Attribute – A key/value pair.
• AttributeDefinition – Defines a description, name, help text and type infor-

mation of an attribute.
• ObjectClassDefinition – Defines the type of a datum. It contains a description

and name of the type plus a set of Attr ibuteDef in it ion objects.
• MetaTypeProvider – Provides access to the object classes that are available

for this object. Access uses the PID and a locale to find the best ObjectClass-
Definit ion object.

Figure 34 Class Diagram Meta Typing, org.osgi.service.metatyping

provides
<<interface>>
ObjectClass
Definition

<<interface>>
MetaType
Provider

<<interface>>
Attribute
Definition

locale&

1

PID

0..n

0..n

1
contains
216-282 OSGi Service-Platform Release 2

Metatype Specification Version 1.0 Attributes Model
10.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework reg-
istry. The usage of the attributes in this specification and the Framework spec-
ification closely resemble the LDAP attribute model. Therefore, the names
used in this specification have been aligned with LDAP. Consequently, the
interfaces which are defined by this Specification are:

• AttributeDef init ion
• ObjectClassDef init ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further information
on ASN.1-defined attributes and X.500 object classes and attributes, see [33]
Understanding and Deploying LDAP Directory services.

The LDAP attribute model assumes a global name space for attributes, and
object classes consist of a number of attributes. So, if an object class inherits
the same attribute from different parents, only one copy of the attribute must
become part of the object class definition. This namespace implies that a given
attribute, for example cn , should always be the common name and the type
must always be a Str ing . An attribute cn cannot be an Integer in another object
class definition. In this respect, the OSGi approach towards attribute defini-
tions is comparable with the LDAP attribute model.

10.3 Object Class Definition
The ObjectClassDef in it ion interface is used to group the attributes which are
defined in AttributeDef init ion objects.

An ObjectClassDef in it ion object contains the information about the overall
set of attributes and has the following elements:

• A name which can be returned in different locales.
• A global namespace in the registry, which is the same condition as LDAP/

X.500 object classes. In these standards the OSI Object Identifier (OID) is
used to uniquely identify object classes. If such an OID exists, (which can be
requested at several standard organizations, and many companies already
have a node in the tree) it can be returned here. Otherwise, a unique id
should be returned. This id can be a Java class name (reverse domain name)
or generated with a GUID algorithm.
All LDAP-defined object classes already have an associated OID. It is
strongly advised to define the object classes from existing LDAP schemes
which provide many preexisting OIDs. Many such schemes exist ranging
from postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required or optional.

Note that in X.500 the mandatory or required status of an attribute is part of
the object class definition and not of the attribute definition.

• An icon, with an optional hint of its size.
OSGi Service-Platform Release 2 217-282

Attribute Definition Metatype Specification Version 1.0
10.4 Attribute Definition
The Attr ibuteDef in it ion interface provides the means to describe the data type
of attributes.

The Attr ibuteDef in it ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the Framework
for the attributes, called the syntax in OSI terms, which can be obtained
with the getType() method.

• AttributeDef init ion objects should use a similar OID as described in the ID
field for ObjectClassDefinit ion .

• A localized name intended to be used in user interfaces.
• A localized description that defines the semantics of the attribute and pos-

sible constraints, which should be usable for tooltips.
• An indication if this attribute should be stored as a unique value, a Vector ,

or an array of values. Also the maximum cardinality of the type.
• The data type, as limited by the Framework service registry attribute types.
• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in

GUIs, allowing the user to choose from a set.
• A default value. The return type of this is a Str ing[] . For cardinality = 0, this

return type must be an array of 1 Str ing . For other cardinalities, the array
must not contain more than the absolute value of cardinality String objects.
In that case, it may contain 0 objects.

10.5 Meta Type Provider
The MetaTypeProvider interface is used to access metatype information. It is
used in management systems and runtime management. It supports locales so
that the text used in Attr ibuteDef in it ion and ObjectClassDefinit ion objects
can be adapted to different locales.

The pid is given as an argument with the getObjectClassDefinit ion method so
that a single MetaTypeProvider object can be used for different object classes
with their own PID.

Locale objects are represented in Str ing objects because not all profiles support
Locale. The String holds the standard Locale presentation of:

<language> ["_" <country> ["_" <var iat ion>]]

For example, "en", "nl_be", "en_ca_posix".

10.6 Metatype Example
AttributeDef init ion and ObjectClassDefin it ion classes are intended to be easy
to use for bundles. This example shows a naive implementation for these
classes (note that the get methods usage are not shown). Commercial imple-
mentations can use XML, Java serialization, or Java Properties for implementa-
tions. This example uses plain code to store the definitions.
218-282 OSGi Service-Platform Release 2

Metatype Specification Version 1.0 Metatype Example
The example first shows that the ObjectClassDef in it ion interface is imple-
mented in the OCD class. The name is made very short because the class is
used to instantiate the static structures. Normally many of these objects are
instantiated very close to each other, and long names would make these lists of
instantiations very long.

class OCD implements ObjectClassDefinition {
String name;
String id;
String description;
AttributeDefinition required[];
AttributeDefinition optional[];

public OCD(
String name, String id, String description,
AttributeDefinition required[],
AttributeDefinition optional[]) {

this.name = name;
this.id = id;
this.description = description;
this.required = required;
this.optional = optional;

}
.... All the get methods

}

The second class is the AD class that implements the Attr ibuteDefinit ion inter-
face. The name is short for the same reason as in OCD . Note the two different
constructors to simplify the common case.

class AD implements AttributeDefinition {
String name;
String id;
String description;
int cardinality;
int syntax;
String[] values;
String[] labels;
String[] deflt;

public AD(String name, String id, String description,
int syntax, int cardinality, String values[],
String labels[], String deflt[]) {

this.name = name;
this.id = id;
this.description = description;
this.cardinality = cardinality;
this.syntax = syntax;
OSGi Service-Platform Release 2 219-282

Metatype Example Metatype Specification Version 1.0
this.values = values;
this.labels = labels;

}

public AD(String name, String id, String description,
int syntax)

{
this(name, id, description, syntax, 0, null, null, null);

}
... All the get methods and validate method

}

The last part is the example that implements a MetatTypeProvider class. Only
one locale is supported, the US locale. The OIDs used in this example are the
actual OIDs as defined in X.500.

public class Example implements MetaTypeProvider {
final static AD cn = new AD(

"cn", "2.5.4.3", "Common name", AD.STRING);
final static AD sn = new AD(

"sn", "2.5.4.4", "Sur name", AD.STRING);
final static AD description = new AD(

"description", "2.5.4.13","Description", AD.STRING);
final static AD seeAlso = new AD(

"seeAlso", "2.5.4.34", "See Also", AD.STRING);
final static AD telephoneNumber = new AD(

"telephoneNumber", "2.5.4.20", "Tel nr", AD.STRING);
final static AD userPassword = new AD(

"userPassword", "2.5.4.3", "Password", AD.STRING);

final static ObjectClassDefinition person = new OCD(
"person", "2.5.6.6", "Defines a person",

new AD[] { cn, sn },
new AD[] { description, seeAlso,

telephoneNumber, userPassword}
);

public ObjectClassDefinition getObjectClassDefinition(
String pid, String locale) {
return person;

}

public String[] getLocales() {
return new String[] { "en_US" };

}
}

This code shows that the attributes are defined in AD objects as f ina l stat ic .
The example groups a number of attributes together in an OCD object.

As can be seen from this example, the resource issues for using Attr ibuteDefi-
nit ion , ObjectClassDefin it ion and MetaTypeProvider classes are minimized.
220-282 OSGi Service-Platform Release 2

Metatype Specification Version 1.0 Related Standards
10.7 Related Standards
One of the primary goals of this specification is to make metatype information
available at runtime with minimal overhead. Many related standards are appli-
cable to metatypes; except for Java beans, however, all other metatype stan-
dards are based on document formats. In the OSGi environment, document
format standards are deemed unsuitable due to the overhead required in the
execution environment (they require a parser during runtime).

Another consideration is the applicability of these standards. Most of these
standards were developed for management systems on platforms where
resources are not necessarily a concern. In this case, a metatype standard is
normally used to describe the data structures needed to control some other
computer via a network. This other computer, however, does not require the
metatype information as it is implementing this information.

In some traditional cases, a management system uses the metatype informa-
tion to control objects in an OSGi environment. Therefore, the concepts and
the syntax of the metatype information must be mappable to these popular
standards. Clearly, then, these standards must be able to describe objects in an
OSGi environment. This ability is usually not a problem, because the metatype
languages used by current management systems are very powerful.

10.7.1 Beans
The intention of the Beans packages in Java comes very close to the metatype
information needed in the OSGi environment. Beans packages cannot be used,
however, for the following reasons:

• Beans packages require a large number of classes that are likely to be
optional for an OSGi environment.

• Beans have been closely coupled to the graphic subsystem (AWT) and
applets. Neither of these packages is available on an OSGi environment.

• Beans are closely coupled with the type-safe Java classes. The advantage of
attributes is that no type-safety is used, allowing two parties to have an
independent versioning model (no shared classes).

• Beans packages allow all possible Java objects, not the OSGi subset as
required by this specification.

• Beans have no explicit localization.
• Beans have no support for optional attributes.

10.8 Security Considerations
Special security issues are not applicable for this specification.

Package
10.9 org.osgi.service.metatype

DescriptionThe OSGi Metatype Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.metatype; specification-
version=1.0
OSGi Service-Platform Release 2 221-282

org.osgi.service.metatype Metatype Specification Version 1.0
10.9.1 AttributeDefinition
Syntaxpublic interface AttributeDefinition DescriptionAn interface to describe an attribute.

An Attr ibute Definit ion object defines a description of the data type of a prop-
erty/attribute.

10.9.1.1 FieldsBIGDECIMAL

public static final int BIGDECIMAL The BIGDECIMAL(10) type. Attributes of this type should be stored as Big-
Decimal Vector with Big Decimal or Big Decimal[] objects depending on get-
Cardinal ity() .

BIGINTEGER

public static final int BIGINTEGER The BIGINTEGER(9) type. Attributes of this type should be stored as Big Integer ,
Vector with Big Integer or Big Integer[] objects, depending on the get-
Cardinal ity() value.

BOOLEAN

public static final int BOOLEAN The BOOLEAN(11) type. Attributes of this type should be stored as Boolean ,
Vector with Boolean or boolean[] objects depending on get Cardinal i ty() .
BYTE

public static final int BYTE The BYTE(6) type. Attributes of this type should be stored as Byte , Vector with
Byte or byte[] objects, depending on the get Cardinal i ty() value.
CHARACTER

public static final int CHARACTER The CHARACTER(5) type. Attributes of this type should be stored as Character ,
Vector with Character or char[] objects, depending on the get Cardinal i ty()
value.
DOUBLE

public static final int DOUBLE The DOUBLE(7) type. Attributes of this type should be stored as Double , Vec-
tor with Double or double[] objects, depending on the get Cardinal i ty() value.
FLOAT

public static final int FLOAT The FLOAT(8) type. Attributes of this type should be stored as Float Vector
with Float or f loat[] objects, depending on the get Cardinal i ty() value.
INTEGER

public static final int INTEGER The INTEGER(3) type. Attributes of this type should be stored as Integer , Vec-
tor with Integer or int[] objects, depending on the get Cardinal ity() value.
LONG

public static final int LONG The LONG(2) type. Attributes of this type should be stored as Long , Vector
with Long or long[] objects, depending on the get Cardinal ity() value.
SHORT

public static final int SHORT The SHORT(4) type. Attributes of this type should be stored as Short , Vector
with Short or short[] objects, depending on the get Cardinal i ty() value.

Class Summary

Interfaces

AttributeDef in it ion An interface to describe an attribute.

MetaTypeProvider Provides access to metatypes.

ObjectClassDef init ion Description for the data type information of an objectclass.
222-282 OSGi Service-Platform Release 2

Metatype Specification Version 1.0 org.osgi.service.metatype
STRING

public static final int STRING The STRING(1) type.

Attributes of this type should be stored as Str ing , Vector with Str ing or
Str ing[] objects, depending on the get Cardinal ity() value.

10.9.1.2 MethodsgetCardinality()

public int getCardinality() Return the cardinality of this attribute. The OSGi environment handles multi
valued attributes in arrays ([]) or in Vector objects. The return value is defined
as follows:

x = Integer.MIN_VALUE no limit, but use Vector
x < 0 -x = max occurrences, store in

Vector
x > 0 x = max occurrences, store in

array []
x = Integer.MAX_VALUE no limit, but use array []
x = 0 1 occurrence required

getDefaultValue()

public java.lang.String[] getDefaultValue(
)

Return a default for this attribute. The object must be of the appropriate type
as defined by the cardinality and get Type() . The return type is a list of Str ing
objects that can be converted to the appropriate type. The cardinality of the
return array must follow the absolute cardinality of this type. E.g. if the cardi-
nality = 0, the array must contain 1 element. If the cardinality is 1, it must con-
tain 0 or 1 elements. If it is -5, it must contain from 0 to max 5 elements. Note
that the special case of a 0 cardinality, meaning a single value, does not allow
arrays or vectors of 0 elements.
getDescription()

public java.lang.String getDescription() Return a description of this attribute. The description may be localized and
must describe the semantics of this type and any constraints.
getID()

public java.lang.String getID() Unique identity for this attribute. Attributes share a global namespace in the
registry. E.g. an attribute cn or common Name must always be a Str ing and the
semantics are always a name of some object. They share this aspect with
LDAP/X.500 attributes. In these standards the OSI Object Identifier (OID) is
used to uniquely identify an attribute. If such an OID exists, (which can be
requested at several standard organisations and many companies already have
a node in the tree) it can be returned here. Otherwise, a unique id should be
returned which can be a Java class name (reverse domain name) or generated
with a GUID algorithm. Note that all LDAP defined attributes already have an
OID. It is strongly advised to define the attributes from existing LDAP schemes
which will give the OID. Many such schemes exist ranging from postal
addresses to DHCP parameters.
getName()

public java.lang.String getName() Get the name of the attribute. This name may be localized.
getOptionLabels()

public java.lang.String[] getOptionLabels(
)

Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associ-
ated with get Option Values . The labels returned here are ordered in the same
way as the values in that method.

If the function returns null , there are no option labels available.
OSGi Service-Platform Release 2 223-282

org.osgi.service.metatype Metatype Specification Version 1.0
This list must be in the same sequence as the get Option Values() method. I.e.
for each index i in get Option Labels , i in get Option Values() should be the
associated value.

For example, if an attribute can have the value male, female, unknown, this list
can return (for dutch) new Str ing[] { “Man”, “Vrouw”, “Onbekend” } .
getOptionValues()

public java.lang.String[] getOptionValues(
)

Return a list of option values that this attribute can take.

If the function returns null , there are no option values available.

Each value must be acceptable to validate() (return “”) and must be a Str ing
object that can be converted to the data type defined by getType() for this
attribute.

This list must be in the same sequence as get Option Labels() . I.e. for each
index i in get Option Values , i in get Option Labels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list
can return new Str ing[] { “male”, “ female”, “unknown” } .
getType()

public int getType() Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING , LONG , INTEGER , CHAR , BYTE , DOUBLE , FLOAT , BIGINTEGER , BIGDEC-
IMAL , BOOLEAN .
validate(String)

public java.lang.String validate(
java.lang.String value)

Validate an attribute in String form. An attribute might be further constrained
in value. This method will attempt to validate the attribute according to these
constraints. It can return three different values:

nul l no validation present
“” no problems detected
“...” A localized description of why the

value is wrong

Parameters: value - The value before turning it into the basic data type

10.9.2 MetaTypeProvider
Syntaxpublic interface MetaTypeProvider Description

10.9.2.1 MethodsgetLocales()

public java.lang.String[] getLocales() Return a list of locales available or null if only 1 The return parameter must be
a name that consists of language [_ country [_ variation]] as is customary in
the Locale class. This Locale class is not used because certain profiles do not
contain it.
getObjectClassDefinition(String, String)

public ObjectClassDefin it ion
getObjectClassDefinition(
java.lang.String pid, java.lang.String
locale)

Return the definition of this object class for a locale.

The locale parameter must be a name that consists of language [“_” country [
“_” var iat ion]] as is customary in the Locale class. This Locale class is not used
because certain profiles do not contain it.

The implementation should use the locale parameter to match an Object-
Class Defin it ion object. It should follow the customary locale search path by
removing the latter parts of the name.
224-282 OSGi Service-Platform Release 2

Metatype Specification Version 1.0 org.osgi.service.metatype
Parameters: pid - The PID for which the type is needed or null if there is only 1

locale - The locale of the definition or null for default locale

10.9.3 ObjectClassDefinition
Syntaxpublic interface ObjectClassDefinition Description

10.9.3.1 FieldsALL

public static final int ALL Argument for get Attr ibute Defin it ions(int) . ALL indicates that all the defini-
tions are returned. The value is -1.
OPTIONAL

public static final int OPTIONAL Argument for get Attr ibute Definit ions(int) . OPTIONAL indicates that only the
optional definitions are returned. The value is 2.
REQUIRED

public static final int REQUIRED Argument for get Attr ibute Def init ions(int) . REQUIRED indicates that only the
required definitions are returned. The value is 1.

10.9.3.2 MethodsgetAttributeDefinitions(int)

public Attr ibuteDefinit ion[]
getAttributeDefinitions(int filter)

Return the attribute definitions.

Return a set of attributes. The filter parameter can distinguish between ALL ,
REQUIRED or the OPTIONAL attributes.

Parameters: f i l ter - ALL , REQUIRED , OPTIONAL

Returns: An array of attribute definitions or null if no attributes are selected
getDescription()

public java.lang.String getDescription() Return a description of this object class. The description may be localized.

Returns: The localized description of the definition.
getIcon(int)

public java.io.InputStream getIcon(int
size)

Return an Input Stream object that can be used to create an icon from.

Indicate the size and return an Input Stream object containing an icon. The
returned icon maybe larger or smaller than the indicated size.

The icon may depend on the localization.

Parameters: s izeHint - size of an icon, e.g. a 16x16 pixels icon then size = 16

Returns: An InputStream representing an icon or null

Throws: IOException
getID()

public java.lang.String getID() Return the id of this object class.

Object Def int ion objects share a global namespace in the registry. They share
this aspect with LDAP/X.500 attributes. In these standards the OSI Object Iden-
tifier (OID) is used to uniquely identify object classes. If such an OID exists, (
which can be requested at several standard organisations and many companies
already have a node in the tree) it can be returned here. Otherwise, a unique id
should be returned which can be a java class name (reverse domain name) or
generated with a GUID algorithm. Note that all LDAP defined object classes
already have an OID associated. It is strongly advised to define the object
classes from existing LDAP schemes which will give the OID for free. Many
such schemes exist ranging from postal addresses to DHCP parameters.

Returns: The id or oid
OSGi Service-Platform Release 2 225-282

References Metatype Specification Version 1.0
getName()

public java.lang.String getName() Return the name of this class.

Returns: The name of the described class.

10.10 References
[32] LDAP.

Available at http://directory.google.com/Top/Computers/Software/Internet/
Servers/Directory/LDAP

[33] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical publishing.
226-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 Introduction
11 Preferences Service
Specification
Version 1.0

11.1 Introduction
Many bundles need to save some data persistently. That is, the data is required
to survive the stopping and restarting of the bundle, Framework and OSGi
environment. In some cases, the data is specific to a particular user. For exam-
ple, imagine a bundle that implements some kind of game. User specific persis-
tent data could include things like the user’s preferred difficulty level for
playing the game. Some data is not specific to a user, which we call system data.
An example would be a table of high scores for the game.

Bundles which need to persist data in an OSGi environment can use the file
system via org.osgi . framework.BundleContext .getDataFi le . A file system,
however, can only store bytes and characters, and provides no direct support
for named values and different data types.

A popular class used to address this problem for Java applications is the
java.ut i l .Propert ies class. This class allows data to be stored as key/value pairs,
called properties. For example, a property could have a name "com.acme.fudd"
and a value of "elmer". The Propert ies class has rudimentary support for stor-
age and retrieving with its load and store methods. The Propert ies class, how-
ever, has the following limitations:

• Does not support a naming hierarchy.
• Only supports Str ing property values.
• Does not allow its content to be easily stored in a back-end system.
• Has no user namespace management.

Since the Propert ies class was introduced in Java 1.0, efforts have been under-
taken to replace it with a more sophisticated mechanism. One of these efforts
is this Preferences Service specification, which in turn is aligned with the more
extensive effort in [34] JSR 10 Preferences API.

11.1.1 Operation
The purpose of the Preferences Service specification is to allow bundles to
store and retrieve properties stored in a tree of nodes, where each node imple-
ments the Preferences interface. The PreferencesService interface allows a
bundle to create or obtain a Preferences tree for system properties, as well as a
Preferences tree for each user of the bundle.

This specification allows for implementations where the data is stored locally
on the service platform or remotely on a back-end system.
OSGi Service-Platform Release 2 227-282

Introduction Preferences Service Specification Version 1.0
11.1.2 Essentials
The focus of this specification is simplicity, not reliable access to stored data.
This specification does not define a general database service with transactions
and atomicity guarantees. Instead, it is optimized to deliver the stored informa-
tion when needed, but it will return defaults, instead of throwing an exception,
when the back-end store is not available. This approach may reduce the reli-
ability of the data, but it makes the service easier to use, and allows for a vari-
ety of compact and efficient implementations.

This API is made easier to use by the fact that many bundles can be written to
ignore any problems that the Preferences Service may have in accessing the
back-end store, if there is one. These bundles will mostly or exclusively use the
methods of the Preferences interface which are not declared to throw a Back-
ingStoreException .

This service only supports the storage of scalar values and byte arrays. It is not
intended for storing large data objects like documents or images. No standard
limits are placed on the size of data objects which can be stored, but implemen-
tations are expected to be optimized for the handling of small objects.

A hierarchical naming model is supported, in contrast to the flat model of the
Propert ies class. A hierarchical model maps naturally to many computing
problems. For example, maintaining information about the positions of
adjustable chairs in a car requires information for each chair. In a hierarchy,
this information can be modeled as a node per chair.

The Preferences interface API is closely aligned with [34] JSR 10 Preferences
API. Code written for either of these APIs should require very little change
when it is ported to the other.

A potential benefit of the Preferences Service is that it allows user specific pref-
erences data to be kept in a well defined place, so that a user management sys-
tem could locate it. This benefit could be useful for such operations as cleaning
up files when a user is removed from the system, or to allow a user's prefer-
ences to be cloned for a new user.

The Preferences Service does not provide a mechanism to allow one bundle to
access the preferences data of another. If a bundle wishes to allow another bun-
dle to access its preferences data, it can pass a Preferences or PreferencesSer-
vice object to that bundle.

The Preferences Service is not intended to provide configuration management
functionality. For information regarding Configuration Management, refer to
the Configuration Admin Service Specification on page 177.

11.1.3 Entities
The PreferencesService is a relatively simple service. It provides access to the
different roots of Preferences trees. A single system root node and any number
of user root nodes are supported. Each node of such a tree is an object that
implements the Preferences interface.

This Preferences interface provides methods for traversing the tree, as well as
methods for accessing the properties of the node. This interface also contains
the methods to flush data into persistent storage, and to synchronize the in-
memory data cache with the persistent storage.
228-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 Preferences Interface
All nodes except root nodes have a parent. Nodes can have multiple children.

Figure 35 Preferences Class Diagram

11.2 Preferences Interface
Preferences is an interface that defines the methods to manipulate a node and
the tree to which it belongs. A Preferences object contains:

• A set of properties in the form of key/value pairs.
• A parent node.
• A number of child nodes.

11.2.1 Hierarchies
A valid Preferences object always belongs to a tree. A tree is identified by its
root node. In such a tree, a Preferences object always has a single parent,
except for a root node which has a null parent.

The root node of a tree can be found by recursively calling the parent()
method of a node until nul l is returned. The nodes that are traversed this way
are called the ancestors of a node.

Each Preferences object has a private name space for child nodes. Each child
node has a name that must be unique among its siblings. Child nodes are cre-
ated by getting a child node with the node(Str ing) method. The String argu-
ment of this call contains a path name. Path names are explained in the next
section.

Preferences Node
implementation

<<service>>
Preferences
Service

<<interface>>
Preferences

Preferences Service
implementation

a bundle

root system node

root user nodes

1

1

1

0..n

0..n 1nodes

user name

node name

Bundle Preferences

BackingStore
Exception

parent

0..n

1

1:n bundle - service
OSGi Service-Platform Release 2 229-282

Preferences Interface Preferences Service Specification Version 1.0
Child nodes can have child nodes recursively. This group of objects is called
the descendants of a node.

Descendants are automatically created when they are obtained from a Prefer-
ences object, including any intermediate nodes that are necessary for the
given path. If this automatic creation is not desired, the nodeExists(Str ing)
method can be used to determine if a node already exists.

Figure 36 Categorization of nodes in a tree

11.2.2 Naming
Each node has a name relative to its parent. A name may consist of Unicode
characters except for the forward slash ("/ "). There are no special names, like
" . . " or " . " .

Empty names are reserved for root nodes. Node names that are directly created
by a bundle must always contain at least one character.

Preferences node names and property keys are case sensitive: for example,
"org.osgi" and "oRg.oSgI" are two distinct names. See JSR 10 on page 233for the
reasons why this differs from other OSGi services.

The Preferences Service supports different roots, so there is no absolute root
for the Preferences Service. This concept is similar to [35] Windows Registry
that also supports a number of roots.

A path consists of one or more node names, separated by a forward slash ("/ ").
Paths beginning with a "/ " are called absolute paths while other paths are
called relative paths. Paths cannot end with a "/ " except for the special case of
the root node which has absolute path "/" .

Path names are always associated with a specific node; this node is called the
current node in the following descriptions. Paths identify nodes as follows.

• Absolute path – The first "/ " is removed from the path, and the remainder of
the path is interpreted as a relative path from the tree’s root node.

• Relative path –
• If the path is the empty string, it identifies the current node.
• If the path is a name (does not contain a "/ "), then it identifies the child

node with that name.
• Otherwise, the first name from the path identifies a child of the current

node. The name and slash are then removed from the path, and the
remainder of the path is interpreted as a relative path from the child
node.

11.2.3 Tree Traversal Methods
A tree can be traversed and modified with the following methods:

root

parent

current

children

ancestors

descendants

tree
230-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 Preferences Interface
• chi ldrenNames()– Returns the names of the child nodes.
• parent() – Returns the parent node.
• removeNode() – Removes this node and all its descendants.
• node(Str ing) – Returns a Preferences object, which is created if it does not.

already exist. The parameter is an absolute or relative path.
• nodeExists(Str ing) – Returns true if the Preferences object identified by the

path parameter exists.

11.2.4 Properties
Each Preferences node has a set of key/value pairs called properties. These
properties consist of:

• Key – A key is a Str ing object and case sensitive.
• The name space of these keys is separate from that of the child nodes. A

Preferences node could have both a child node named "fudd" and a property
named "fudd".

• Value – A value can always be stored and retrieved as a String object.
Therefore, all primitive values must be encoded into Str ing objects. A
number of methods are available to store and retrieve values as primitive
types. These methods are provided both for the convenience of the user of
the Preferences interface, and to allow an implementation the option of
storing the values in a more compact form.

All the keys that are defined in a Preferences object can be obtained with the
keys() method. The clear() method can be used to clear all properties from a
Preferences object. A single property can be removed with the remove(Str ing)
method.

11.2.5 Storing and Retrieving Properties
The Preferences interface has a number of methods for storing and retrieving
property values based on their key. All the put* methods take as parameters a
key and a value. All the get* methods take as parameters a key and a default
value.

• put(Str ing, Str ing) , get(Str ing, Str ing)
• putBoolean(Str ing, boolean) , getBoolean(Str ing, boolean)
• putInt(String, int) , getInt(Str ing, int)
• putLong(String, long) , getLong(String, long)
• putFloat(Str ing, f loat) , getFloat(Str ing, f loat)
• putDouble(Str ing, double) , getDouble(Str ing, double)
• putByteArray(Str ing, byte[]) , getByteArray(Str ing, byte[])

The methods act as if all the values are stored as Str ing objects, even though
implementations may use different representations for the different types. For
example, a property can be written as a Str ing object and read back as a f loat ,
providing that the string can be parsed as a valid Java float. In the event of a
parsing error, the get* methods do not raise exceptions, but instead return
their default parameters.

11.2.6 Defaults
All get* methods take a default value as a parameter. The reasons for having
such a default are:
OSGi Service-Platform Release 2 231-282

Concurrency Preferences Service Specification Version 1.0
• When a property for a Preferences object has not been set, the default is
returned instead. In most cases, the bundle developer does not have to dis-
tinguish whether or not a property exists.

• A best effort strategy has been a specific design choice for this specification.
The bundle developer should not have to react when the back-end store is
not available. In those cases, the default value is returned without further
notice.
Bundle developers who want to assure that the back-end store is available
should call the f lush or sync method. Either of these methods will throw a
BackingStoreExcept ion if the back-end store is not available.

11.3 Concurrency
This specification specifically allows an implementation to modify Prefer-
ences objects in a back-end store. If the back-end store is shared by multiple
processes, concurrent updates may cause differences between the back-end
store and the in-memory Preferences objects.

Bundle developers can partly control this concurrency with the f lush() and
sync() method. Both methods operate on a Preferences object.

The f lush method performs the following actions:

• Stores (makes persistent) any ancestors (including the current node) that do
not exist in the persistent store.

• Stores any properties which have been modified in this node since the last
time it was flushed.

• Removes from the persistent store any child nodes that were removed from
this object since the last time it was flushed.

• Flushes all existing child nodes.

The sync method will first flush, and then ensure that any changes that have
been made to the current node and its descendents in the back-end store (by
some other process) take effect. For example, it could fetch all the descendants
into a local cache, or it could clear all the descendants from the cache so that
they will be read from the back-end store as required.

If either method fails, a BackingStoreException is thrown.

The f lush or sync methods provide no atomicity guarantee. When updates to
the same back-end store are done concurrently by two different processes, the
result may be that changes made by different processes are intermingled. To
avoid this problem, implementations may simply provide a dedicated section (
or namespace) in the back-end store for each OSGi environment, so that
clashes do not arise, in which case there is no reason for bundle programmers
to ever call sync .

In cases where sync is used, the bundle programmer needs to take into account
that changes from different processes may become intermingled, and the level
of granularity that can be assumed is the individual property level. Hence, for
example, if two properties need to be kept in lockstep, so that one should not
be changed without a corresponding change to the other, consider combining
them into a single property, which would then need to be parsed into its two
constituent parts.
232-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 PreferencesService Interface
11.4 PreferencesService Interface
The PreferencesService is obtained from the Framework’s service registry in
the normal way. Its purpose is to provide access to Preferences root nodes.

A Preferences Service maintains a system root and a number of user roots. User
roots are automatically created, if necessary, when they are requested. Roots
are maintained on a per bundle basis. For example, a user root called "elmer" in
one bundle is a distinct from a user root with the same name in another bun-
dle. Also, each bundle has its own system root. Implementations should use a
ServiceFactory service object to create a separate PreferencesService object
for each bundle.

The precise description of user and system will vary from one bundle to
another. The Preference Service only provides a mechanism, the bundle may
use this mechanism in any desired way.

The PreferencesService interface has the following methods to access the sys-
tem root and user roots:

• getSystemPreferences() – Return a Preferences object that is the root of the
system preferences tree.

• getUserPreferences(Str ing) – Return a Preferences object associated with
the user name that is given as argument. If the user does not exist, a new
root is created atomically.

• getUsers() – Return an array of the names of all the users for whom a Prefer-
ences tree exists.

11.5 Cleanup
The Preferences Service must listen for bundle uninstall events, and remove all
the preferences data for the bundle that is being uninstalled.

It also must handle the possibility of a bundle getting uninstalled while the
Preferences Service is stopped. Therefore, it must check on startup whether
preferences data exists for any bundle which is not currently installed. If it
does, that data must be removed.

11.6 JSR 10
The Preferences specification is aligned with the Java Community Process JSR
10. This JSR defines an API that is intended to become part of a future Java
Standard Edition.

The following differences between this specification and JSR 10 apply (from
the point of view of this specification):

• Different package name.
• Preferences is an interface instead of a class.
• No listener facility is available to detect changes in a Preferences object.
• No maximum value is defined for the storage length, nor for the length of

the key. JSR 10 has the constants MAX_KEY_LENGTH ,
MAX_VALUE_LENGTH , MAX_NAME_LENGTH .
OSGi Service-Platform Release 2 233-282

org.osgi.service.prefs Preferences Service Specification Version 1.0
• No factory methods for creation of Preferences objects. Objects are
obtained from the Preferences Service.

• No isUserNode method.

Package
11.7 org.osgi.service.prefs

DescriptionThe OSGi Preferences Service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.prefs; specification-
version=1.0

11.7.1 BackingStoreException
Syntaxpublic class BackingStoreException

extends java.lang.Exception

All Implemented
Interfaces:

java.io.Serializable

DescriptionThrown to indicate that a preferences operation could not complete because of
a failure in the backing store, or a failure to contact the backing store.

11.7.1.1 ConstructorsBackingStoreException(String)

public BackingStoreException(
java.lang.String s)

Constructs a Backing Store Except ion with the specified detail message.

11.7.2 Preferences
Syntax

public interface Preferences DescriptionA node in a hierarchical collection of preference data.

This interface allows applications to store and retrieve user and system prefer-
ence data. This data is stored persistently in an implementation-dependent
backing store. Typical implementations include flat files, OS-specific regis-
tries, directory servers and SQL databases.

Class Summary

Interfaces

Preferences A node in a hierarchical collection of preference data.

PreferencesService The Preferences Service.

Exceptions

BackingStoreExcept ion Thrown to indicate that a preferences operation could not complete because of
a failure in the backing store, or a failure to contact the backing store.
234-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 org.osgi.service.prefs
For each bundle, there is a separate tree of nodes for each user, and one for sys-
tem preferences. The precise description of “user” and “system” will vary from
one bundle to another. Typical information stored in the user preference tree
might include font choice, and color choice for a bundle which interacts with
the user via a servlet. Typical information stored in the system preference tree
might include installation configuration data, or things like high score infor-
mation for a game program.

Nodes in a preference tree are named in a similar fashion to directories in a
hierarchical file system. Every node in a preference tree has a node name (which
is not necessarily unique), a unique absolute path name, and a path name relative
to each ancestor including itself.

The root node has a node name of the empty Str ing object (“”). Every other
node has an arbitrary node name, specified at the time it is created. The only
restrictions on this name are that it cannot be the empty string, and it cannot
contain the slash character (’/’).

The root node has an absolute path name of “/” . Children of the root node have
absolute path names of “/” + <node name>. All other nodes have absolute path
names of <parent’s absolute path name> + “/” + <node name>. Note that all abso-
lute path names begin with the slash character.

A node n’s path name relative to its ancestor a is simply the string that must be
appended to a’s absolute path name in order to form n’s absolute path name,
with the initial slash character (if present) removed. Note that:

• No relative path names begin with the slash character.
• Every node’s path name relative to itself is the empty string.
• Every node’s path name relative to its parent is its node name (except for

the root node, which does not have a parent).
• Every node’s path name relative to the root is its absolute path name with

the initial slash character removed.

Note finally that:

• No path name contains multiple consecutive slash characters.
• No path name with the exception of the root’s absolute path name end in

the slash character.
• Any string that conforms to these two rules is a valid path name.

Each Preference node has zero or more properties associated with it, where a
property consists of a name and a value. The bundle writer is free to choose
any appropriate names for properties. Their values can be of type Str ing , long ,
int , boolean byte[], f loat , or double but they can always be accessed as if they
were Str ing objects.

All node name and property name comparisons are case-sensitive!

All of the methods that modify preference data are permitted to operate asyn-
chronously; they may return immediately, and changes will eventually propa-
gate to the persistent backing store, with an implementation-dependent delay.
The f lush method may be used to synchronously force updates to the backing
store.

Implementations must automatically attempt to flush to the backing store
any pending updates for a bundle’s preferences when the bundle is stopped or
otherwise ungets the Preferences Service.
OSGi Service-Platform Release 2 235-282

org.osgi.service.prefs Preferences Service Specification Version 1.0
The methods in this class may be invoked concurrently by multiple threads in
a single Java Virtual Machine (JVM) without the need for external synchroni-
zation, and the results will be equivalent to some serial execution. If this class
is used concurrently by multiple JVMs that store their preference data in the
same backing store, the data store will not be corrupted, but no other guaran-
tees are made concerning the consistency of the preference data.

11.7.2.1 MethodsabsolutePath()

public java.lang.String absolutePath() Returns this node’s absolute path name. Note that:

• The path name of the root node is “/” .
• Path names other than that of the root node may not end in slash (' / ').
• “ .” and “ . .” have no special significance in path names.
• The only illegal path names are those that contain multiple consecutive

slashes, or that end in slash and are not the root.

Returns: this node’s absolute path name.
childrenNames()

public java.lang.String[] childrenNames()
throws BackingStoreException,
IllegalStateException

Returns the names of the children of this node. (The returned array will be of
size zero if this node has no children and not nul l !)

Returns: the names of the children of this node.

Throws: BackingStoreExcept ion - if this operation cannot be completed due to a failure
in the backing store, or inability to communicate with it.

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.
clear()

public void clear()
throws BackingStoreException,
IllegalStateException

Removes all of the properties (key-value associations) in this node. This call
has no effect on any descendants of this node.

Throws: BackingStoreExcept ion - if this operation cannot be completed due to a failure
in the backing store, or inability to communicate with it.

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: remove(Str ing)
flush()

public void flush()
throws BackingStoreException,
IllegalStateException

Forces any changes in the contents of this node and its descendants to the per-
sistent store.

Once this method returns successfully, it is safe to assume that all changes
made in the subtree rooted at this node prior to the method invocation have
become permanent.

Implementations are free to flush changes into the persistent store at any time.
They do not need to wait for this method to be called.

When a flush occurs on a newly created node, it is made persistent, as are any
ancestors (and descendants) that have yet to be made persistent. Note however
that any properties value changes in ancestors are not guaranteed to be made
persistent.
236-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 org.osgi.service.prefs
Throws: BackingStoreExcept ion - if this operation cannot be completed due to a failure
in the backing store, or inability to communicate with it.

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: sync()
get(String, String)

public java.lang.String get(java.lang.String
key, java.lang.String def)
throws IllegalStateException,
NullPointerException

Returns the value associated with the specified key in this node. Returns the
specified default if there is no value associated with the key , or the backing
store is inaccessible.

Parameters: key - key whose associated value is to be returned.

def - the value to be returned in the event that this node has no value associ-
ated with key or the backing store is inaccessible.

Returns: the value associated with key , or def if no value is associated with key .

Throws: I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

Nul lPointerException - if key is null . (A null default is permitted.)
getBoolean(String, boolean)

public boolean getBoolean(
java.lang.String key, boolean def)
throws NullPointerException,
IllegalStateException

Returns the boolean value represented by the Str ing object associated with the
specified key in this node. Valid strings are “true”, which represents true , and
“false”, which represents fa lse . Case is ignored, so, for example, “TRUE” and
“False” are also valid. This method is intended for use in conjunction with the
putBoolean(Str ing, boolean) method.

Returns the specified default if there is no value associated with the key , the
backing store is inaccessible, or if the associated value is something other than
“true” or “false”, ignoring case.

Parameters: key - key whose associated value is to be returned as a boolean .

def - the value to be returned in the event that this node has no value associ-
ated with key or the associated value cannot be interpreted as a boolean or the
backing store is inaccessible.

Returns: the boolean value represented by the Str ing object associated with key in this
node, or nul l if the associated value does not exist or cannot be interpreted as a
boolean .

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: get(Str ing, Str ing) , putBoolean(Str ing, boolean)
getByteArray(String, byte[])

public byte[] getByteArray(
java.lang.String key, byte[] def)
throws NullPointerException,
IllegalStateException

Returns the byte[] value represented by the Str ing object associated with the
specified key in this node. Valid Str ing objects are Base64 encoded binary data,
as defined in RFC 2045, Section 6.8, with one minor change: the string must
consist solely of characters from the Base64 Alphabet; no newline characters or
extraneous characters are permitted. This method is intended for use in con-
junction with the putByteArray(Str ing, byte[]) method.
OSGi Service-Platform Release 2 237-282

org.osgi.service.prefs Preferences Service Specification Version 1.0
Returns the specified default if there is no value associated with the key , the
backing store is inaccessible, or if the associated value is not a valid Base64
encoded byte array (as defined above).

Parameters: key - key whose associated value is to be returned as a byte[] object.

def - the value to be returned in the event that this node has no value associ-
ated with key or the associated value cannot be interpreted as a byte[] type, or
the backing store is inaccessible.

Returns: the byte[] value represented by the Str ing object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as a
byte[] .

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: get(Str ing, Str ing) , putByteArray(Str ing, byte[])
getDouble(String, double)

public double getDouble(java.lang.String
key, double def)
throws IllegalStateException,
NullPointerException

Returns the double value represented by the Str ing object associated with the
specified key in this node. The Str ing object is converted to an int value as by
Double.parse Double(Str ing) . Returns the specified default if there is no value
associated with the key , the backing store is inaccessible, or if Double.parse-
Double(Str ing) would throw a Number Format Exception if the associated
value were passed. This method is intended for use in conjunction with the
putDouble(Str ing, double) method.

Parameters: key - key whose associated value is to be returned as a double value.

def - the value to be returned in the event that this node has no value associ-
ated with key or the associated value cannot be interpreted as a double type or
the backing store is inaccessible.

Returns: the double value represented by the Str ing object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as a
double type.

Throws: I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
the removeNode() method.

Nul lPointerException - if key is null .

See Also: putDouble(Str ing, double) , get(Str ing, Str ing)
getFloat(String, float)

public float getFloat(java.lang.String key,
float def)
throws IllegalStateException,
NullPointerException

Returns the float value represented by the Str ing object associated with the
specified key in this node. The Str ing object is converted to an int value as by
Float .parse Float(Str ing) . Returns the specified default if there is no value
associated with the key , the backing store is inaccessible, or if Float .parse-
Float(Str ing) would throw a Number Format Exception if the associated value
were passed. This method is intended for use in conjunction with the put-
Float(Str ing, f loat) method.

Parameters: key - key whose associated value is to be returned as a f loat value.

def - the value to be returned in the event that this node has no value associ-
ated with key or the associated value cannot be interpreted as a f loat type or
the backing store is inaccessible.
238-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 org.osgi.service.prefs
Returns: the f loat value represented by the string associated with key in this node, or
def if the associated value does not exist or cannot be interpreted as a f loat
type.

Throws: I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

Nul lPointerException - if key is null .

See Also: putFloat(Str ing, f loat) , get(Str ing, Str ing)
getInt(String, int)

public int getInt(java.lang.String key, int
def)
throws NullPointerException,
IllegalStateException

Returns the int value represented by the String object associated with the spec-
ified key in this node. The String object is converted to an int as by
Integer .parse Int(Str ing) . Returns the specified default if there is no value asso-
ciated with the key , the backing store is inaccessible, or if Integer.parse Int(
Str ing) would throw a Number Format Exception if the associated value were
passed. This method is intended for use in conjunction with the putInt(Str ing,
int) method.

Parameters: key - key whose associated value is to be returned as an int .

def - the value to be returned in the event that this node has no value associ-
ated with key or the associated value cannot be interpreted as an int or the
backing store is inaccessible.

Returns: the int value represented by the Str ing object associated with key in this node,
or def if the associated value does not exist or cannot be interpreted as an int
type.

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: putInt(String, int) , get(Str ing, String)
getLong(String, long)

public long getLong(java.lang.String key,
long def)
throws NullPointerException,
IllegalStateException

Returns the long value represented by the Str ing object associated with the
specified key in this node. The Str ing object is converted to a long as by
Long.parse Long(String) . Returns the specified default if there is no value asso-
ciated with the key , the backing store is inaccessible, or if Long.parse Long(
Str ing) would throw a Number Format Exception if the associated value were
passed. This method is intended for use in conjunction with the putLong(
Str ing, long) method.

Parameters: key - key whose associated value is to be returned as a long value.

def - the value to be returned in the event that this node has no value associ-
ated with key or the associated value cannot be interpreted as a long type or
the backing store is inaccessible.

Returns: the long value represented by the Str ing object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as a
long type.

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.
OSGi Service-Platform Release 2 239-282

org.osgi.service.prefs Preferences Service Specification Version 1.0
See Also: putLong(String, long) , get(Str ing, Str ing)
keys()

public java.lang.String[] keys()
throws BackingStoreException,
IllegalStateException

Returns all of the keys that have an associated value in this node. (The
returned array will be of size zero if this node has no preferences and not nul l !)

Returns: an array of the keys that have an associated value in this node.

Throws: BackingStoreExcept ion - if this operation cannot be completed due to a failure
in the backing store, or inability to communicate with it.

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.
name()

public java.lang.String name() Returns this node’s name, relative to its parent.

Returns: this node’s name, relative to its parent.
node(String)

public Preferences node(java.lang.String
pathName)
throws IllegalArgumentException,
IllegalStateException

Returns a named Preferences object (node), creating it and any of its ancestors
if they do not already exist. Accepts a relative or absolute pathname. Absolute
pathnames (which begin with ' / ') are interpreted relative to the root of this
node. Relative pathnames (which begin with any character other than ' / ') are
interpreted relative to this node itself. The empty string (“”) is a valid relative
pathname, referring to this node itself.

If the returned node did not exist prior to this call, this node and any ancestors
that were created by this call are not guaranteed to become persistent until the
f lush method is called on the returned node (or one of its descendants).

Parameters: pathName - the path name of the Preferences object to return.

Returns: the specified Preferences object.

Throws: I l legalArgumentExcept ion - if the path name is invalid.

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: f lush()
nodeExists(String)

public boolean nodeExists(java.lang.String
pathName)
throws BackingStoreException,
IllegalStateException

Returns true if the named node exists. Accepts a relative or absolute pathname.
Absolute pathnames (which begin with ' / ') are interpreted relative to the root
of this node. Relative pathnames (which begin with any character other than ' /
') are interpreted relative to this node itself. The pathname “” is valid, and
refers to this node itself.

If this node (or an ancestor) has already been removed with the removeNode()
method, it is legal to invoke this method, but only with the pathname “” ; the
invocation will return false . Thus, the idiom p.node Exists(“”) may be used to
test whether p has been removed.

Parameters: pathName - the path name of the node whose existence is to be checked.

Returns: true if the specified node exists.

Throws: BackingStoreExcept ion - if this operation cannot be completed due to a failure
in the backing store, or inability to communicate with it.
240-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 org.osgi.service.prefs
I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method and pathname is not the empty string (“”).
parent()

public Preferences parent()
throws IllegalStateException

Returns the parent of this node, or nul l if this is the root.

Returns: the parent of this node.

Throws: I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.
put(String, String)

public void put(java.lang.String key,
java.lang.String value)
throws NullPointerException,
IllegalStateException

Associates the specified value with the specified key in this node.

Parameters: key - key with which the specified value is to be associated.

value - value to be associated with the specified key.

Throws: Nul lPointerException - if key or value is nul l .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.
putBoolean(String, boolean)

public void putBoolean(java.lang.String
key, boolean value)
throws NullPointerException,
IllegalStateException

Associates a String object representing the specified boolean value with the
specified key in this node. The associated string is “true” if the value is true ,
and “false” if it is fa lse . This method is intended for use in conjunction with
the getBoolean(Str ing, boolean) method.

Implementor’s note: it is not necessary that the value be represented by a string
in the backing store. If the backing store supports boolean values, it is not
unreasonable to use them. This implementation detail is not visible through
the Preferences API, which allows the value to be read as a boolean (with get-
Boolean) or a Str ing (with get) type.

Parameters: key - key with which the string form of value is to be associated.

value - value whose string form is to be associated with key .

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: getBoolean(Str ing, boolean) , get(Str ing, Str ing)
putByteArray(String, byte[])

public void putByteArray(java.lang.String
key, byte[] value)
throws NullPointerException,
IllegalStateException

Associates a String object representing the specified byte[] with the specified
key in this node. The associated Str ing object the Base64 encoding of the
byte[] , as defined in RFC 2045, Section 6.8, with one minor change: the string
will consist solely of characters from the Base64 Alphabet; it will not contain
any newline characters. This method is intended for use in conjunction with
the getByteArray(Str ing, byte[]) method.
OSGi Service-Platform Release 2 241-282

org.osgi.service.prefs Preferences Service Specification Version 1.0
Implementor’s note: it is not necessary that the value be represented by a Str ing
type in the backing store. If the backing store supports byte[] values, it is not
unreasonable to use them. This implementation detail is not visible through
the Preferences API, which allows the value to be read as an a byte[] object (
with get Byte Array) or a Str ing object (with get).

Parameters: key - key with which the string form of value is to be associated.

value - value whose string form is to be associated with key .

Throws: Nul lPointerException - if key or value is nul l .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: getByteArray(Str ing, byte[]) , get(Str ing, Str ing)
putDouble(String, double)

public void putDouble(java.lang.String
key, double value)
throws NullPointerException,
IllegalStateException

Associates a String object representing the specified double value with the
specified key in this node. The associated Str ing object is the one that would be
returned if the double value were passed to Double.to Str ing(double) . This
method is intended for use in conjunction with the getDouble(Str ing,
double) method

Implementor’s note: it is not necessary that the value be represented by a string
in the backing store. If the backing store supports double values, it is not
unreasonable to use them. This implementation detail is not visible through
the Preferences API, which allows the value to be read as a double (with get-
Double) or a Str ing (with get) type.

Parameters: key - key with which the string form of value is to be associated.

value - value whose string form is to be associated with key .

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: getDouble(Str ing, double)
putFloat(String, float)

public void putFloat(java.lang.String key,
float value)
throws NullPointerException,
IllegalStateException

Associates a Str ing object representing the specified f loat value with the speci-
fied key in this node. The associated Str ing object is the one that would be
returned if the f loat value were passed to Float .to Str ing(f loat) . This method is
intended for use in conjunction with the getFloat(Str ing, f loat) method.

Implementor’s note: it is not necessary that the value be represented by a string
in the backing store. If the backing store supports f loat values, it is not unrea-
sonable to use them. This implementation detail is not visible through the
Preferences API, which allows the value to be read as a f loat (with get Float) or
a Str ing (with get) type.

Parameters: key - key with which the string form of value is to be associated.

value - value whose string form is to be associated with key .

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.
242-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 org.osgi.service.prefs
See Also: getFloat(Str ing, f loat)
putInt(String, int)

public void putInt(java.lang.String key, int
value)
throws NullPointerException,
IllegalStateException

Associates a String object representing the specified int value with the speci-
fied key in this node. The associated string is the one that would be returned if
the int value were passed to Integer .to String(int) . This method is intended for
use in conjunction with getInt(Str ing, int) method.

Implementor’s note: it is not necessary that the property value be represented
by a Str ing object in the backing store. If the backing store supports integer
values, it is not unreasonable to use them. This implementation detail is not
visible through the Preferences API, which allows the value to be read as an
int (with get Int or a Str ing (with get) type.

Parameters: key - key with which the string form of value is to be associated.

value - value whose string form is to be associated with key .

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: getInt(String, int)
putLong(String, long)

public void putLong(java.lang.String key,
long value)
throws NullPointerException,
IllegalStateException

Associates a String object representing the specified long value with the speci-
fied key in this node. The associated Str ing object is the one that would be
returned if the long value were passed to Long.to Str ing(long) . This method is
intended for use in conjunction with the getLong(Str ing, long) method.

Implementor’s note: it is not necessary that the value be represented by a Str ing
type in the backing store. If the backing store supports long values, it is not
unreasonable to use them. This implementation detail is not visible through
the Preferences API, which allows the value to be read as a long (with get Long
or a Str ing (with get) type.

Parameters: key - key with which the string form of value is to be associated.

value - value whose string form is to be associated with key .

Throws: Nul lPointerException - if key is null .

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: getLong(String, long)
remove(String)

public void remove(java.lang.String key)
throws IllegalStateException

Removes the value associated with the specified key in this node, if any.

Parameters: key - key whose mapping is to be removed from this node.

Throws: I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: get(Str ing, Str ing)
OSGi Service-Platform Release 2 243-282

References Preferences Service Specification Version 1.0
removeNode()

public void removeNode()
throws IllegalStateException,
RuntimeException

Removes this node and all of its descendants, invalidating any properties con-
tained in the removed nodes. Once a node has been removed, attempting any
method other than name() , absolute Path() or node Exists(“”) on the corre-
sponding Preferences instance will fail with an I l legal State Exception . (The
methods defined on Object can still be invoked on a node after it has been
removed; they will not throw I l legal State Exception .)

The removal is not guaranteed to be persistent until the f lush method is called
on the parent of this node. (It is illegal to remove the root node.)

Throws: I l legalStateExcept ion - if this node (or an ancestor) has already been removed
with the removeNode() method.

RuntimeException - if this is a root node.

BackingStoreExcept ion

See Also: f lush()
sync()

public void sync()
throws BackingStoreException,
IllegalStateException

Ensures that future reads from this node and its descendants reflect any
changes that were committed to the persistent store (from any VM) prior to
the sync invocation. As a side-effect, forces any changes in the contents of this
node and its descendants to the persistent store, as if the f lush method had
been invoked on this node.

Throws: BackingStoreExcept ion - if this operation cannot be completed due to a failure
in the backing store, or inability to communicate with it.

I l legalStateExcept ion - if this node (or an ancestor) has been removed with the
removeNode() method.

See Also: f lush()

11.7.3 PreferencesService
Syntaxpublic interface PreferencesService DescriptionThe Preferences Service.

Each bundle using this service has its own set of preference trees: one for sys-
tem preferences, and one for each user.

A Preferences Service object is specific to the bundle which obtained it from
the service registry. If a bundle wishes to allow another bundle to access its
preferences, it should pass its Preferences Service object to that bundle.

11.7.3.1 MethodsgetSystemPreferences()

public Preferences
getSystemPreferences()

Returns the root system node for the calling bundle.
getUserPreferences(String)

public Preferences getUserPreferences(
java.lang.String name)

Returns the root node for the specified user and the calling bundle.
getUsers()

public java.lang.String[] getUsers() Returns the names of users for which node trees exist.

11.8 References
[34] JSR 10 Preferences API

http://jcp.org/aboutJava/communityprocess/review/jsr010/index.html

[35] Windows Registry
http://www.microsoft.com/technet/win98/reg.asp
244-282 OSGi Service-Platform Release 2

Preferences Service Specification Version 1.0 References
[36] RFC 2045 Base 64 encoding
http://www.ietf.org/rfc/rfc2045.txt
OSGi Service-Platform Release 2 245-282

References Preferences Service Specification Version 1.0
246-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 Introduction
12 User Admin Service
Specification
Version 1.0

12.1 Introduction
OSGi environments are often be used in places where end users or devices ini-
tiate actions. These kinds of actions inevitably create a need for authenticating
the initiator. Authenticating can be done in many different ways: with pass-
words, one-time token cards, bio-metrics, and certificates.

Once the initiator is authenticated, it is necessary to verify that this principal is
authorized to perform the requested action. This authorization can only be
decided by the operator of the OSGi environment, and thus requires adminis-
tration.

The User Admin service provides this type of functionality. Bundles can use
the User Admin service to authenticate an initiator and represent this authen-
tication as an Author izat ion object. Bundles that execute actions on behalf of
this user can use the Author izat ion object to verify if that user is authorized.

The User Admin service provides authorization based on who runs the code,
instead of the Java code-based permission model, see [37] The Java Security
Architecture for JDK 1.2. It is performing a role similar to [38] Java Authentication
and Authorization Service.

12.1.1 Essentials
• Authentication – A large number of authentication schemes already exist,

and more will come. The User Admin service must be flexible enough to
adapt to all schemes that can be run on a computer system.

• Authorization – All bundles should use the User Admin service to authen-
ticate users and to find out if those users are authorized. It is therefore para-
mount that a bundle can find out the authorization information with little
effort.

• Security – Fine-grained security based on the Framework security model is
needed to make access to the User Admin service safe. It should allow
limited access to the credentials and other properties.

• Extensibility – Other bundles should be able to build on the User Admin
service. It should therefore be possible to examine the information of this
service and get real-time notifications of changes.

• Properties – The User Admin service must hold a persistent database of
users. It must be possible to use this database to hold more information
about this user.

• Administration – Administering the authorizations for each possible action
and initiator is time-consuming and error-prone. It is therefore necessary to
have mechanisms to group end users and to make it simple to assign autho-
rizations to all members of a group at once.
OSGi Service-Platform Release 2 247-282

Introduction User Admin Service Specification Version 1.0
12.1.2 Operation
An operator uses the User Admin service to define OSGi environment users
and configure them with properties, credentials, and roles.

A Role object represents the initiator of a request (human or otherwise). This
specification defines two types of roles:

• User – A User object can be configured with credentials (such as a password)
and properties (for example, address, telephone number, and so on).

• Group – A Group object is an aggregation of basic and required roles. Basic
and required roles are used in the authorization phase.

An OSGi environment may have several entry points, each of which will be
responsible for authenticating incoming requests. An example of an entry
point is the Http Service, which delegates authentication of incoming requests
to the handleSecur ity method of the HttpContext object that was specified
when the target servlet or resource of the request was registered.

The OSGi environment entry points should use the information configured in
the User Admin service to authenticate incoming requests: for example, a pass-
word stored in the private credentials, or the use of a certificate.

A bundle can determine if a request for an action is authorized by looking for a
Role object that has the name of the requested action.

The bundle may execute the action if the Role object representing the initiator
implies the Role object representing the requested action.

An initiator Role object I implies an action Group object A if:

• I implies at least one of A’s basic members, and
• I implies all of A’s required members.

An initiator Role object I implies an action User object A if:

• A and I are equal.

The Author izat ion class handles this non-trivial logic. The User Admin service
can capture the privileges of an authenticated User object into an Author iza-
t ion object. The Author izat ion.hasRole method checks if the authenticate
User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can
authenticate the initiator and place an Authorizat ion object in the request
header. The servlet calls the hasRole method on this Author izat ion object to
verify that the initiator has the authority to perform a certain action.

12.1.3 Entities
This Specification defines the following User Admin service entities:

• UserAdmin – This interface manages a database of named roles which can be
used for authorization and authentication purposes.

• Role – This interface exposes the characteristics shared by all roles: a name, a
type, and a set of properties.

• User – This interface (which extends Role) is used to represent any entity
which may have credentials associated with it. These credentials can be
used to authenticate an initiator.
248-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 Introduction
• Group – This interface (which extends User) is used to contain an aggre-
gation of named Role objects (Group or User objects).

• Authorization – This interface encapsulates an authorization context on
which bundles can base authorization decisions.

• UserAdminEvent – This class is used to represent a role change event.
• UserAdminListener – This interface provides a listener for events of type

UserAdminEvent that can be registered as a service.
• UserAdminPermission – This permission is needed to configure and access

the roles managed by a User Admin service.

Figure 37 User Admin Service, org.osgi .service.useradmin

<<service>>
UserAdmin

<<interface>>
Role

<<interface>>
Group

UserAdmin
Event

<<interface>>
Authorization

<<service>>
UserAdmin
Listener

<<interface>>
User

UserAdmin
Permission

UserAdmin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation

perform action

consult
for authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

re
qu

ire
d

m
em

be
r

ba
sic

 m
em

be
r

OSGi Service-Platform Release 2 249-282

Authentication User Admin Service Specification Version 1.0
12.2 Authentication
The authentication phase determines if the initiator is genuinely the one it
says it is. Mechanisms to authenticate always need some information related
to the user or the OSGi environment to authenticate an external user. This
information can be:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

12.2.1 Repository
The User Admin service offers a repository of Role objects. Each Role object has
a unique name and a set of properties that are readable by anyone, and are
changeable when the changer has the UserAdminPermiss ion . Additionally,
User objects, a sub-interface of Role , also have a set of private protected proper-
ties called credentials. Credentials are an extra set of properties that are used to
authenticate users and that are protected by UserAdminPermiss ion .

Properties are accessed with the Role.getPropert ies() method and credentials
with the User.getCredentia ls()method. Both methods return a Dict ionary
object containing the key/value pairs. The keys are Str ing objects and the val-
ues of this Dict ionary object are limited to String or byte[] objects.

This specification does not define any standard keys for the properties or cre-
dentials. The keys depend on the implementation of the authentication mech-
anism, and are not formally defined by the OSGi.

The repository can be searched for objects that have a unique property (key/
value pair) with the method UserAdmin.getUser(String,String) . This makes it
easy to find a specific user related to a specific authentication mechanism. For
example, a secure card mechanism that generates unique tokens could have a
serial number identifying the user. The owner of the card could be found with
the method

User owner = useradmin.getUser(
"secure-card-serial", "132456712-1212").

If multiple User objects have the same property (key and value), a null is
returned.

There is a convenience method to verify that a user has a credential without
actually getting the credential. This is the User.hasCredential(
String, Object) method.

Access to credentials is protected on a name basis by UserAdminPermiss ion .
Because properties are readable to anyone with access to a User object, User-
AdminPermiss ion only protects change access to properties.

12.2.2 Basic Authentication
Authentication algorithms that perform validation are wide spread. The fol-
lowing example shows a very simple authentication algorithm based on pass-
words.
250-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 Authorization
The vendor of the authentication bundle uses the property "com.acme.basic-
id " to contain the name of the user as it logs in. This property is used to locate
the User object in the repository. Next, the credential "com.acme.password"
contains the password and is compared to the entered password. If the pass-
word is correct, the User object is returned. In all other cases a Secur ityExcep-
t ion is thrown.

public User authenticate(
UserAdmin ua, String name, String pwd

) throws SecurityException{
User user = ua.getUser(“com.acme.basicid”,

username);
if (user == null)

throw new SecurityException("No such user");

if (!user.hasCredential(“com.acme.password”, pwd)
throw new SecurityException(

"Invalid password");
return user;

}

12.2.3 Certificates
Authentication based on certificates does not require a shared secret. Instead, a
certificate contains a name, a public key, and the signature of one or more sign-
ers.

The name in the certificate can be used to locate a User object in the reposi-
tory. Locating a User object, however, only identifies the initiator and does not
authenticate it.

The first step to authenticate the initiator is to verify that it has the private key
of the certificate.

Next, the User Admin service must verify that it has a User object with the
right property, for example "com.acme.cert i f icate"="Fudd" .

The next step is to see if the certificate is signed by a trusted source. The bundle
could use a central list of trusted signers and only accept certificates signed by
those sources. Alternatively, it could require that the certificate itself is already
stored in the repository under a unique key, by storing the certificate as a
byte[] in the credentials.

In any case, once the certificate is verified, the associated User object is authen-
ticated.

12.3 Authorization
The User Admin service authorization architecture is a role based model. In this
model, every action that can be performed by a bundle is associated with a role.
Such a role is a Group object, (group) from the User Admin service repository.
For example, if a servlet could be used to activate the alarm system, there
should be a group named AlarmSystemActivat ion .
OSGi Service-Platform Release 2 251-282

Authorization User Admin Service Specification Version 1.0
The operator can administrate the authorizations by populating the group
with User objects (users) and other groups. Groups are used to minimize the
amount of administration required. For example, it is easier to create one
Administrators group and add it to any administrative roles than to administer
all users for each role. Such a group makes it only one action to remove or add
a user to act as an administrator.

The authorization decision can now be made in two fundamentally different
ways.

An initiator could be allowed to carry out an action (represented by a Group
object) if it implied any of the Group object’s members. For example, the
AlarmSystemActivat ion Group object contains an Administrators and a Fam-
ily Group object:

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation = { Administrators, Family }

Any of the four members Elmer , Pepe , Daffy or Bugs can activate the alarm sys-
tem.

Alternatively, an initiator could be allowed to perform an action (represented
by a Group object) if it implied all of the Group object’s members. In this case,
using the same AlarmSystemActivat ion group, only Elmer and Pepe would be
authorized to activate the alarm system, since Daffy and Bugs are not members
of both the Administrators and Family Group objects.

The User Admin service supports a combination of both strategies by defining
both a set of basic members (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
required = { Administrators }
basic = { Family }

The difference is made when Role objects are added to the Group object. To add
a basic member, use the Group.addMember(Role) method. To add a required
member, use the Group.addRequiredMember(Role) method.

Basic members scope the set of members that can get access, and required mem-
bers reduce this set by requiring the initiator to imply each required member.

A User object implies a Group object if it implies:

• All of the Group’s required members, and
• At least one of the Group’s basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the stan-
dard user user .anyone can be obtained from the User Admin service and added
to the Group object. This Role object is implied by anybody and therefore does
not affect the required members.
252-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 Authorization
12.3.1 The Authorization Object
The complexity of the authorization is hidden in an Authorizat ion class. Nor-
mally, the authenticator should retrieve an Authorizat ion object from the User
Admin service by passing the authenticated User object as argument. This
Author izat ion object is then passed to the bundle that performs the action.
This bundle checks the authorization with the Authorizat ion.hasRole(Str ing)
method. The performing bundle must pass the name of the action as an argu-
ment. The Authorizat ion object checks if the authenticated user implies the
Role object, specifically a Group object, with the given name.

public void activateAlarm(Authorization auth) {
if (auth.hasRole("AlarmSystemActivation")) {

// activate the alarm
...

}
else throw new SecurityException(

"Not authorized to activate alarm");
}

12.3.2 The Http Service and Authorization
The Http Service is normally an important entry point of the OSGi environ-
ment. It has, therefore, played an important role in the development of the
User Admin service development.

The Http Service delegates the authentication to the HttpContext object,
which is given as an argument when the servlet is registered. This object
should use the User Admin service to authenticate the user. After having
obtained a User object, the HttpContext object should create an Author izat ion
object with UserAdmin.getAuthor izat ion(User) . This Authorizat ion object
captures all the roles of the User object.

The Http Service uses the servlet API to invoke requests on a servlet. This exist-
ing API has obviously no place for an OSGi Authorizat ion object. Therefore,
the Author izat ion object is added as an attribute to the javax.serv let .Serv le-
tRequest object with the name:

org.osgi.serv ice.http.HttpContext .AUTHORIZATION
= ("org.osgi .service.useradmin.authorizat ion")

A servlet can retrieve the value of this attribute by calling javax.serv let .Serv-
letRequest .getAttr ibute(HttpContext .AUTHORIZATION) .

12.3.3 Authorization Example
This section demonstrates a possible use of the User Admin service. The ser-
vice has a flexible model, and many other schemes are possible.

Assume an operator installs an OSGi environment. Bundles in this environ-
ment have defined the following action groups:

AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding
OSGi Service-Platform Release 2 253-282

Repository Maintenance User Admin Service Specification Version 1.0
Installing and uninstalling bundles could potentially extend this set. There-
fore, the operators also defined a number of groups that can be used to contain
the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the operator installs it in a household with the follow-
ing residents and buddies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and acquaintances are assigned to the system user groups.
Second, the user groups need to be assigned to the action groups.

The following tables show how the groups could be assigned.

12.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository of
User and Group objects. It contains methods to create new Group and User
objects with the createRole(Str ing, int) method. The method is prepared so
that the same signature can be used to create new types of roles in the future.
The interface also contains a method to remove a Role object.

Groups Elmer Fudd Marvin Pepe Daffy Foghorn

Residents Basic Basic Basic Basic - -

Buddies - - - - Basic Basic

Chi ldren - - Basic Basic - -

Adults Basic Basic - - - -

Administrators Basic - - - - -

Table 17 Example Groups with Basic and Required Members

Groups Residents Buddies Children Adults Administrators

AlarmSystemControl Basic - - - Required

InternetAccess Basic - - Required -

TemperatureControl Basic - - Required -

PhotoAlbumEdit Basic - Basic Basic -

PhotoAlbumView Basic Basic - - -

PortForwarding Basic - - - Required

Table 18 Example Action Groups with their Basic and Required Members
254-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 User Admin Events
The existing configuration can be obtained with methods that lists all Role
objects using a filter argument. This filter, with the same syntax as the Frame-
work filter, must only return the Role objects where the filter matches the
properties.

Several utility methods simplify getting User objects depending on their prop-
erties.

12.5 User Admin Events
Changes in the User Admin service can be found out in real time. Each User
Admin service implementation must send a UserAdminEvent object to any
service in the Framework service registry that is registered under the UserAd-
minListener interface.

This procedure is called the white board approach and is demonstrated in the
following code sample.

class Listener implements UserAdminListener {
public void roleChanged(UserAdminEvent event) {

...
}

}
public class MyActivator

implements BundleActivator {
public void start(BundleContext conext) {

context.registerService(new Listener());
}
public void stop(BundleContext context) {}

}

It is not necessary to unregister the listener. When the bundle is stopped, the
Framework must automatically unregister it. Once registered, all changes to
the role repository must be notified to the UserAdminListener object.

12.6 Security
The User Admin service is related to the security model of the OSGi environ-
ment, but is complementary to the [37] The Java Security Architecture for JDK 1.2.
The final permission of most code should be the conjunction of the Java 2 Per-
missions (which are based on the code that is executing) and the User Admin
service authorization (which is based on the user for whom the code runs).

12.6.1 UserAdminPermission
The User Admin service defines the UserAdminPermission class that can be
used to restrict bundles in accessing the credentials. This permission class has
the following actions:

• changeProperty – This permission is required to modify properties. The
name of the permission is the prefix of the property name.

• changeCredentia l – This action permits changing credentials. The name of
the permission is the prefix of the name of the credential.

• getCredentia l – This action permits getting credentials. The name of the
permission is the prefix of the credential.
OSGi Service-Platform Release 2 255-282

Relation to JAAS User Admin Service Specification Version 1.0
If the name of the permission is "admin", it allows the owner to administer the
repository. No action is associated with the permission in that case.

Otherwise, the permission name is used to match the property name. This
name may end with a ".*" string to indicate a wildcard. For example
com.acme.*matches com.acme.fudd.elmer and com.acme.bugs .

12.7 Relation to JAAS
The Java Authorization and Authentication Service (JAAS) seems at first sight
a very suitable model for user administration. The OSGi, however, decided to
develop an independent User Admin service because JAAS was not deemed
applicable. The reasons were dependency on J2SE version 1.3 ("JDK 1.3") and
existing mechanisms in the previous OSGi Service Gateway 1.0 specification.

12.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the java.secur ity .Domain-
Combiner interface, which provides a means to dynamically update the Pro-
tect ionDomain objects affiliated with an AccessControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the SubjectDo-
mainCombiner object, which implements the DomainCombiner interface, is
used to update Protect ionDomain objects, whose permissions depend on
where code came from and who signed it, with permissions based on who is
running the code.

Leveraging JAAS would have meant that user-based access control on the OSGi
environment was only available with JDK 1.3, which was not deemed accept-
able.

12.7.2 Existing OSGi Mechanism
JAAS provides a pluggable authentication architecture, which enables applica-
tions and their underlying authentication services to remain independent
from each other.

The Http Service already provides a similar feature by allowing servlet and
resource registrations to be supported by an HttpContext object, which uses a
callback mechanism to perform any required authentication checks before
granting access to the servlet or resource. This way, the registering bundle has
complete control – on a per-servlet and per-resource basis – over which
authentication protocol to use, how the credentials presented by the remote
requestor are to be validated, and who should be granted access to the servlet
or resource.

12.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. In that
case JAAS could be implemented on OSGi environment. At that time, the User
Admin service will still be needed and will provide complementary services in
the following ways:

• The authorization component relies on group membership information to
be stored and managed outside JAAS. JAAS does not manage persistent
information, so the User Admin service can be a provider of group infor-
mation when principals are assigned to a Subject object.
256-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
• The authorization component allows for credentials to be collected and ver-
ified, but again, a repository is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to JAAS.
The only aspect JAAS will remove from the User Admin service is the need for
the Author izat ion interface.

Package
12.8 org.osgi.service.useradmin

DescriptionThe OSGi User Admin service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-Pack-
age header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.useradmin; specification-
version=1.0

12.8.1 Authorization
Syntaxpublic interface Authorization DescriptionThe Author izat ion interface encapsulates an authorization context on which
bundles can base authorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations
with roles. Before granting access to a restricted resource or operation, a bun-
dle will check if the Authorizat ion object passed to it possesses the required
role, by calling its has Role method.

Authorization contexts are instantiated by calling the getAuthor izat ion(
User) method.

Trusting Authorization objects

Class Summary

Interfaces

Author izat ion The Author izat ion interface encapsulates an authorization context on which
bundles can base authorization decisions, where appropriate.

Group A named grouping of roles (Role objects).

Role The base interface for Role objects managed by the User Admin service.

User A User role managed by a User Admin service.

UserAdmin This interface is used to manage a database of named Role objects, which can
be used for authentication and authorization purposes.

UserAdminListener Listener for UserAdminEvents.

Classes

UserAdminEvent Role change event.

UserAdminPermiss ion Permission to configure and access the Role objects managed by a User Admin
service.
OSGi Service-Platform Release 2 257-282

org.osgi.service.useradmin User Admin Service Specification Version 1.0
There are no restrictions regarding the creation of Author izat ion objects.
Hence, a service must only accept Author izat ion objects from bundles that has
been authorized to use the service using code based (or Java 2) permissions.

In some cases it is useful to use Service Permiss ion to do the code based access
control. A service basing user access control on Author izat ion objects passed to
it, will then require that a calling bundle has the Serv ice Permission to get the
service in question. This is the most convenient way. The OSGi environment
will do the code based permission check when the calling bundle attempts to
get the service from the service registry.

Example: A servlet using a service on a user’s behalf. The bundle with the serv-
let must be given the Service Permiss ion to get the Http Service.

However, in some cases the code based permission checks need to be more
fine-grained. A service might allow all bundles to get it, but require certain
code based permissions for some of its methods.

Example: A servlet using a service on a user’s behalf, where some service func-
tionality is open to anyone, and some is restricted by code based permissions.
When a restricted method is called (e.g., one handing over an Authorizat ion
object), the service explicitly checks that the calling bundle has permission to
make the call.

12.8.1.1 MethodsgetName()

public java.lang.String getName() Gets the name of the User that this Authorizat ion context was created for.

Returns: The name of the User object that this Authorizat ion context was created for, or
nul l if no user was specified when this Authorizat ion context was created.
getRoles()

public java.lang.String[] getRoles() Gets the names of all roles encapsulated by this Author izat ion context.

Returns: The names of all roles encapsulated by this Author izat ion context, or nul l if no
roles are in the context. The predefined role user .anyone will not be included
in this list.
hasRole(String)

public boolean hasRole(java.lang.String
name)

Checks if the role with the specified name is implied by this Author izat ion
context.

Bundles must define globally unique role names that are associated with the
privilege of accessing restricted resources or operations. Operators will grant
users access to these resources, by creating a Group object for each role and
adding User objects to it.

Parameters: name - The name of the role to check for.

Returns: true if this Authorizat ion context implies the specified role, otherwise fa lse .

12.8.2 Group
Syntaxpublic interface Group extends User

All Superinter-
faces:

Role , User

DescriptionA named grouping of roles (Role objects).

Whether or not a given Authorizat ion context implies a Group object depends
on the members of that Group object.
258-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
A Group object can have two kinds of members: basic and required. A Group
object is implied by an Author izat ion context if all of its required members are
implied and at least one of its basic members is implied.

A Group object must contain at least one basic member in order to be implied.
In other words, a Group object without any basic member roles is never
implied by any Author izat ion context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects,
which means that it is possible to create circular implications. Loop detection
is instead done when roles are checked. The semantics is that if a role depends
on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be
implied is motivated by the following example:

group foo
required members: marketing
basic members: alice, bob

Privileged operations that require membership in “foo” can be performed only
by “alice” and “bob”, who are in marketing.

If “alice” and “bob” ever transfer to a different department, anybody in market-
ing will be able to assume the “foo” role, which certainly must be prevented.
Requiring that “foo” (or any Group object for that matter) must have at least
one basic member accomplishes that.

However, this would make it impossible for a Group object to be implied by
just its required members. An example where this implication might be useful
is the following declaration: “Any citizen who is an adult is allowed to vote.”
An intuitive configuration of “voter” would be:

group voter
required members: citizen, adult

basic members:

However, according to the above rule, the “voter” role could never be assumed
by anybody, since it lacks any basic members. In order to address this issue a
predefined role named “user.anyone” can be specified, which is always
implied. The desired implication of the “voter” group can then be achieved by
specifying “user.anyone” as its basic member, as follows:

group voter
required members: citizen, adult

basic members: user.anyone

12.8.2.1 MethodsaddMember(Role)

public boolean addMember(Role role)
throws SecurityException

Adds the specified Role object as a basic member to this Group object.

Parameters: role - The role to add as a basic member.
OSGi Service-Platform Release 2 259-282

org.osgi.service.useradmin User Admin Service Specification Version 1.0
Returns: true if the given role could be added as a basic member, and fa lse if this Group
object already contains a Role object whose name matches that of the specified
role.

Throws: Secur i tyException - If a security manager exists and the caller does not have
the User Admin Permiss ion with name admin .
addRequiredMember(Role)

public boolean addRequiredMember(Role
role)
throws SecurityException

Adds the specified Role object as a required member to this Group object.

Parameters: role - The Role object to add as a required member.

Returns: true if the given Role object could be added as a required member, and fa lse if
this Group object already contains a Role object whose name matches that of
the specified role.

Throws: Secur i tyException - If a security manager exists and the caller does not have
the User Admin Permiss ion with name admin .
getMembers()

public Role[] getMembers() Gets the basic members of this Group object.

Returns: The basic members of this Group object, or null if this Group object does not
contain any basic members.
getRequiredMembers()

public Role[] getRequiredMembers() Gets the required members of this Group object.

Returns: The required members of this Group object, or nul l if this Group object does
not contain any required members.
removeMember(Role)

public boolean removeMember(Role role)
throws SecurityException

Removes the specified Role object from this Group object.

Parameters: role - The Role object to remove from this Group object.

Returns: true if the Role object could be removed, otherwise fa lse .

Throws: Secur i tyException - If a security manager exists and the caller does not have
the User Admin Permiss ion with name admin .

12.8.3 Role
Syntaxpublic interface Role

All Known Sub-
interfaces:

Group , User

DescriptionThe base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name, a
type, and a set of properties.

Properties represent public information about the Role object that can be read
by anyone. Specific UserAdminPermiss ion objects are required to change a
Role object’s properties.

Role object properties are Dict ionary objects. Changes to these objects are
propagated to the User Admin service and made persistent.
260-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
Every User Admin service contains a set of predefined Role objects that are
always present and cannot be removed. All predefined Role objects are of type
ROLE . This version of the org.osgi.serv ice.useradmin package defines a single
predefined role named “user.anyone”, which is inherited by any other role.
Other predefined roles may be added in the future. Since “user.anyone” is a
Role object that has properties associated with it that can be read and modi-
fied. Access to these properties and their use is application specific and is con-
trolled using User Admin Permiss ion in the same way that properties for other
Role objects are.

12.8.3.1 FieldsGROUP

public static final int GROUP The type of a Group role.

The value of GROUP is 2.
ROLE

public static final int ROLE The type of a predefined role.

The value of ROLE is 0.
USER

public static final int USER The type of a User role.

The value of USER is 1.

12.8.3.2 MethodsgetName()

public java.lang.String getName() Returns the name of this role.

Returns: The role’s name.
getProperties()

public java.util.Dictionary getProperties() Returns a Dict ionary of the (public) properties of this Role object. Any changes
to the returned Dict ionary will change the properties of this Role object. This
will cause a User Admin Event object of type ROLE_CHANGED to be broadcast
to any User Admin Listener objects.

Only objects of type Str ing may be used as property keys, and only objects of
type Str ing or byte[] may be used as property values. Any other types will
cause an exception of type I l legal Argument Except ion to be raised.

In order to add, change, or remove a property in the returned Dict ionary , a
UserAdminPermission named after the property name (or a prefix of it) with
action change Property is required.

Returns: Dict ionary containing the properties of this Role object.
getType()

public int getType() Returns the type of this role.

Returns: The role’s type.

12.8.4 User
Syntaxpublic interface User extends Role

All Known Sub-
interfaces:

Group

All Superinter-
faces:

Role

DescriptionA User role managed by a User Admin service.
OSGi Service-Platform Release 2 261-282

org.osgi.service.useradmin User Admin Service Specification Version 1.0
In this context, the term “user” is not limited to just human beings. Instead, it
refers to any entity that may have any number of credentials associated with it
that it may use to authenticate itself.

In general, Userobjects are associated with a specific User Admin service (
namely the one that created them), and cannot be used with other User Admin
services.

A Userobject may have credentials (and properties, inherited from the Role
class) associated with it. Specific UserAdminPermiss ion objects are required to
read or change a User object’s credentials.

Credentials are Dict ionary objects and have semantics that are similar to the
properties in the Role class.

12.8.4.1 MethodsgetCredentials()

public java.util.Dictionary getCredentials(
)

Returns a Dict ionary of the credentials of this User object. Any changes to the
returned Dict ionary object will change the credentials of this User object. This
will cause a User Admin Event object of type ROLE_CHANGED to be broadcast
to any User Admin Listeners objects.

Only objects of type Str ing may be used as credential keys, and only objects of
type Str ing or of type byte[] may be used as credential values. Any other types
will cause an exception of type I l legal Argument Except ion to be raised.

In order to retrieve a credential from the returned Dict ionary object, a
UserAdminPermission named after the credential name (or a prefix of it) with
action get Credentia l is required.

In order to add or remove a credential from the returned Dict ionary object, a
UserAdminPermission named after the credential name (or a prefix of it) with
action change Credentia l is required.

Returns: Dict ionary object containing the credentials of this User object.
hasCredential(String, Object)

public boolean hasCredential(
java.lang.String key, java.lang.Object
value)
throws SecurityException

Checks to see if this User object has a credential with the specified key set to
the specified value .

If the specified credential value is not of type Str ing or byte[] , it is ignored,
that is, fa lse is returned (as opposed to an I l legal Argument Except ion being
raised).

Parameters: key - The credential key .

value - The credential value .

Returns: true if this user has the specified credential; fa lse otherwise.

Throws: Secur i tyException - If a security manager exists and the caller does not have
the User Admin Permiss ion named after the credential key (or a prefix of it)
with action get Credent ial .

12.8.5 UserAdmin
Syntaxpublic interface UserAdmin DescriptionThis interface is used to manage a database of named Role objects, which can
be used for authentication and authorization purposes.
262-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
This version of the User Admin service defines two types of Role objects:
“User” and “Group”. Each type of role is represented by an int constant and an
interface. The range of positive integers is reserved for new types of roles that
may be added in the future. When defining proprietary role types, negative
constant values must be used.

Every role has a name and a type.

A User object can be configured with credentials (e.g., a password) and proper-
ties (e.g., a street address, phone number, etc.).

A Group object represents an aggregation of User and Group objects. In other
words, the members of a Group object are roles themselves.

Every User Admin service manages and maintains its own namespace of Role
objects, in which each Role object has a unique name.

12.8.5.1 MethodscreateRole(String, int)

public Role createRole(java.lang.String
name, int type)
throws IllegalArgumentException,
SecurityException

Creates a Role object with the given name and of the given type.

If a Role object was created, a User Admin Event object of type ROLE_CREATED
is broadcast to any User Admin Listener object.

Parameters: name - The name of the Role object to create.

type - The type of the Role object to create. Must be either a USER type or
GROUP type.

Returns: The newly created Role object, or nul l if a role with the given name already
exists.

Throws: I l legalArgumentExcept ion - if type is invalid.

Secur i tyException - If a security manager exists and the caller does not have
the User Admin Permiss ion with name admin .
getAuthorization(User)

public Author izat ion getAuthorization(
User user)

Creates an Authorizat ion object that encapsulates the specified User object
and the Role objects it possesses. The null user is interpreted as the anonymous
user. The anonymous user represents a user that has not been authenticated.
An Author izat ion object for an anonymous user will be unnamed, and will
only imply groups that user.anyone implies.

Parameters: user - The User object to create an Author izat ion object for, or nul l for the
anonymous user.

Returns: the Author izat ion object for the specified User object.
getRole(String)

public Role getRole(java.lang.String
name)

Gets the Role object with the given name from this User Admin service.

Parameters: name - The name of the Role object to get.

Returns: The requested Role object, or null if this User Admin service does not have a
Role object with the given name .
getRoles(String)

public Role[] getRoles(java.lang.String
filter)

Gets the Role objects managed by this User Admin service that have properties
matching the specified LDAP filter criteria. See org.osgi . framework.F i l ter for a
description of the filter syntax. If a nul l filter is specified, all Role objects man-
aged by this User Admin service are returned.
OSGi Service-Platform Release 2 263-282

org.osgi.service.useradmin User Admin Service Specification Version 1.0
Parameters: f i l ter - The filter criteria to match.

Returns: The Role objects managed by this User Admin service whose properties match
the specified filter criteria, or all Role objects if a nul l filter is specified. If no
roles match the filter, nul l will be returned.

Throws: Inval idSyntaxException
getUser(String, String)

public User getUser(java.lang.String key,
java.lang.String value)

Gets the user with the given property key -value pair from the User Admin ser-
vice database. This is a convenience method for retrieving a User object based
on a property for which every User object is supposed to have a unique value (
within the scope of this User Admin service), such as for example a X.500 dis-
tinguished name.

Parameters: key - The property key to look for.

value - The property value to compare with.

Returns: A matching user, if exactly one is found. If zero or more than one matching
users are found, null is returned.
removeRole(String)

public boolean removeRole(
java.lang.String name)
throws SecurityException

Removes the Role object with the given name from this User Admin service.

If the Role object was removed, a User Admin Event object of type
ROLE_REMOVED is broadcast to any User Admin Listener object.

Parameters: name - The name of the Role object to remove.

Returns: true If a Role object with the given name is present in this User Admin service
and could be removed, otherwise fa lse .

Throws: Secur i tyException - If a security manager exists and the caller does not have
the User Admin Permiss ion with name admin .

12.8.6 UserAdminEvent
Syntaxpublic class UserAdminEvent DescriptionRole change event.

User Admin Event objects are delivered asynchronously to any User Admin-
L istener objects when a change occurs in any of the Role objects managed by a
User Admin service.

A type code is used to identify the event. The following event types are defined:
ROLE_CREATED type, ROLE_CHANGED type, and ROLE_REMOVED type. Addi-
tional event types may be defined in the future.

See Also: UserAdmin , UserAdminListener

12.8.6.1 FieldsROLE_CHANGED

public static final int ROLE_CHANGED A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.
ROLE_CREATED

public static final int ROLE_CREATED A Role object has been created.

The value of ROLE_CREATED is 0x00000001.
ROLE_REMOVED

public static final int ROLE_REMOVED A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.
264-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
12.8.6.2 ConstructorsUserAdminEvent(ServiceReference, int, Role)

public UserAdminEvent(
ServiceReference ref, int type, Role
role)

Constructs a User Admin Event object from the given Service Reference object,
event type, and Role object.

Parameters: ref - The Service Reference object of the User Admin service that generated
this event.

type - The event type.

role - The Role object on which this event occurred.

12.8.6.3 MethodsgetRole()

public Role getRole() Gets the Role object this event was generated for.

Returns: The Role object this event was generated for.
getServiceReference()

public Serv iceReference
getServiceReference()

Gets the Service Reference object of the User Admin service that generated
this event.

Returns: The User Admin service’s Service Reference object.
getType()

public int getType() Returns the type of this event.

The type values are ROLE_CREATED type, ROLE_CHANGED type, and
ROLE_REMOVED type.

Returns: The event type.

12.8.7 UserAdminListener
Syntax

public interface UserAdminListener DescriptionListener for UserAdminEvents.

User Admin Listener objects are registered with the Framework service registry
and notified with a User Admin Event object when a Role object has been cre-
ated, removed, or modified.

User Admin Listener objects can further inspect the received User Admin Event
object to determine its type, the Role object it occurred on, and the User Admin
service that generated it.

See Also: UserAdmin , UserAdminEvent

12.8.7.1 MethodsroleChanged(UserAdminEvent)

public void roleChanged(
UserAdminEvent event)

Receives notification that a Role object has been created, removed, or modified.

Parameters: event - The User Admin Event object.

12.8.8 UserAdminPermission
Syntaxpublic final class UserAdminPermission

extends java.security.BasicPermission

All Implemented
Interfaces:

java.security.Guard, java.io.Serializable

DescriptionPermission to configure and access the Role objects managed by a User Admin
service.

This class represents access to the Role objects managed by a User Admin ser-
vice and their properties and credentials (in the case of User objects).
OSGi Service-Platform Release 2 265-282

org.osgi.service.useradmin User Admin Service Specification Version 1.0
The permission name is the name (or name prefix) of a property or credential.
The naming convention follows the hierarchical property naming convention.
Also, an asterisk may appear at the end of the name, following a “.”, or by itself,
to signify a wildcard match. For example: “org.osgi.security.protocol.*” or “*” is
valid, but “*protocol” or “a*b” are not valid.

The User Admin Permiss ion with the reserved name “admin” represents the
permission required for creating and removing Role objects in the User Admin
service, as well as adding and removing members in a Group object. This User-
Admin Permiss ion does not have any actions associated with it.

The actions to be granted are passed to the constructor in a string containing a
list of one or more comma-separated keywords. The possible keywords are:
“changeProperty”, “changeCredential”, and “getCredential”. Their meaning is
defined as follows:

action: “changeProperty”
Permission to change (i.e., add and remove) Role object

properties
whose names start with the name argument specified in the
constructor.
action: “changeCredential”
Permission to change (i.e., add and remove) User object

credentials
whose names start with the name argument specified in the
constructor.
action: “getCredential”
Permission to retrieve and check for the existence of User

object
credentials whose names start with the name argument
specified in the constructor.

The action string is converted to lowercase before processing.

Following is a Java 2 style policy entry which grants a user administration
bundle a number of User Admin Permiss ion object:

grant codeBase “${jars}useradmin_console.jar” {
permission org.osgi.service.useradmin.UserAdminPermission

“admin”;
permission org.osgi.service.useradmin.UserAdminPermission

“com.foo.*”, “changeProperty,getCredential,
changeCredential”;

permission org.osgi.service.useradmin.UserAdminPermission
“user.*”, “changeProperty,changeCredential”;

};

The first permission statement grants the bundle the permission to perform
any User Admin service operations of type “admin”, that is, create and remove
roles and configure Group objects.

The second permission statement grants the bundle the permission to change
any properties as well as get and change any credentials whose names start
with com.foo. .
266-282 OSGi Service-Platform Release 2

User Admin Service Specification Version 1.0 org.osgi.service.useradmin
The third permission statement grants the bundle the permission to change
any properties and credentials whose names start with user . . This means that
the bundle is allowed to change, but not retrieve any credentials with the
given prefix.

The following policy entry empowers the Http Service bundle to perform user
authentication:

grant codeBase “${jars}http.jar” {
permission org.osgi.service.useradmin.UserAdminPermission

“user.password”, “getCredential”;
};

The permission statement grants the Http Service bundle the permission to
validate any password credentials (for authentication purposes), but the bun-
dle is not allowed to change any properties or credentials.

12.8.8.1 FieldsADMIN

public static final java.lang.String ADMIN The permission name “admin”.
CHANGE_CREDENTIAL

public static final java.lang.String
CHANGE_CREDENTIAL

The action string “changeCredential”.
CHANGE_PROPERTY

public static final java.lang.String
CHANGE_PROPERTY

The action string “changeProperty”.
GET_CREDENTIAL

public static final java.lang.String
GET_CREDENTIAL

The action string “getCredential”.

12.8.8.2 ConstructorsUserAdminPermission(String, String)

public UserAdminPermission(
java.lang.String name, java.lang.String
actions)
throws IllegalArgumentException

Creates a new User Admin Permiss ion with the specified name and actions.
name is either the reserved string “admin” or the name of a credential or prop-
erty, and act ions contains a comma-separated list of the actions granted on the
specified name. Valid actions are “changeProperty”, “changeCredential”, and
“getCredential”.

Parameters: name - the name of this User Admin Permiss ion

act ions - the action string.

Throws: I l legalArgumentExcept ion - If name equals “admin” and act ions are specified.

12.8.8.3 Methodsequals(Object)

public boolean equals(java.lang.Object
obj)

Checks two User Admin Permiss ion objects for equality. Checks that obj is a
User Admin Permiss ion , and has the same name and actions as this object.

Overrides: java.security.BasicPermission.equals(java.lang.Object) in class java.secu-
rity.BasicPermission

Parameters: obj - the object to be compared for equality with this object.

Returns: true if obj is a User Admin Permiss ion object, and has the same name and
actions as this User Admin Permiss ion object.
getActions()

public java.lang.String getActions() Returns the canonical string representation of the actions, separated by
comma.
OSGi Service-Platform Release 2 267-282

References User Admin Service Specification Version 1.0
Overrides: java.security.BasicPermission.getActions() in class java.security.BasicPermis-
sion

Returns: the canonical string representation of the actions.
hashCode()

public int hashCode() Returns the hash code of this User Admin Permiss ion object.

Overrides: java.security.BasicPermission.hashCode() in class java.security.BasicPermis-
sion
implies(Permission)

public boolean implies(
java.security.Permission p)

Checks if this User Admin Permiss ion object “implies” the specified permis-
sion.

More specifically, this method returns true if:

• p is an instanceof User Admin Permiss ion ,
• p’s actions are a proper subset of this object’s actions, and
• p’s name is implied by this object’s name. For example, “java.*” implies

“java.home”.

Overrides: java.security.BasicPermission.implies(java.security.Permission) in class
java.security.BasicPermission

Parameters: p - the permission to check against.

Returns: true if the specified permission is implied by this object; fa lse otherwise.
newPermissionCollection()

public java.security.PermissionCollection
newPermissionCollection()

Returns a new Permiss ion Col lect ion object for storing User Admin Permission
objects.

Overrides: java.security.BasicPermission.newPermissionCollection() in class java.secu-
rity.BasicPermission

Returns: a new Permiss ion Collect ion object suitable for storing User Admin Permiss ion
objects.
toString()

public java.lang.String toString() Returns a string describing this User Admin Permiss ion . The convention is to
specify the class name, the permission name, and the actions in the following
format: ’(org.osgi.service.useradmin.UserAdminPermission “name” “actions”)’.

Overrides: java.security.Permission.toString() in class java.security.Permission

Returns: information about this Permiss ion object.

12.9 References
[37] The Java Security Architecture for JDK 1.2

Version 1.0, Sun Microsystems, October 1998
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-
spec.doc.html

[38] Java Authentication and Authorization Service
http://java.sun.com/products/jaas/
268-282 OSGi Service-Platform Release 2

Index A

Index

A

absolutePath()
of org.osgi.service.prefs.Preferences 236
ACTIVE
of org.osgi.framework.Bundle 53
addBundleListener(BundleListener)
of org.osgi.framework.BundleContext 62
addFrameworkListener(FrameworkListener)
of org.osgi.framework.BundleContext 62
addingService(ServiceReference)
of org.osgi.util.tracker.ServiceTracker 112
of org.osgi.util.tracker.ServiceTrackerCustomizer 115
addLogListener(LogListener)
of org.osgi.service.log.LogReaderService 125
addMember(Role)
of org.osgi.service.useradmin.Group 259
addRequiredMember(Role)
of org.osgi.service.useradmin.Group 260
addServiceListener(ServiceListener)
of org.osgi.framework.BundleContext 62
addServiceListener(ServiceListener, String)
of org.osgi.framework.BundleContext 62
ADMIN
of org.osgi.service.useradmin.UserAdminPermission 267
AdminPermission
of org.osgi.framework 51

AdminPermission()
of org.osgi.framework.AdminPermission 51
AdminPermission(String, String)
of org.osgi.framework.AdminPermission 52
algorithm
device attachment 165
ALL
of org.osgi.service.metatype.ObjectClassDefinition 225
attach(ServiceReference)
of org.osgi.service.device.Driver 173
attachment
device service 151
AttributeDefinition
of org.osgi.service.metatype 222
authentication
headers 138
requests 137
AUTHENTICATION_TYPE
of org.osgi.service.http.HttpContext 141
AUTHORIZATION
of org.osgi.service.http.HttpContext 141
Authorization
of org.osgi.service.useradmin 257
authorization
request 137

B

BackingStoreException
of org.osgi.service.prefs 234
BackingStoreException(String)
of org.osgi.service.prefs.BackingStoreException 234
BIGDECIMAL
of org.osgi.service.metatype.AttributeDefinition 222
BIGINTEGER
of org.osgi.service.metatype.AttributeDefinition 222
BOOLEAN
of org.osgi.service.metatype.AttributeDefinition 222
Bundle
of org.osgi.framework 52
BUNDLE_ACTIVATOR
of org.osgi.framework.Constants 73
BUNDLE_CATEGORY
of org.osgi.framework.Constants 73
BUNDLE_CLASSPATH
of org.osgi.framework.Constants 73

BUNDLE_CONTACTADDRESS
of org.osgi.framework.Constants 73
BUNDLE_COPYRIGHT
of org.osgi.framework.Constants 73
BUNDLE_DESCRIPTION
of org.osgi.framework.Constants 73
BUNDLE_DOCURL
of org.osgi.framework.Constants 73
BUNDLE_NAME
of org.osgi.framework.Constants 73
BUNDLE_NATIVECODE
of org.osgi.framework.Constants 74
BUNDLE_NATIVECODE_LANGUAGE
of org.osgi.framework.Constants 74
BUNDLE_NATIVECODE_OSNAME
of org.osgi.framework.Constants 74
BUNDLE_NATIVECODE_OSVERSION
of org.osgi.framework.Constants 74
OSGi Service-Platform Release 2 269-282

C

BUNDLE_NATIVECODE_PROCESSOR
of org.osgi.framework.Constants 74
BUNDLE_UPDATELOCATION
of org.osgi.framework.Constants 74
BUNDLE_VENDOR
of org.osgi.framework.Constants 74
BUNDLE_VERSION
of org.osgi.framework.Constants 74
BundleActivator
of org.osgi.framework 60
bundleChanged(BundleEvent)
of org.osgi.framework.BundleListener 72
BundleContext
of org.osgi.framework 61
BundleEvent
of org.osgi.framework 70
BundleEvent(int, Bundle)
of org.osgi.framework.BundleEvent 71

BundleException
of org.osgi.framework 71
BundleException(String)
of org.osgi.framework.BundleException 71
BundleException(String, Throwable)
of org.osgi.framework.BundleException 71
BundleListener
of org.osgi.framework 72
bundles
installing 25
resolving 26
starting 26
stopping 27
uninstalling 28
updating 27
BYTE
of org.osgi.service.metatype.AttributeDefinition 222

C

capturing
events 41
CHANGE_CREDENTIAL
of org.osgi.service.useradmin.UserAdminPermission 267
CHANGE_PROPERTY
of org.osgi.service.useradmin.UserAdminPermission 267
CHARACTER
of org.osgi.service.metatype.AttributeDefinition 222
check
permission 43
childrenNames()
of org.osgi.service.prefs.Preferences 236
clear()
of org.osgi.service.prefs.Preferences 236
close()
of org.osgi.util.tracker.ServiceTracker 113
CM_TARGET
of org.osgi.service.cm.ConfigurationPlugin 209
Configurable
of org.osgi.framework 72
Configuration
of org.osgi.service.cm 202
configuration
managed service 186
properties 184
configuration data
modifying 195
configuration object
accessing 194
deletion 195
getting 197

location binding 183
managed service 193
managed service factory 194
updating 194
configuration plugin
forcing a call-back of 197
modifying data 197
configuration plugin object
calling order 197
registration 200
ConfigurationAdmin
of org.osgi.service.cm 205
ConfigurationException
of org.osgi.service.cm 208
ConfigurationException(String, String)
of org.osgi.service.cm.ConfigurationException 208
ConfigurationPlugin
of org.osgi.service.cm 208
Constants
of org.osgi.framework 72
of org.osgi.service.device 172
context
of org.osgi.util.tracker.ServiceTracker 111
createDefaultHttpContext()
of org.osgi.service.http.HttpService 142
createFactoryConfiguration(String)
of org.osgi.service.cm.ConfigurationAdmin 206
createFactoryConfiguration(String, String)
of org.osgi.service.cm.ConfigurationAdmin 206
createFilter(String)
of org.osgi.framework.BundleContext 63
270-282 OSGi Service-Platform Release 2

Index D
createRole(String, int)
of org.osgi.service.useradmin.UserAdmin 263

customizing
a service tracker 109

D

default
HTTP context object 135
default HTTP context
sharing 136
delete()
of org.osgi.service.cm.Configuration 203
deleted(String)
of org.osgi.service.cm.ManagedServiceFactory 212
deletion
configuration object 195
managed service 189
managed service factory 191
dependencies
BundleClassPath 20
resolving 26
Device
of org.osgi.service.device 172
device
representation 149
device manager
optimizations 168
starting 165
device service
attachment to 151
registration of 150, 170

unregistration 151
DEVICE_CATEGORY
of org.osgi.service.device.Constants 172
DEVICE_DESCRIPTION
of org.osgi.service.device.Constants 172
DEVICE_SERIAL
of org.osgi.service.device.Constants 172
DOUBLE
of org.osgi.service.metatype.AttributeDefinition 222
Driver
of org.osgi.service.device 173
driver bundle
reclamation 169
updates 169
driver service
attachment of 151
registration of 159, 170
unregistration 159
DRIVER_ID
of org.osgi.service.device.Constants 172
DriverLocator
of org.osgi.service.device 174
DriverSelector
of org.osgi.service.device 175

E

equals(Object)
of org.osgi.framework.AdminPermission 52
of org.osgi.framework.Filter 79
of org.osgi.framework.PackagePermission 83
of org.osgi.framework.ServicePermission 87
of org.osgi.service.permissionadmin.PermissionInfo 104
of org.osgi.service.useradmin.UserAdminPermission 267
ERROR
of org.osgi.framework.FrameworkEvent 80
events 41
capturing 41
types of 41

EXPORT
of org.osgi.framework.PackagePermission 82
EXPORT_PACKAGE
of org.osgi.framework.Constants 75
EXPORT_SERVICE
of org.osgi.framework.Constants 75
ExportedPackage
of org.osgi.service.packageadmin 95
exporting
packages 18
services 39

F

Filter
of org.osgi.framework 77
filter
of org.osgi.util.tracker.ServiceTracker 111
filters

syntax 37
finalize()
of org.osgi.util.tracker.ServiceTracker 113
findDrivers(Dictionary)
of org.osgi.service.device.DriverLocator 174
OSGi Service-Platform Release 2 271-282

G

FLOAT
of org.osgi.service.metatype.AttributeDefinition 222
flush()
of org.osgi.service.prefs.Preferences 236
framework event
mapping 121
FRAMEWORK_LANGUAGE
of org.osgi.framework.Constants 75
FRAMEWORK_OS_NAME
of org.osgi.framework.Constants 75
FRAMEWORK_OS_VERSION
of org.osgi.framework.Constants 75
FRAMEWORK_PROCESSOR
of org.osgi.framework.Constants 75

FRAMEWORK_VENDOR
of org.osgi.framework.Constants 75
FRAMEWORK_VERSION
of org.osgi.framework.Constants 75
FrameworkEvent
of org.osgi.framework 80
frameworkEvent(FrameworkEvent)
of org.osgi.framework.FrameworkListener 81
FrameworkEvent(int, Bundle, Throwable)
of org.osgi.framework.FrameworkEvent 80
FrameworkEvent(int, Object)
of org.osgi.framework.FrameworkEvent 80
FrameworkListener
of org.osgi.framework 81

G

GET
of org.osgi.framework.ServicePermission 87
get(String, String)
of org.osgi.service.prefs.Preferences 237
GET_CREDENTIAL
of org.osgi.service.useradmin.UserAdminPermission 267
getActions()
of org.osgi.framework.PackagePermission 83
of org.osgi.framework.ServicePermission 88
of org.osgi.service.permissionadmin.PermissionInfo 104
of org.osgi.service.useradmin.UserAdminPermission 267
getAttributeDefinitions(int)
of org.osgi.service.metatype.ObjectClassDefinition 225
getAuthorization(User)
of org.osgi.service.useradmin.UserAdmin 263
getBoolean(String, boolean)
of org.osgi.service.prefs.Preferences 237
getBundle()
of org.osgi.framework.BundleContext 63
of org.osgi.framework.BundleEvent 71
of org.osgi.framework.FrameworkEvent 81
of org.osgi.framework.ServiceReference 89
of org.osgi.service.log.LogEntry 123
getBundle(long)
of org.osgi.framework.BundleContext 63
getBundleId()
of org.osgi.framework.Bundle 54
getBundleLocation()
of org.osgi.service.cm.Configuration 203
getBundles()
of org.osgi.framework.BundleContext 63
getByteArray(String, byte[])
of org.osgi.service.prefs.Preferences 237
getCardinality()
of org.osgi.service.metatype.AttributeDefinition 223

getConfiguration(String)
of org.osgi.service.cm.ConfigurationAdmin 206
getConfiguration(String, String)
of org.osgi.service.cm.ConfigurationAdmin 207
getConfigurationObject()
of org.osgi.framework.Configurable 72
getCredentials()
of org.osgi.service.useradmin.User 262
getDataFile(String)
of org.osgi.framework.BundleContext 64
getDefaultPermissions()
of org.osgi.service.permissionadmin.PermissionAdmin 102
getDefaultValue()
of org.osgi.service.metatype.AttributeDefinition 223
getDescription()
of org.osgi.service.metatype.AttributeDefinition 223
of org.osgi.service.metatype.ObjectClassDefinition 225
getDouble(String, double)
of org.osgi.service.prefs.Preferences 238
getDriver()
of org.osgi.service.device.Match 175
getEncoded()
of org.osgi.service.permissionadmin.PermissionInfo 104
getException()
of org.osgi.service.http.NamespaceException 145
of org.osgi.service.log.LogEntry 123
getExportedPackage(String)
of org.osgi.service.packageadmin.PackageAdmin 96
getExportedPackages(Bundle)
of org.osgi.service.packageadmin.PackageAdmin 96
getExportingBundle()
of org.osgi.service.packageadmin.ExportedPackage 95
getFactoryPid()
of org.osgi.service.cm.Configuration 203
getFilter()
272-282 OSGi Service-Platform Release 2

Index G
of org.osgi.framework.InvalidSyntaxException 82
getFloat(String, float)
of org.osgi.service.prefs.Preferences 238
getHeaders()
of org.osgi.framework.Bundle 54
getIcon(int)
of org.osgi.service.metatype.ObjectClassDefinition 225
getID()
of org.osgi.service.metatype.AttributeDefinition 223
of org.osgi.service.metatype.ObjectClassDefinition 225
getImportingBundles()
of org.osgi.service.packageadmin.ExportedPackage 95
getInt(String, int)
of org.osgi.service.prefs.Preferences 239
getLevel()
of org.osgi.service.log.LogEntry 124
getLocales()
of org.osgi.service.metatype.MetaTypeProvider 224
getLocation()
of org.osgi.framework.Bundle 55
getLocations()
of org.osgi.service.permissionadmin.PermissionAdmin 103
getLog()
of org.osgi.service.log.LogReaderService 125
getLong(String, long)
of org.osgi.service.prefs.Preferences 239
getMatchValue()
of org.osgi.service.device.Match 175
getMembers()
of org.osgi.service.useradmin.Group 260
getMessage()
of org.osgi.service.log.LogEntry 124
getMimeType(String)
of org.osgi.service.http.HttpContext 141
getName()
of org.osgi.service.cm.ManagedServiceFactory 213
of org.osgi.service.metatype.AttributeDefinition 223
of org.osgi.service.metatype.ObjectClassDefinition 226
of org.osgi.service.packageadmin.ExportedPackage 95
of org.osgi.service.permissionadmin.PermissionInfo 105
of org.osgi.service.useradmin.Authorization 258
of org.osgi.service.useradmin.Role 261
getNestedException()
of org.osgi.framework.BundleException 71
getObjectClassDefinition(String, String)
of org.osgi.service.metatype.MetaTypeProvider 224
getOptionLabels()
of org.osgi.service.metatype.AttributeDefinition 223
getOptionValues()
of org.osgi.service.metatype.AttributeDefinition 224
getPermissions(String)
of org.osgi.service.permissionadmin.PermissionAdmin 103

getPid()
of org.osgi.service.cm.Configuration 204
getProperties()
of org.osgi.service.cm.Configuration 204
of org.osgi.service.useradmin.Role 261
getProperty()
of org.osgi.service.cm.ConfigurationException 208
getProperty(String)
of org.osgi.framework.BundleContext 64
of org.osgi.framework.ServiceReference 89
getPropertyKeys()
of org.osgi.framework.ServiceReference 89
getReason()
of org.osgi.service.cm.ConfigurationException 208
getReference()
of org.osgi.framework.ServiceRegistration 90
getRegisteredServices()
of org.osgi.framework.Bundle 55
getRequiredMembers()
of org.osgi.service.useradmin.Group 260
getResource(String)
of org.osgi.framework.Bundle 55
of org.osgi.service.http.HttpContext 141
getRole()
of org.osgi.service.useradmin.UserAdminEvent 265
getRole(String)
of org.osgi.service.useradmin.UserAdmin 263
getRoles()
of org.osgi.service.useradmin.Authorization 258
getRoles(String)
of org.osgi.service.useradmin.UserAdmin 263
getService()
of org.osgi.util.tracker.ServiceTracker 113
getService(Bundle, ServiceRegistration)
of org.osgi.framework.ServiceFactory 85
getService(ServiceReference)
of org.osgi.framework.BundleContext 64
of org.osgi.util.tracker.ServiceTracker 113
getServiceReference()
of org.osgi.framework.ServiceEvent 85
of org.osgi.service.log.LogEntry 124
of org.osgi.service.useradmin.UserAdminEvent 265
of org.osgi.util.tracker.ServiceTracker 113
getServiceReference(String)
of org.osgi.framework.BundleContext 65
getServiceReferences()
of org.osgi.util.tracker.ServiceTracker 113
getServiceReferences(String, String)
of org.osgi.framework.BundleContext 66
getServices()
of org.osgi.util.tracker.ServiceTracker 113
getServicesInUse()
OSGi Service-Platform Release 2 273-282

H

of org.osgi.framework.Bundle 55
getSpecificationVersion()
of org.osgi.service.packageadmin.ExportedPackage 96
getState()
of org.osgi.framework.Bundle 56
getSystemPreferences()
of org.osgi.service.prefs.PreferencesService 244
getThrowable()
of org.osgi.framework.FrameworkEvent 81
getTime()
of org.osgi.service.log.LogEntry 124
getting
bundle information 29
service properties 36
service reference objects 31
getType()
of org.osgi.framework.BundleEvent 71
of org.osgi.framework.FrameworkEvent 81

of org.osgi.framework.ServiceEvent 85
of org.osgi.service.metatype.AttributeDefinition 224
of org.osgi.service.permissionadmin.PermissionInfo 105
of org.osgi.service.useradmin.Role 261
of org.osgi.service.useradmin.UserAdminEvent 265
getUser(String, String)
of org.osgi.service.useradmin.UserAdmin 264
getUserPreferences(String)
of org.osgi.service.prefs.PreferencesService 244
getUsers()
of org.osgi.service.prefs.PreferencesService 244
getUsingBundles()
of org.osgi.framework.ServiceReference 89
GROUP
of org.osgi.service.useradmin.Role 261
Group
of org.osgi.service.useradmin 258

H

handleSecurity(HttpServletRequest, HttpServletRe-
sponse)
of org.osgi.service.http.HttpContext 142
hasCredential(String, Object)
of org.osgi.service.useradmin.User 262
hashCode()
of org.osgi.framework.Filter 79
of org.osgi.framework.PackagePermission 83
of org.osgi.framework.ServicePermission 88
of org.osgi.service.permissionadmin.PermissionInfo 105
of org.osgi.service.useradmin.UserAdminPermission 268
hasPermission(Object)

of org.osgi.framework.Bundle 56
hasRole(String)
of org.osgi.service.useradmin.Authorization 258
headers
authentication 138
HTTP context object
default 135
using 135
HttpContext
of org.osgi.service.http 140
HttpService
of org.osgi.service.http 142

I

implies(Permission)
of org.osgi.framework.AdminPermission 52
of org.osgi.framework.PackagePermission 83
of org.osgi.framework.ServicePermission 88
of org.osgi.service.useradmin.UserAdminPermission 268
IMPORT
of org.osgi.framework.PackagePermission 82
IMPORT_PACKAGE
of org.osgi.framework.Constants 76
IMPORT_SERVICE
of org.osgi.framework.Constants 76
importing
packages 19
services 39
installBundle(String)
of org.osgi.framework.BundleContext 67
installBundle(String, InputStream)

of org.osgi.framework.BundleContext 67
INSTALLED
of org.osgi.framework.Bundle 53
of org.osgi.framework.BundleEvent 70
installing
bundles 25
INTEGER
of org.osgi.service.metatype.AttributeDefinition 222
InvalidSyntaxException
of org.osgi.framework 81
InvalidSyntaxException(String, String)
of org.osgi.framework.InvalidSyntaxException 82
isRemovalPending()
of org.osgi.service.packageadmin.ExportedPackage 96
274-282 OSGi Service-Platform Release 2

Index K
K

keys() of org.osgi.service.prefs.Preferences 240

L

Legal terms ii
listConfigurations(String)
of org.osgi.service.cm.ConfigurationAdmin 207
listeners
types of 41
loadDriver(String)
of org.osgi.service.device.DriverLocator 174
loading
native language code libraries 21
log entries
retrieving 120
log entry objects
retrieving 120
log(int, String)
of org.osgi.service.log.LogService 126
log(int, String, Throwable)
of org.osgi.service.log.LogService 126
log(ServiceReference, int, String)
of org.osgi.service.log.LogService 126
log(ServiceReference, int, String, Throwable)
of org.osgi.service.log.LogService 126

LOG_DEBUG
of org.osgi.service.log.LogService 125
LOG_ERROR
of org.osgi.service.log.LogService 126
LOG_INFO
of org.osgi.service.log.LogService 126
LOG_WARNING
of org.osgi.service.log.LogService 126
LogEntry
of org.osgi.service.log 123
logged(LogEntry)
of org.osgi.service.log.LogListener 124
LogListener
of org.osgi.service.log 124
LogReaderService
of org.osgi.service.log 124
LogService
of org.osgi.service.log 125
LONG
of org.osgi.service.metatype.AttributeDefinition 222

M

managed service
configuration 186
configuration object
creating 193
deletion 189
example 187
managed service factory
configuration object
creating 194
deletion 191
example 191
registration 190
ManagedService
of org.osgi.service.cm 209
ManagedServiceFactory
of org.osgi.service.cm 211
manifest headers
grammar 16
retrieving 16
mapping
framework events 121
HTTP requests to servlet and resource registrations 134
Match

of org.osgi.service.device 175
match(Dictionary)
of org.osgi.framework.Filter 79
match(ServiceReference)
of org.osgi.framework.Filter 80
of org.osgi.service.device.Driver 174
MATCH_NONE
of org.osgi.service.device.Device 173
message
error condition 119
error severity 119
log level 119
logging methods 118
MetaTypeProvider
of org.osgi.service.metatype 224
metatypes
using 199
MIME
types 136
returning 137
MODIFIED
of org.osgi.framework.ServiceEvent 84
modifiedService(ServiceReference, Object)
OSGi Service-Platform Release 2 275-282

N

of org.osgi.util.tracker.ServiceTracker 113
of org.osgi.util.tracker.ServiceTrackerCustomizer 115

modifyConfiguration(ServiceReference, Dictionary)
of org.osgi.service.cm.ConfigurationPlugin 209

N

name()
of org.osgi.service.prefs.Preferences 240
NamespaceException
of org.osgi.service.http 145
NamespaceException(String)
of org.osgi.service.http.NamespaceException 145
NamespaceException(String, Throwable)
of org.osgi.service.http.NamespaceException 145
native language code
algorithm 22
native language code libraries
loading 21

newPermissionCollection()
of org.osgi.framework.AdminPermission 52
of org.osgi.framework.PackagePermission 84
of org.osgi.framework.ServicePermission 88
of org.osgi.service.useradmin.UserAdminPermission 268
node(String)
of org.osgi.service.prefs.Preferences 240
nodeExists(String)
of org.osgi.service.prefs.Preferences 240
noDriverFound()
of org.osgi.service.device.Device 173

O

OBJECTCLASS
of org.osgi.framework.Constants 76
ObjectClassDefinition
of org.osgi.service.metatype 225
obtaining
services 35
open()
of org.osgi.util.tracker.ServiceTracker 114
optimizations
device manager 168
OPTIONAL
of org.osgi.service.metatype.ObjectClassDefinition 225
org.osgi.framework
package 50
org.osgi.service.cm
package 202
org.osgi.service.device

package 171
org.osgi.service.http
package 140
org.osgi.service.log
package 123
org.osgi.service.metatype
package 221
org.osgi.service.packageadmin
package 95
org.osgi.service.permissionadmin
package 101
org.osgi.service.prefs
package 234
org.osgi.service.useradmin
package 257
org.osgi.util.tracker
package 110

P

PACKAGE_SPECIFICATION_VERSION
of org.osgi.framework.Constants 76
PackageAdmin
of org.osgi.service.packageadmin 96
PackagePermission
of org.osgi.framework 82
PackagePermission(String, String)
of org.osgi.framework.PackagePermission 82
packages
exporting 18
importing 19
sharing 17
parent()

of org.osgi.service.prefs.Preferences 241
PermissionAdmin
of org.osgi.service.permissionadmin 102
PermissionInfo
of org.osgi.service.permissionadmin 103
PermissionInfo(String)
of org.osgi.service.permissionadmin.PermissionInfo 103
PermissionInfo(String, String, String)
of org.osgi.service.permissionadmin.PermissionInfo 104
permissions
bundle 45
checks 43
configuration bundle 199
276-282 OSGi Service-Platform Release 2

Index R
returning 45
types of 44
PID 181
forging 200
registering a service with 181
Preferences
of org.osgi.service.prefs 234
PreferencesService
of org.osgi.service.prefs 244
properities
names 30
properties
automatic 184
configuration 184
environment 29
getting service 36
propogation of 184
returning 29

service 33
types of 34
types of 29
put(String, String)
of org.osgi.service.prefs.Preferences 241
putBoolean(String, boolean)
of org.osgi.service.prefs.Preferences 241
putByteArray(String, byte[])
of org.osgi.service.prefs.Preferences 241
putDouble(String, double)
of org.osgi.service.prefs.Preferences 242
putFloat(String, float)
of org.osgi.service.prefs.Preferences 242
putInt(String, int)
of org.osgi.service.prefs.Preferences 243
putLong(String, long)
of org.osgi.service.prefs.Preferences 243

R

reclamation
driver bundle 169
refreshPackages(Bundle[])
of org.osgi.service.packageadmin.PackageAdmin 97
REGISTER
of org.osgi.framework.ServicePermission 87
REGISTERED
of org.osgi.framework.ServiceEvent 84
registering
multiple service interfaces 33
resources 132
services 32
servlets 130
single service interface 33
registerResources(String, String, HttpContext)
of org.osgi.service.http.HttpService 143
registerService(String, Object, Dictionary)
of org.osgi.framework.BundleContext 69
registerService(String[], Object, Dictionary)
of org.osgi.framework.BundleContext 68
registerServlet(String, Servlet, Dictionary, HttpContext)
of org.osgi.service.http.HttpService 144
registration
device service 150, 170
device service and driver service
simultaneous 170
driver service 159, 170
managed service factory 190
resource 132
servlets, resources
matching 134

releasing
services 39
remote management 197
REMOTE_USER
of org.osgi.service.http.HttpContext 141
remove(ServiceReference)
of org.osgi.util.tracker.ServiceTracker 114
remove(String)
of org.osgi.service.prefs.Preferences 243
removeBundleListener(BundleListener)
of org.osgi.framework.BundleContext 69
removedService(ServiceReference, Object)
of org.osgi.util.tracker.ServiceTracker 114
of org.osgi.util.tracker.ServiceTrackerCustomizer 115
removeFrameworkListener(FrameworkListener)
of org.osgi.framework.BundleContext 69
removeLogListener(LogListener)
of org.osgi.service.log.LogReaderService 125
removeMember(Role)
of org.osgi.service.useradmin.Group 260
removeNode()
of org.osgi.service.prefs.Preferences 244
removeRole(String)
of org.osgi.service.useradmin.UserAdmin 264
removeServiceListener(ServiceListener)
of org.osgi.framework.BundleContext 69
representation
device 149
request
authentication 137
authorization 137
OSGi Service-Platform Release 2 277-282

S

REQUIRED
of org.osgi.service.metatype.ObjectClassDefinition 225
RESOLVED
of org.osgi.framework.Bundle 53
resolving
bundles 26
dependencies 26
resource
registration 132
resources
registering 132
retrieving 120
log entries 120
log entry objects 120
manifest headers 16

returning
bundle permissions 45
registered services 37
ROLE
of org.osgi.service.useradmin.Role 261
Role
of org.osgi.service.useradmin 260
ROLE_CHANGED
of org.osgi.service.useradmin.UserAdminEvent 264
ROLE_CREATED
of org.osgi.service.useradmin.UserAdminEvent 264
ROLE_REMOVED
of org.osgi.service.useradmin.UserAdminEvent 264
roleChanged(UserAdminEvent)
of org.osgi.service.useradmin.UserAdminListener 265

S

security
implementing 199
permissions 199
select(ServiceReference, Match[])
of org.osgi.service.device.DriverSelector 175
SELECT_NONE
of org.osgi.service.device.DriverSelector 175
service factories
using 38
service interfaces
accessing 32
service persistent ID 151
service reference objects
getting 31
service tracker
customizing 109
using 108
SERVICE_DESCRIPTION
of org.osgi.framework.Constants 76
SERVICE_ID
of org.osgi.framework.Constants 76
SERVICE_PID
of org.osgi.framework.Constants 76
SERVICE_RANKING
of org.osgi.framework.Constants 77
SERVICE_VENDOR
of org.osgi.framework.Constants 77
serviceChanged(ServiceEvent)
of org.osgi.framework.ServiceListener 86
ServiceEvent
of org.osgi.framework 84
ServiceEvent(int, ServiceReference)
of org.osgi.framework.ServiceEvent 85
ServiceFactory

of org.osgi.framework 85
ServiceListener
of org.osgi.framework 86
ServicePermission
of org.osgi.framework 87
ServicePermission(String, String)
of org.osgi.framework.ServicePermission 87
ServiceReference
of org.osgi.framework 88
ServiceRegistration
of org.osgi.framework 89
services 31
exporting 39
importing 39
obtaining 35
registering 32
releasing 39
returning registered 37
unregistering 40
ServiceTracker
of org.osgi.util.tracker 111
ServiceTracker(BundleContext, Filter, ServiceTracker-
Customizer)
of org.osgi.util.tracker.ServiceTracker 111
ServiceTracker(BundleContext, ServiceReference, Ser-
viceTrackerCustomizer)
of org.osgi.util.tracker.ServiceTracker 112
ServiceTracker(BundleContext, String, ServiceTracker-
Customizer)
of org.osgi.util.tracker.ServiceTracker 112
ServiceTrackerCustomizer
of org.osgi.util.tracker 115
servlet
registration 130
278-282 OSGi Service-Platform Release 2

Index T
servlets
registering 130
setBundleLocation(String)
of org.osgi.service.cm.Configuration 204
setDefaultPermissions(PermissionInfo[])
of org.osgi.service.permissionadmin.PermissionAdmin 103
setPermissions(String, PermissionInfo[])
of org.osgi.service.permissionadmin.PermissionAdmin 103
setProperties(Dictionary)
of org.osgi.framework.ServiceRegistration 90
sharing
packages 17
SHORT
of org.osgi.service.metatype.AttributeDefinition 222
size()
of org.osgi.util.tracker.ServiceTracker 114
specifications
device catetogy 152
start()
of org.osgi.framework.Bundle 56
start(BundleContext)
of org.osgi.framework.BundleActivator 61
STARTED
of org.osgi.framework.BundleEvent 70

of org.osgi.framework.FrameworkEvent 80
STARTING
of org.osgi.framework.Bundle 53
starting
bundles 26
device manager 165
stop()
of org.osgi.framework.Bundle 57
stop(BundleContext)
of org.osgi.framework.BundleActivator 61
STOPPED
of org.osgi.framework.BundleEvent 70
STOPPING
of org.osgi.framework.Bundle 53
stopping
bundles 27
STRING
of org.osgi.service.metatype.AttributeDefinition 223
sync()
of org.osgi.service.prefs.Preferences 244
SynchronousBundleListener
of org.osgi.framework 91
SYSTEM_BUNDLE_LOCATION
of org.osgi.framework.Constants 77

T

toString()
of org.osgi.framework.Filter 80
of org.osgi.service.permissionadmin.PermissionInfo 105
of org.osgi.service.useradmin.UserAdminPermission 268

types
MIME 136
permissions 44

U

ungetService(Bundle, ServiceRegistration, Object)
of org.osgi.framework.ServiceFactory 86
ungetService(ServiceReference)
of org.osgi.framework.BundleContext 69
uninstall()
of org.osgi.framework.Bundle 58
UNINSTALLED
of org.osgi.framework.Bundle 54
of org.osgi.framework.BundleEvent 70
uninstalling
bundles 28
unregister()
of org.osgi.framework.ServiceRegistration 90
unregister(String)
of org.osgi.service.http.HttpService 144
UNREGISTERING
of org.osgi.framework.ServiceEvent 84
unregistering
services 40

unregistration
device service 151
driver service 159
update()
of org.osgi.framework.Bundle 59
of org.osgi.service.cm.Configuration 204
update(Dictionary)
of org.osgi.service.cm.Configuration 204
update(InputStream)
of org.osgi.framework.Bundle 60
UPDATED
of org.osgi.framework.BundleEvent 70
updated(Dictionary)
of org.osgi.service.cm.ManagedService 210
updated(String, Dictionary)
of org.osgi.service.cm.ManagedServiceFactory 213
updating
bundles 27
USER
OSGi Service-Platform Release 2 279-282

V

of org.osgi.service.useradmin.Role 261
User
of org.osgi.service.useradmin 261
UserAdmin
of org.osgi.service.useradmin 262
UserAdminEvent
of org.osgi.service.useradmin 264
UserAdminEvent(ServiceReference, int, Role)
of org.osgi.service.useradmin.UserAdminEvent 265

UserAdminListener
of org.osgi.service.useradmin 265
UserAdminPermission
of org.osgi.service.useradmin 265
UserAdminPermission(String, String)
of org.osgi.service.useradmin.UserAdminPermission 267
using
service tracker 108

V

validate(String) of org.osgi.service.metatype.AttributeDefinition 224

W

waitForService(long)
of org.osgi.util.tracker.ServiceTracker 114
280-282 OSGi Service-Platform Release 2

OSGi Service-Platform Release 2 281-282

282-282 OSGi Service-Platform Release 2

End Of Document

	1 Introduction
	1.1 Reader Level
	1.2 Conventions and Terms
	1.2.1 Typography
	1.2.2 Object Oriented Terminology
	1.2.3 Diagrams
	1.2.4 Key Words
	1.2.5 Term Definitions

	1.3 The Specification Process
	1.4 Version Information
	1.5 Compliance
	1.6 References

	2 Framework Specification
	2.1 Introduction
	2.1.1 Entities

	2.2 Bundles
	2.2.1 The System Bundle
	2.2.2 Management Bundles

	2.3 Manifest Headers
	2.3.1 Retrieving Manifest Headers
	2.3.2 Manifest Header Grammar

	2.4 The Bundle Namespace
	2.4.1 Bundles and classloaders
	2.4.2 Sharing Packages
	2.4.3 Exporting Packages
	2.4.4 Importing Packages
	2.4.5 Importing a Lower Version Than Exporting
	2.4.6 Code Executed Before Started
	2.4.7 Recommended Export Strategy
	2.4.8 Bundle Classpath

	2.5 Loading Native Code Libraries
	2.5.1 Native Code Algorithm

	2.6 Finding Classes and Resources
	2.6.1 Resources

	2.7 The Bundle Object
	2.7.1 Bundle Identifier
	2.7.2 Bundle Location
	2.7.3 Bundle State
	2.7.4 Installing Bundles
	2.7.5 Resolving Bundles
	2.7.6 Starting Bundles
	2.7.7 Stopping Bundles
	2.7.8 Updating Bundles
	2.7.9 Uninstalling Bundles

	2.8 The Bundle Context
	2.8.1 Getting Bundle Information
	2.8.2 Persistent Storage
	2.8.3 Environment Properties

	2.9 Services
	2.9.1 ServiceReference Objects
	2.9.2 Service Interfaces
	2.9.3 Registering Services
	2.9.4 Properties
	2.9.5 Security Check
	2.9.6 Obtaining Services
	2.9.7 Getting Service Properties
	2.9.8 Getting Service Objects
	2.9.9 Stale References
	2.9.10 Registered Services

	2.10 Filters
	2.11 Service Factories
	2.12 Importing and Exporting Services
	2.13 Releasing Services
	2.14 Unregistering Services
	2.15 Configurable Services
	2.16 Events
	2.16.1 Listeners
	2.16.2 Delivering Events

	2.17 Security
	2.17.1 Permission Checks
	2.17.2 Privileged Callbacks
	2.17.3 Permission Types
	2.17.4 AdminPermission
	2.17.5 ServicePermission
	2.17.6 PackagePermission
	2.17.7 Bundle Permissions

	2.18 Framework Startup and Shutdown
	2.18.1 Startup
	2.18.2 Shutdown

	2.19 The Framework on JDK 1.1
	2.19.1 ClassLoader.getResource
	2.19.2 ClassLoader.findLibrary
	2.19.3 Resource URL

	2.20 Changes since 1.0
	2.20.1 System Bundle
	2.20.2 Service Properties
	2.20.3 New Bundle Manifest Header Attributes
	2.20.4 New Framework Methods
	2.20.5 New Framework Classes
	2.20.6 Bundle Classloader Delegation Model
	2.20.7 Replacing and Removing Exported Packages
	2.20.8 Bundle URL objects
	2.20.9 Optional Bundle Contents
	2.20.10 Clarifications
	2.20.11 Case Considerations of Service Properties
	2.20.12 Manifest Header Syntax
	2.20.13 Event Delivery
	2.20.14 Bundle Location
	2.20.15 Native Code Selection Algorithm
	2.20.16 Registering Service Under a Single Interface
	2.20.17 Bundle Callbacks Must Be Executed as Privileged Operations
	2.20.18 Bundle.uninstall

	2.21 org.osgi.framework
	2.22 References

	3 Package Admin Service Specification
	3.1 Introduction
	3.1.1 Essentials
	3.1.2 Operation
	3.1.3 Entities

	3.2 Package Admin
	3.3 Security
	3.4 org.osgi.service.packageadmin

	4 Permission Admin Service Specification
	4.1 Introduction
	4.1.1 Essentials
	4.1.2 Operation
	4.1.3 Entities

	4.2 Permission Admin service
	4.3 Security
	4.4 org.osgi.service.permissionadmin

	5 Service Tracker Specification
	5.1 Introduction
	5.1.1 Essentials
	5.1.2 Operation
	5.1.3 Entities

	5.2 ServiceTracker Class
	5.3 Using a Service Tracker
	5.4 Customizing the ServiceTracker class
	5.5 Customizing Example
	5.6 Security
	5.7 org.osgi.util.tracker

	6 Log Service Specification
	6.1 Introduction
	6.1.1 Entities

	6.2 The Log Service Interface
	6.3 Log Level and Error Severity
	6.4 Log Reader Service
	6.4.1 Log Entry

	6.5 Mapping of Events
	6.5.1 Bundle Events Mapping
	6.5.2 Service Events Mapping
	6.5.3 Framework Events Mapping

	6.6 Security
	6.7 Changes Since Release 1.0
	6.8 org.osgi.service.log

	7 Http Service Specification
	7.1 Introduction
	7.1.1 Entities

	7.2 Registering Servlets
	7.3 Registering Resources
	7.4 Mapping HTTP Requests to Servlet and Resource Registrations
	7.5 The Default Http Context Object
	7.6 MIME Types
	7.7 Authentication
	7.8 Security
	7.8.1 Accessing Resources in Bundles
	7.8.2 Accessing Other Types of Resources

	7.9 Configuration Properties
	7.10 org.osgi.service.http
	7.11 References

	8 Device Access Specification
	8.1 Introduction
	8.1.1 Essentials
	8.1.2 Operation
	8.1.3 Entities

	8.2 Device Services
	8.2.1 Device Service Registration
	8.2.2 Device Service Attachment

	8.3 Device Category Specifications
	8.3.1 Device Category Guidelines
	8.3.2 Sample Device Category Specification
	8.3.3 Match Example

	8.4 Driver Services
	8.4.1 Driver Bundles
	8.4.2 Driver Taxonomy
	8.4.3 Driver Service Registration
	8.4.4 Driver Service Unregistration
	8.4.5 Driver Service Methods
	8.4.6 Idle Driver Bundles

	8.5 Driver Locator Service
	8.5.1 The DriverLocator Interface
	8.5.2 A Driver Example

	8.6 The Driver Selector Service
	8.7 Device Manager
	8.7.1 Device Manager Startup
	8.7.2 The Device Attachment Algorithm
	8.7.3 Legend
	8.7.4 Optimizations
	8.7.5 Driver Bundle Reclamation
	8.7.6 Handling Driver Bundle Updates
	8.7.7 Simultaneous Device Service and Driver Service Registration

	8.8 Security
	8.9 Changes Since 1.0
	8.10 org.osgi.service.device
	8.11 References

	9 Configuration Admin Service Specification
	9.1 Introduction
	9.1.1 Essentials
	9.1.2 Operation
	9.1.3 Entities

	9.2 Configuration Targets
	9.3 The Persistent Identity
	9.3.1 PID Readability

	9.4 The Configuration Object
	9.4.1 Location Binding
	9.4.2 Configuration Properties
	9.4.3 Property Propagation
	9.4.4 Automatic Properties

	9.5 Managed Service
	9.5.1 Networks
	9.5.2 Singletons
	9.5.3 Configuring Managed Services
	9.5.4 Race Conditions
	9.5.5 Examples of Managed Service
	9.5.6 Deletion

	9.6 Managed Service Factory
	9.6.1 When to Use a Managed Service Factory
	9.6.2 Registration
	9.6.3 Deletion
	9.6.4 Example of Managed Service Factory
	9.6.5 Multiple Consoles Example

	9.7 Configuration Admin Service
	9.7.1 Creating a Managed Service Configuration Object
	9.7.2 Creating a Managed Service Factory Configuration Object
	9.7.3 Accessing Existing Configurations
	9.7.4 Deletion
	9.7.5 Updating a Bundle’s Own Configuration

	9.8 Configuration Plugin
	9.8.1 Limiting The Targets
	9.8.2 Example of Property Expansion
	9.8.3 Configuration Data Modifications
	9.8.4 Forcing a Callback
	9.8.5 Calling Order

	9.9 Remote Management
	9.9.1 Common Information Model
	9.9.2 Simple Network Management Protocol

	9.10 Meta Typing
	9.11 Security
	9.11.1 Permissions
	9.11.2 Forging PIDs
	9.11.3 Configuration and Permission Administration

	9.12 Configurable Service
	9.13 org.osgi.service.cm
	9.14 References

	10 Metatype Specification
	10.1 Introduction
	10.1.1 Essentials
	10.1.2 Operation
	10.1.3 Entities

	10.2 Attributes Model
	10.3 Object Class Definition
	10.4 Attribute Definition
	10.5 Meta Type Provider
	10.6 Metatype Example
	10.7 Related Standards
	10.7.1 Beans

	10.8 Security Considerations
	10.9 org.osgi.service.metatype
	10.10 References

	11 Preferences Service Specification
	11.1 Introduction
	11.1.1 Operation
	11.1.2 Essentials
	11.1.3 Entities

	11.2 Preferences Interface
	11.2.1 Hierarchies
	11.2.2 Naming
	11.2.3 Tree Traversal Methods
	11.2.4 Properties
	11.2.5 Storing and Retrieving Properties
	11.2.6 Defaults

	11.3 Concurrency
	11.4 PreferencesService Interface
	11.5 Cleanup
	11.6 JSR 10
	11.7 org.osgi.service.prefs
	11.8 References

	12 User Admin Service Specification
	12.1 Introduction
	12.1.1 Essentials
	12.1.2 Operation
	12.1.3 Entities

	12.2 Authentication
	12.2.1 Repository
	12.2.2 Basic Authentication
	12.2.3 Certificates

	12.3 Authorization
	12.3.1 The Authorization Object
	12.3.2 The Http Service and Authorization
	12.3.3 Authorization Example

	12.4 Repository Maintenance
	12.5 User Admin Events
	12.6 Security
	12.6.1 UserAdminPermission

	12.7 Relation to JAAS
	12.7.1 JDK 1.3 Dependencies
	12.7.2 Existing OSGi Mechanism
	12.7.3 Future Road Map

	12.8 org.osgi.service.useradmin
	12.9 References

	Index

		2001-08-09T11:37:29+0100
	OSGi

